一种基于机器视觉的LED导光板缺陷检测方法与流程

专利2022-06-28  95


本发明涉及一种基于机器视觉的led导光板缺陷检测方法,属于缺陷检测技术领域。



背景技术:

导光板作为led液晶屏底层构造的重要组成部分,其品质决定着led屏幕的成像品质,而导光板在注塑机中生产的过程中,由于机器的内部缺陷以及外部的灰尘污染,往往造成导光板出现白点,暗点,划伤,脏污,侧边漏光等缺陷发生,而由于这些缺陷的尺寸较小,通过人工对其进行检出十分困难,同时人工检查也造成的人力成本的浪费和生产成本的增加。



技术实现要素:

本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于机器视觉的led导光板缺陷检测方法,以实现led导光板缺陷的非接触式检出。

为解决上述技术问题,本发明提供一种基于机器视觉的led导光板缺陷检测方法,在有效光照结构中采集导光板多视角的原始图像;

对原始图像进行预处理,得到增强导光板roi区域边缘的图像;

对边缘增强后的图像的导光板roi区域进行定位并与背景区域进行分割,得到分割后的导光板图像;

对分割后的导光板图像进行光照影响消除和缺陷部位增强处理,得到缺陷部位增强后的图像;

对缺陷部位增强后的图像中常规尺寸的缺陷进行检测,确定最终的常规尺寸瑕疵点;

对缺陷部位增强后的图像中细微尺寸的缺陷进行检测,确定最终的细微尺寸瑕疵点。

进一步的,所述采集采用双摄像头采集,其中一个摄像头位于导光板的陈列位的正上方,另一个摄像头位于导光板的陈列位的右上方,两摄像头到导光板的距离相同。可获得导光板区域的多角度图像,避免的因局部反光角度不同造成的缺陷漏检。

进一步的,所述有效光照结构包括置于导光板(1)前侧的第一led条形光源(2)、置于导光板(1)左右两侧的第二led条形光源(4)。多角度的打光方案可以使导光板不懂折叠角度的划痕和漏光被摄像头发现。

导光板的陈列台的底面(3)采用黑色磨砂材料,底面(3)上放置全透明矩形玻璃块(5),导光板(1)水平放置于矩形玻璃块(5)上。黑色磨砂背景可以吸收绝大部分的杂光和照射光,同时全透玻璃矩阵可以在不影响光穿透的前提下使导光板和背景保持一定距离,使其中的缺陷的显著性增强。

进一步的,所述预处理的过程为:

对原始图像进行线性变换,对线性变换后的图像增强目标与背景对比度和图像亮度。

进一步的,所述得到分割后的导光板图像的过程为:

对预处理后的图像使用canny算子进行边缘检测;

使用hough变换对图像中的直线进行检测,并以导光板四边的长度作为标准剔除误检线;

提取检测的直线所包围的区域为导光板roi区域。

进一步的,所述得到缺陷部位增强后的图像的过程为:

将分割后的导光板图像变换为灰度图像;

对所述灰度图像进行下式中的一维离散小波变换,得到光照均匀化的图像;

对所述光照均匀化的图像,进行加权掩膜滤波,消除图像中的噪点,将图像划分为不同区域,计算每个区域对应的平均值和方差,将方差最小的区域进行卷积运算,得到滤波图像;

对得到滤波图像进行梯度锐化,得到缺陷部位增强后的图像。

进一步的,所述确定最终的常规尺寸瑕疵点的过程为:

对缺陷部位增强后的图像采取自适应阈值分割算法进行二值化,得到二值化图像;

对所述二值化图像,先进行开运算,填补阈值分割造成的椒盐噪声,再进行闭运算,使缺陷区域的像素得到生长,得到缺陷的轮廓圈;

将所述缺陷的轮廓圈出并进行统计,得到最终的常规尺寸瑕疵点。

进一步的,所述自适应阈值分割算法进行二值化的过程为:

(a)设定初始阈值m;

(b)将缺陷部位增强后的图像按照阈值m分为两部分;

(c)分别计算两部分图像的灰度平均值;

(d)通过平均值计算新的阈值;

