一种基于虚拟惯量的电力系统控制方法与流程

专利2022-06-30  184


本发明涉及电力系统在线监测与控制领域,尤其是涉及一种基于虚拟惯量的电力系统控制方法。



背景技术:

能源是一个国家社会经济发展的重要基石,保障国家安全的命脉。自从21世纪,人类社会高速发展,能源成为社会的热点问题之一。目前,以煤、石油、天然气为主的一次非再生传统能源正逐步走向枯竭,成为了全球社会进步和经济发展的障碍。为了解决能源危机和全球变暖,越来越多国家对能源结构进行调整,新能源发电厂逐渐取代和补充传统发电厂。

惯量,存在于传统电力系统中的同步发电机和涡轮机的旋转机构中,是电力系统稳定运行的重要参数。研究发现,随着电力系统惯量的降低,扰动对系统的影响越大,频率变化越剧烈,电网稳定性越差,因此很有必要对整个电力系统的惯量水平进行评估。

目前随着清洁能源的发展越来越多的新能源并网运行,例如风电为代表的可再生能源,其输出功率随机性较大、波动性强,往往需要通过电力电子设备实现与电力系统的解耦控制。但是,电力电子设备解耦的电网和发电侧,因为缺少旋转机构,使得风电机组的惯量无法传递到电网中。同时,随着新能源的发展,新能源在电力系统中的渗透率逐步提高,因此使得电力系统的惯量水平逐步降低,难以为系统提供足够惯量支撑,从而影响电力系统运行时的频率稳定性。

为了解决这一问题,虚拟惯量技术孕育而生,虚拟惯量能够使得电力电子设备模拟出发电机转子的运行特性,从而使得新能源部分也能提供惯量保证电力系统的频率稳定。但是,目前对并网运行时应提供多少虚拟惯量没有相关的研究。通常只是简单在电力系统中输入一个较大的恒值虚拟惯量,造成资源的浪费,并且可能造成其他不良影响。



技术实现要素:

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于虚拟惯量的电力系统控制方法。

本发明的目的可以通过以下技术方案来实现:

一种基于虚拟惯量的电力系统控制方法,具体步骤为:获取发生功率不平衡扰动事件后电力系统支路潮流信息及节点频率,将支路潮流信息及节点频率输入至虚拟惯量输出模型,得到临界虚拟惯量值;在电力系统中输入大于等于临界虚拟惯量值的虚拟惯量,运行电力系统;

所述的虚拟惯量输出模型的表达式如下:

其中,hnew为临界虚拟惯量值,δpmax为系统中断开的最大机组的容量,rocoflimit为电力系统频率变化率极限值,δpi为电力系统第i台发电机的功功率缺额,ssys为整个系统的发电机总容量,f为系统节点当前频率值,fn为系统的额定频值,rocoflimit为电力系统频率变化率极限值。

进一步地,所述的虚拟惯量输出模型的生成方式为:

s1、基于传统电力系统的频率响应等值模型进行求解得到电力系统频率变化特性和时间之间的定量关系;

s2、根据电力系统频率变化特性求得电力系统初始频率变化率rocof,得到rocof与电力系统惯量之间的定量关系;要保证电力系统的频率稳定性必须需要使rocof在合理的安全范围之内,即可求解得到电力系统的理论临界惯量;

s3、根据发电机转子摇摆方程可以求解出单台发电机惯性时间常数,推广计算得到整个电力系统的惯性时间常数,用于表示整个电力系统的实际运行惯量;

s4、引入指标fsiops来衡量实际运行中电力系统惯量水平能否满足电力系统的频率稳定性,其表达式为:

其中,hmin为整个电力系统的理论临界惯量,hsys为整个电力系实际运行惯量;

s5、当fsiops的数值小于1时,推导出满足电力系统频率稳定性的虚拟惯量输出模型。

进一步地,所述的电力系统频率变化特性和时间之间的定量关系表达式为:

式中各参数为:

其中,r是调速器调差系数;tn为汽轮机汽容时间常数;km是机械功率增益,表示火电机组调频能力;k是二次调频效应系数;δp为扰动初始时刻的电力系统总功率缺额;j和d是发电机转矩和阻尼系数;δf是电力系统频率偏差;ωr、ωn、ξ为方程解的形式参数。

进一步地,所述的电力系统的理论临界惯量hmin表达式为:

其中,δpmax为系统中断开的最大机组的容量。

进一步地,所述的电力系统的实际运行惯量表达式为:

其中,ssys为电力系统系发电机总容量;f为系统某一节点的频率瞬时值;δpi为电力系统第i台发电机的功功率缺额;fn是系统额定频率。

进一步地,所述的fsiops的具体表达式为:

其中,δpmax为系统中断开的最大机组的容量。

进一步地,获取发生功率不平衡扰动事件后电力系统的支路潮流信息及节点频率,将支路潮流信息及节点频率代入fsiops,判断fsiops模型的输出数值是否为1;

若数值大于1,则电力系统处于稳定状态;

若数值等于1,则电力系统处于临界稳定状态;

若数值小于1,则电力系统失去稳定。

与现有技术相比,本发明具有以下优点。

1、本发明基于对电力系统频率响应模型进行分析,得到适于对电力系统惯量水平评估的虚拟惯量输出模型,首先求解得到频率的时域表达式,结合电力系统n-1准则得到保证电力系统频率稳定的系统临界惯量,然后在系统发生扰动后对整个电力系统进行惯量等效评估,最后求取新能源侧所应提供的虚拟惯量大小,使得新能源侧能够参于电力系统的调频工作,有效解决了新能源接入下的电力系统频率支撑问题。

2、本发明所采用虚拟惯量输出模型中的各参数均取值于实际运行中的电力系统,可以实时在线评估整个电力系统的惯量水平,求取出新能源侧所应提供的虚拟惯量,能够实际应用于电力系统的规划、设计、运行等各个阶段,对系统安全稳定运行具有实际意义。

3、本发明引入了fsiops指标是由电力系统潮流数据及节点频率数据计算所得,能够应用于不同的电力系统中,在线实时评估该电力系统的总体惯量水平,指标的临界值为1,能够准确的判断电力系统的频率稳定性。

附图说明

图1为电力系统频率响应曲线图。

图2为电力系统频率响应模型图。

图3为电力系统理论临界惯量曲线图。

图4为新英格兰10机39节点系统示意图。

图5为不同仿真环境下的电力系统频率响应曲线图。

图6为虚拟惯量输出模型流程示意图。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

本实施例提供了一种基于虚拟惯量的电力系统控制方法,具体步骤为:获取发生功率不平衡扰动事件后电力系统支路潮流信息及节点频率,将支路潮流信息及节点频率输入至虚拟惯量输出模型,得到临界虚拟惯量值;在电力系统中输入大于等于临界虚拟惯量值的虚拟惯量,运行电力系统。

所述的虚拟惯量输出模型的表达式如下:

其中,hnew为临界虚拟惯量值,δpmax为系统中断开的最大机组的容量,rocoflimit为电力系统频率变化率极限值,δpi为电力系统第i台发电机的功功率缺额,ssys为整个系统的发电机总容量,f为系统某一个节点当前频率值,fn为系统的额定频值,rocoflimit为电力系统频率变化率极限值。

当电力系统发生扰动产生功率缺额以后,为维持系统的频率在安全范围会产生频率响应如图1所示,频率响应由三部分组成:惯量响应,一次调频响应和二次调频响应。电力系统的惯量主要影响的就是电力系统发生扰动后到一次调频之前这段时间的频率稳定性,因此本实施例主要从电力系统的频率曲线来分析电力系统的稳定性问题,描述频率曲线的指标有:初始频率变化率、频率最低点、频率稳定值。电力系统发生扰动后,惯量起作用的时间主要是在扰动开始后一次调频介入的这段时间,所选取的频率变化指标为电力系统的频率变化率rocof,只要频率变化率不超出安全范围就可以认为电力系统的惯量大小满足系统频率稳定性的要求,惯量所起的作用就是在这段时间内保证系统的频率变化率不会过快从而到导致相关的保护动作切除机。所以需要对电力系统各部分的惯量大小进行量化,求取出满足系统稳定性的临界惯量。

本实施例中虚拟惯量输出模型的生成方式为:首先得到传统电力系统的频率响应等值模型包括频率相关负荷响应、惯量响应、一次调频和二次调频;对频率响应等值模型进行求解得到电力系统频率变化特性和时间之间的定量关系;然后根据电力系统频率变化特性求得整个初始频率变化率和电力系统最低频率点,得到这两个指标与电力系统惯量之间的定量关系,要保证电力系统的频率稳定性必须就必须使这两项指标在合理的安全范围之内;最后推导出满足电力系统频率稳定性的虚拟惯量输出模型,如图6所示。