(e)重复步骤(b)到步骤(d),当相邻两次迭代的差值小于设定值时,结束迭代,获得最终的阈值分割图像作为二值化图像。

进一步的,所述确定最终的细微尺寸瑕疵点的过程为:

(1)将缺陷部位增强后的图像与原始的原始图像进行逐像素的相减运算,得到差分图像,计算公式如下:

m(u,v)=|i(x,y)-d(x1,y1)|

其中m(u,v)是差分运算的结果,i(x,y)为增强后的导光板图像,d(x1,y1)是原始图像,若相同则结果为0,不同则为1;

(2)对步骤(1)中得到的差分图像建立局部方差测量算子:

其中μ为邻域内所有像素点的平均灰度值,p代表邻近点个数,r为邻域的半径,r为依据图像的实际大小依据比例进行设置,gp为邻域给每个像素点的灰度值;

(3)利用加权信息熵对步骤(2)中的局部方差进行修正:

其中hg为修正后的方差,pk为不同灰度在区域中出现的概率,其计算公式为:

n为局部区域内像素的总数,k为该区域内缺陷图像含有的r种不同的灰度值,nk为缺陷区域所占像素的总数;

(4)以步骤(3)中修正后的方差作为依据,对步骤(1)得到的差分图像进行阈值分割,得到最终的细微尺寸瑕疵点。

本发明所达到的有益效果:

本发明将图像采集和打光方案与机器视觉相结合,实现了导光板图像分割,缺陷分类检测的自动化,并通过有效的图像增强和预处理方法在不影响检测效率的同时提高了检测的精度和准确率。

附图说明

图1为本发明的流程示意图;

图2-1和2-2为本发明中图像采集及打光装置的结构示意图。

具体实施方式

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

如图1、2-1及2-2所示,一种基于机器视觉的led导光板的缺陷检测装置以及检测方法,包括如下步骤:

(1)对导光板图像进行采集的多摄像头多角度部署结构

(2)对导光板本体提供良好光照条件的打光装置结构;

该装置是具体结构如下:

如图2所示,导光板图像采集装置采用双摄像头(6)的设置,其中一个摄像头位于导光板(1)陈列位的正上方,另一个摄像头位于陈列位的正右上方45°角位置,两摄像头到导光板的距离均为350mm。

导光板打光装置采用三个led条形光源(2)(4)分别置于与导光板(1)处于水平位置的两侧及上方,其中位于两侧的光源距导光板(1)250mm,位于上方的光源距导光板200mm。

导光板陈列台的底面采用黑色磨砂材料(3),底面上放置厚度为50mm的全透明矩形玻璃块(5),导光板(1)水平放置于玻璃块上。

如图1所示,一种基于机器视觉的led导光板的缺陷检测装置以及检测方法,所述方法包括如下步骤:

步骤(1):对原始图像进行预处理,通过线性变换增强目标与背景对比度,增强图像亮度。

具体实施方式如下:

对图像进行线性变换,输入图像f(x,y)和输出图像g(x,y)的关系表达式为:

g(x,y)=a*f(x,y) b

其中,f(x,y)表示输入图像,g(x,y)表示输出图像,a为对比度增量系数,b为亮度偏置系数,x,y当前像素的坐标,当|a|>0时,图像的对比度增强,当b>0时,图像的亮度增强。

步骤(2):对边缘增强的图像进行的导光板roi区域进行定位并与背景区域实现分割。

具体实施方式如下:

a.对预处理后的图像使用canny算子进行边缘检测。

b.使用hough变换对图像中的直线进行检测,并以导光板四边的长度作为标准剔除误检线。

c.提取步骤b中检测的直线所包围的区域为导光板roi(感兴趣)区域。

步骤(3):对分割后的导光板图像进行增强,消除光照造成的影响,增强缺陷部位的显著性.