其具体展开为:

步骤一

基于传统电力系统的频率响应等值模型包括频率相关负荷响应、惯量响应、一次调频和二次调频响应;对频率响应等值模型进行分析求解得到电力系统频率变化特性和时间之间的定量关系;

本实施例中使用的电力系统的频率表响应等值模型如图2所示。在图2中,r是调速器调差系数;tn为汽轮机汽容时间常数,通常为0.1~0.3s;km是机械功率增益,表示火电机组调频能力,k是二次调频效应系数;δpref是电力系统二次调频功率响应;δpm是电力系统一次调频功率响应;j和d是发电机转矩和阻尼系数;δpe是电力系统功率扰动;δf是电力系统频率偏差。

由图2可得电力系统各阶段的频率响应方程为:

电力系统惯量响应及负荷响应模型:

电力系统一次调频响应模型:

电力系统二次调频响应模型:

δpref(t)=-k·∫δf(t)dt(3)

因为电力系统的惯量主要影响的是电力系统发生扰动后到一次调频之前这段时间的频率稳定性,因此本实施例中只需要考虑电力系统的惯量和一次调频响应,上述的二次调频功率响应δpref=0,可以省略式(3)。

同时为了简化计算只考虑与频率呈现线性关系的电力系统负荷,将与电力系统频率相关的负荷的频率调节效应系数kσ合并到电力系统的发电机阻尼系数d当中,而且δpe(t)为一个阶跃函数,所以δpe(t)可以取值为扰动初始时刻的电力系统总功率缺额δp。

因此,式(1)和(2)转化为式(4)和式(5):

联立式(4)和式(5)可得:

式(6)的两个根为:

可得到方程的解为:

当式(6)满足式(9)则方程有解:

可得到电力系统频率偏差δf的时域表达式,也就是电力系统频率变化特性和时间之间的定量关系,如式(10)所示:

其中:

其中ωr、ωn、ξ为方程解的形式参数。

步骤二

根据电力系统频率变化特性求得电力系统初始频率变化率rocof,得到rocof与电力系统惯量之间的定量关系。

对式(10)进行求导并令时间t=0即可以得到电力系统的初始频率变化率rocof:

本实施例中引入电力系统惯性时间常数h来表征电力系统的惯量j与h的关系j=2h,,将此关系代入式(11)可得初始频率变化率rocof最终表达:

由式(12)可知,初始频率变化率rocof只取决于电力系统总功率缺额δp和电力系统惯性时间常数h。与负荷的频率调节效应系数kσ、发电机的阻尼系数d以及一次调频下垂系数1/r无关。

根据电力系统频率n-1安全准则,电力系统的频率变化率rocof不能高于电力系统频率变化率极限值rocoflimit,如果高于这个值就会触发相应的电力系统频率继电保护装置导致系统切除相应的发电机负荷,可能就会进一步的扩大电力系统总功率缺额δp,导致电力系统频率进一步恶化,则初始频率变化率rocof应满足以下不等式:

当初始频率变化率rocof=rocoflimit、δp取电力系统最大功率缺额δpmax为系统中断开的最大机组的容量,代入式(12)求解可以得到电力系统的理论临界惯量hmin表达式为:

步骤三

根据发电机转子摇摆方程可以求解出单台发电机惯性时间常数,推广计算可以得到整个电力系统的惯性时间常数,以此来表示整个电力系统的实际运行惯量。

根据理论临界惯量表达公式,可以直观得到电力系统的理论临界惯量hmin和电力系统功率缺额及频率变化率限值之间的关系曲线如图3所示。

根据发电机转子摇摆方程可以求解出单台发电机惯性时间常数,公式(15)即为发电机转子摇摆方程:

其中δpi为电力系统第i台发电机的功功率缺额,pei和pmi分别是发电机i的电磁功率和机械功率,hci是发电机i惯性时间常数,fi是发电机i端口的频率,fn是系统额定频率。

将式(15)推广计算可以得到整个电力系统的惯性时间常数,则有表达式(16):

式(16)中,hsys为整个电力系统等效惯性时间常数;ssys为电力系统系发电机总容量;f为系统某一节点的频率瞬时值;pm为电力系统发电机总机械功率;pe为电力系统发电机总电磁功率。

发电机惯性时间常数也就是衡量电力系统惯量的大小的参数,根据式(16)可以得到发生扰动后整个电力系统的实际运行惯量:

步骤四

在这里定义一项新指标fsiops(frequencystabilityindexofpowersystem)来衡量实际运行中电力系统惯量水平能否满足电力系统的频率稳定性,其表达式为:

获取发生功率不平衡扰动事件后电力系统的支路潮流信息及节点频率,将支路潮流信息及节点频率代入式(18),判断fsiops模型的输出数值是否为1;

若数值大于1,则电力系统处于稳定状态;

若数值等于1,则电力系统处于临界稳定状态;

若数值小于1,则电力系统失去稳定。

当新能源的渗透率不断提高电力系统的实际运行惯量会逐渐降低,fsiops的数值会逐渐变小最终小于临界值1,所以产生了电力系统的惯量缺额,由于传统同步发电机的惯量只与其转子的物理参数有关这部分传统惯量固定不变的,所以这部分惯量缺额就由新能源部分来承担,新能源所应提供虚拟惯量惯量大小,即虚拟惯量输出模型表达式为:

仿真实验:

本仿真实现旨在对扰动后整个电力系统的实际运行惯量和理论临界惯量进行评估,从而对电力系统新能源侧的虚拟惯量进行整定。

算法采用新英格兰10机39节点系统(其负荷均设置为恒功率负荷模型)在digsilent仿真软件中进行验证,数据处理均在matlab中进行,算例系统的拓扑结构如图4所示。验证思路如下:设置不同仿真环境下的发电机扰动事件,按照虚拟惯量输出模型获取仿真模型中新能源侧的虚拟惯量,并在仿真中37号节点加入双馈风机来作为新能源,模型中的g08发电机换成了108台恒功率双馈风机,每一台风机的输出功率为5mw,容量为5.556mva,对风机的虚拟惯性值进行相应的整定,最后通过频率曲线的稳定性的提高来验证所提方案的有效性。

算例设置:在仿真t=0s时刻对发电机g03进行切机。

事件1:在传统的ieee10机39节点电力系统中进行。

事件2:在传统的10机39节点电力系统中加入了风电机组,模型中的g08发电机换成了108台恒功率双馈风机。每一台风机的输出功率为5mw,容量为5.556mva,假设风机不提供虚拟惯量。

事件3:在传统的10机39节点电力系统中加入了风电机组,模型中的g08发电机换成了108台恒功率双馈风机。每一台风机的输出功率为5mw,容量为5.556mva,风机按传统虚拟同步机技术提供虚拟惯量。

事件4:在传统的10机39节点电力系统中加入了风电机组,模型中的g08发电机换成了108台恒功率双馈风机。每一台风机的输出功率为5mw,容量为5.556mva,风机按本文的方法设定风电虚拟惯量。

为了验证本文算法的正确性,效果图如图5所示。上述算例设置了4种不同的仿真环境,为了获取整个系统的实际运行惯量计算值,减小频率的时空特性对惯量计算结果准确性影响,分别在电力系统的三个区域进行数据采样,区域一的频率变化率和频率数据均在bus25上取值,而区域二、三的相关数据分别在bus39、bus35上取值。为了避开一次调频激活而导致的惯性时间常数误差偏大的现象,本算例在扰动发生后1秒时刻进行取值。结合扰动事件的有功功率缺额值、系统容量值、系统额定频率值可以得到电力系统的实际运行惯量计算值和事件4的理论临界惯量。然后在g03切机的功率扰动时间下,在不同的仿真环境测得三个区域的电力系统频率曲线,然后得出各个仿真环境的惯量中心频率曲线来代表整个电力系统的频率曲线如图5所示,从仿真结果可以看出本文方法所得到的电力系统频率曲线的各项指标相比于其他三种仿真环境下的要更加符合电力系统的频率稳定性。

根据上述实施实例可以看出,本发明得到出新能源的虚拟惯量数值能够提高电力系统的频率稳定性,具有良好的实用价值。

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。


技术特征:

1.一种基于虚拟惯量的电力系统控制方法,其特征在于,具体步骤为:获取发生功率不平衡扰动事件后电力系统支路潮流信息及节点频率,将支路潮流信息及节点频率输入至虚拟惯量输出模型,得到临界虚拟惯量值;在电力系统中输入大于等于临界虚拟惯量值的虚拟惯量,运行电力系统;