具体实施方式如下:

a.将图像变换为灰度图像;

b.对步骤a获得的灰度图像进行一维离散小波变换,消除光照不均造成的影响,使用haar小波作为基函数进行分解:

其中,x表示单个像素,gy为原始灰度图像,sy(x)为小波平滑图像,代表灰度图中的近似系数部分,dy(x)为小波细节图像代表灰度图像中的细节系数部分。为可变参数,通常取1。将图像进行分块,分为2n×2n个子块,n可取小于10的整数,对每一个子块中的亮度依据其灰度做出估计,并由此生成亮度估计图,使该图作为第n层的近似系数,同时令各层的细节系数均为0,然后对两系数进行小波反变换,得到光照分布图。最后通过对原图和光照分布图的差分操作,得到亮度均匀的图像。

c.对步骤b获得的光照均匀化的图像,进行加权掩膜滤波,消除图像中的噪点,将图像划分为不同区域,计算每个区域对应的平均值和方差,将方差最小的区域进行卷积运算:

其中,f(x,y)为局部区域的二维离散矩阵,mx为局部区域的均值而σx为局部区域的方差,k=1,2,…n,n为各区域的像素中总数,bx是该像素对应的权重。将方差排序后选择最小方差的局部区域的均值作为滤波结果的输出,之后通过滑动窗口的方法完成卷积,分别计算输出。

d.对步骤c得到的滤波图像进行梯度锐化,强化缺陷的边缘。

步骤(4):对常规尺寸(直径大于0.5mm)缺陷进行检测。

具体实施方式如下:

a.对增强后的图像采取自适应阈值分割算法进行二值化,将图像以初始阈值分为两部分,之后进行迭代分割。步骤如下:

(1)设定初始阈值m

(2)将图像按照阈值m分为两部分

(3)分别计算两部分图像的灰度平均值

(4)通过平均值计算新的阈值

(5)重复步骤(b)到步骤(d),当相邻两次迭代的差值小于设定值时。结束迭代,获得最终的阈值分割图像。

b.对步骤a获得的二值化图像,进行形态学处理,先进行开运算,填补阈值分割造成的椒盐噪声,在进行闭运算,使缺陷区域的像素得到生长。

c.将步骤b得到的缺陷的轮廓圈出并进行统计,得到最终的常规尺寸(直径大于0.5mm)瑕疵点的检测。

步骤(5):对细微尺寸(直径小于0.5mm且大于0.1mm)缺陷进行检测。

具体实施方式如下:

a.针对步骤(3)所述的经过算法增强后的图像,使用该图像与原始的待检测图像进行逐像素的相减运算,计算公式如下:

m(u,v)=|i(x,y)-d(x1,y1)|

其中m(u,v)是差分运算的结果,i(x,y)为增强后的导光板图像,d(x1,y1)是待检测原始图像,若相同则结果为0,不同则为1。

b.建立局部方差测量算子:

其中p代表邻近点个数,r为邻域的半径,gp为邻域给每个像素点的灰度值

取r=5以获得理想的检测效率。

c.计算加权信息熵对步骤b中的局部方差进行修正:

其中:pk为不同灰度在区域中出现的概率,其计算公式为:

n为局部区域内像素的总数,k为该区域内缺陷图像含有的r种不同的灰度值。

d.以步骤c中修正后的方差作为依据,进行图像的阈值分割,得到最终的细微尺寸(直径小于0.5mm且大于0.1mm)缺陷分割。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。


技术特征:

1.一种基于机器视觉的led导光板缺陷检测方法,其特征在于,

在有效光照结构中采集导光板多视角的原始图像;

对原始图像进行预处理,得到增强导光板roi区域边缘的图像;

对边缘增强后的图像的导光板roi区域进行定位并与背景区域进行分割,得到分割后的导光板图像;

对分割后的导光板图像进行光照影响消除和缺陷部位增强处理,得到缺陷部位增强后的图像;

对缺陷部位增强后的图像中常规尺寸的缺陷进行检测,确定最终的常规尺寸瑕疵点;

对缺陷部位增强后的图像中细微尺寸的缺陷进行检测,确定最终的细微尺寸瑕疵点。

2.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述采集采用双摄像头采集,其中一个摄像头位于导光板的陈列位的正上方,另一个摄像头位于导光板的陈列位的右上方,两摄像头到导光板的距离相同。

3.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述有效光照结构包括置于导光板(1)前侧的第一led条形光源(2)、置于导光板(1)左右两侧的第二led条形光源(4)。