所述的虚拟惯量输出模型的表达式如下:

其中,hnew为临界虚拟惯量值,δpmax为系统中断开的最大机组的容量,rocoflimit为电力系统频率变化率极限值,δpi为电力系统第i台发电机的功功率缺额,ssys为整个系统的发电机总容量,f为系统节点当前频率值,fn为系统的额定频值,rocoflimit为电力系统频率变化率极限值。

2.根据权利要求1所述的一种基于虚拟惯量的电力系统控制方法,其特征在于,所述的虚拟惯量输出模型的生成方式为:

s1、基于传统电力系统的频率响应等值模型进行求解得到电力系统频率变化特性和时间之间的定量关系;

s2、根据电力系统频率变化特性求得电力系统初始频率变化率rocof,得到rocof与电力系统惯量之间的定量关系;要保证电力系统的频率稳定性必须需要使rocof在合理的安全范围之内,即可求解得到电力系统的理论临界惯量;

s3、根据发电机转子摇摆方程可以求解出单台发电机惯性时间常数,推广计算得到整个电力系统的惯性时间常数,用于表示整个电力系统的实际运行惯量;

s4、引入指标fsiops来衡量实际运行中电力系统惯量水平能否满足电力系统的频率稳定性,其表达式为:

其中,hmin为整个电力系统的理论临界惯量,hsys为整个电力系实际运行惯量;

s5、当fsiops的数值小于1时,推导出满足电力系统频率稳定性的虚拟惯量输出模型。

3.根据权利要求1所述的一种基于虚拟惯量的电力系统控制方法,其特征在于,所述的电力系统频率变化特性和时间之间的定量关系表达式为:

式中各参数为:

其中,r是调速器调差系数;tn为汽轮机汽容时间常数;km是机械功率增益,表示火电机组调频能力;k是二次调频效应系数;δp为扰动初始时刻的电力系统总功率缺额;j和d是发电机转矩和阻尼系数;δf是电力系统频率偏差;ωr、ωn、ξ为方程解的形式参数。

4.根据权利要求1所述的一种基于虚拟惯量的电力系统控制方法,其特征在于,所述的电力系统的理论临界惯量hmin表达式为:

其中,δpmax为系统中断开的最大机组的容量。

5.根据权利要求1所述的一种基于虚拟惯量的电力系统控制方法,其特征在于,所述的电力系统的实际运行惯量表达式为:

其中,ssys为电力系统系发电机总容量;f为系统某一节点的频率瞬时值;δpi为电力系统第i台发电机的功功率缺额;fn是系统额定频率。

6.根据权利要求2所述的一种基于虚拟惯量的电力系统控制方法,其特征在于,所述的fsiops的具体表达式为:

其中,δpmax为系统中断开的最大机组的容量。

7.根据权利要求6所述的一种基于虚拟惯量的电力系统控制方法,其特征在于,获取发生功率不平衡扰动事件后电力系统的支路潮流信息及节点频率,将支路潮流信息及节点频率代入fsiops,判断fsiops模型的输出数值是否为1;

若数值大于1,则电力系统处于稳定状态;

若数值等于1,则电力系统处于临界稳定状态;

若数值小于1,则电力系统失去稳定。

技术总结
本发明涉及一种基于虚拟惯量的电力系统控制方法,具体步骤为:获取发生功率不平衡扰动事件后电力系统支路潮流信息及节点频率,将支路潮流信息及节点频率输入至虚拟惯量输出模型,得到临界虚拟惯量值;在电力系统中输入大于等于临界虚拟惯量值的虚拟惯量,运行电力系统。与现有技术相比,本发明具基于对电力系统频率响应模型进行分析,得到适于对电力系统惯量水平评估的虚拟惯量输出模型,求解得到频率的时域表达式,得到保证电力系统频率稳定的系统临界惯量,在系统发生扰动后对整个电力系统进行惯量等效评估求取新能源侧所应提供的虚拟惯量大小,使得新能源侧能够参于电力系统的调频工作,有效解决了新能源接入下的电力系统频率支撑问题。

技术研发人员:李东东;刘强;赵耀;徐波;张佳乐;刘宇航;高晓城
受保护的技术使用者:上海电力大学
技术研发日:2020.02.27
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-59814.html

最新回复(0)