导光板的陈列台的底面(3)采用黑色磨砂材料,底面(3)上放置全透明矩形玻璃块(5),导光板(1)水平放置于矩形玻璃块(5)上。

4.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述预处理的过程为:

对原始图像进行线性变换,对线性变换后的图像增强目标与背景对比度和图像亮度。

5.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述得到分割后的导光板图像的过程为:

对预处理后的图像使用canny算子进行边缘检测;

使用hough变换对图像中的直线进行检测,并以导光板四边的长度作为标准剔除误检线;

提取检测的直线所包围的区域为导光板roi区域。

6.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述得到缺陷部位增强后的图像的过程为:

将分割后的导光板图像变换为灰度图像;

对所述灰度图像进行下式中的一维离散小波变换,得到光照均匀化的图像;

对所述光照均匀化的图像,进行加权掩膜滤波,消除图像中的噪点,将图像划分为不同区域,计算每个区域对应的平均值和方差,将方差最小的区域进行卷积运算,得到滤波图像;

对得到滤波图像进行梯度锐化,得到缺陷部位增强后的图像。

7.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述确定最终的常规尺寸瑕疵点的过程为:

对缺陷部位增强后的图像采取自适应阈值分割算法进行二值化,得到二值化图像;

对所述二值化图像,先进行开运算,填补阈值分割造成的椒盐噪声,再进行闭运算,使缺陷区域的像素得到生长,得到缺陷的轮廓圈;

将所述缺陷的轮廓圈出并进行统计,得到最终的常规尺寸瑕疵点。

8.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述自适应阈值分割算法进行二值化的过程为:

(a)设定初始阈值m;

(b)将缺陷部位增强后的图像按照阈值m分为两部分;

(c)分别计算两部分图像的灰度平均值;

(d)通过平均值计算新的阈值;

(e)重复步骤(b)到步骤(d),当相邻两次迭代的差值小于设定值时,结束迭代,获得最终的阈值分割图像作为二值化图像。

9.根据权利要求1所述的基于机器视觉的led导光板缺陷检测方法,其特征在于,所述确定最终的细微尺寸瑕疵点的过程为:

(1)将缺陷部位增强后的图像与原始的原始图像进行逐像素的相减运算,得到差分图像,计算公式如下:

m(u,v)=|i(x,y)-d(x1,y1)|

其中m(u,v)是差分运算的结果,i(x,y)为增强后的导光板图像,d(x1,y1)是原始图像,若相同则结果为0,不同则为1;

(2)对步骤(1)中得到的差分图像建立局部方差测量算子:

其中μ为邻域内所有像素点的平均灰度值,p代表邻近点个数,r为邻域的半径,gp为邻域给每个像素点的灰度值;

(3)利用加权信息熵对步骤(2)中的局部方差进行修正:

其中hg为修正后的方差,pk为不同灰度在区域中出现的概率,其计算公式为:

n为局部区域内像素的总数,k为该区域内缺陷图像含有的r种不同的灰度值,nk为缺陷区域所占像素的总数;

(4)以步骤(3)中修正后的方差作为依据,对步骤(1)得到的差分图像进行阈值分割,得到最终的细微尺寸瑕疵点。

技术总结
本发明公开了一种基于机器视觉的LED导光板缺陷检测方法,在有效光照结构中采集导光板多视角的原始图像;对原始图像进行预处理;对边缘增强后的图像的导光板ROI区域进行定位并与背景区域进行分割;对分割后的导光板图像进行光照影响消除和缺陷部位增强处理,得到缺陷部位增强后的图像;对缺陷部位增强后的图像中常规尺寸的缺陷进行检测,确定最终的常规尺寸瑕疵点;对缺陷部位增强后的图像中细微尺寸的缺陷进行检测,确定最终的细微尺寸瑕疵点。优点:将图像采集和打光方案与机器视觉相结合,实现了导光板图像分割,缺陷分类检测的自动化,并通过有效的图像增强和预处理方法在不影响检测效率的同时提高了检测的精度和准确率。

技术研发人员:张学武;邵晓琦;卢鑫;许海燕;徐晓龙
受保护的技术使用者:河海大学常州校区
技术研发日:2020.03.27
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-8995.html

最新回复(0)