本发明涉及一种基于事件触发传输机制和混合量测的配电网状态估计方法。
背景技术:
由于分布式能源和柔性负荷的广泛连接,配电网正朝着更加动态、更加复杂的结构发生根本性的变化。因此,为了对配电网系统进行可靠的监测、控制和保护,需要实时获取准确的状态信息,这对配电网动态状态估计提出了更高的要求。
另外,随着电力系统中测量和通信技术的迅速发展,同步相量测量单元系统(phasormeasurementunits,pmus)开始逐渐应用到电力系统中,以满足对系统状态准确监控的要求。而pmus产生的大量数据将被传输到数据处理中心,因而给通信网络带来巨大压力。
此外,由于经济和技术方面的原因,在可预见的未来,基于传统数据监控及采集系统(supervisorycontrolanddataacquisition,scada)和pmus的两种非线性测量将会并存。
对于非线性测量,基于扩展卡尔曼滤波(extendedkalmanfilter,ekf)的非线性滤波器在电力系统状态估计中应用最为广泛。但ekf滤波增益的求取通常基于非线性系统的线性逼近;若考虑高阶项,涉及到雅克比矩阵和海森矩阵的求取,当量测量的表达式具有高阶非线性特性时会使计算变得很复杂;而忽略高阶项,又不可避免地会导致估计性能下降。
技术实现要素:
本发明的目的在于提出一种基于事件触发传输机制和混合量测的配电网状态估计方法,在降低通信负担的同时,保证状态估计的性能,降低计算难度,减少计算时间。
本发明为了实现上述目的,采用如下技术方案:
基于事件触发传输机制和混合量测的配电网状态估计方法,包括如下步骤:
i.获取配电网中的量测量,根据事件触发机制将符合条件的数据传输到估计中心;
pmus和scada中的分布式远程终端获取配电网中量测量,采用事件触发机制将量测量进行选择性的传输,并通过通信网络传输到估计中心进行状态估计;
其中,配电网中量测量包括节点电压幅值、节点的有功功率和无功功率数据;
事件触发机制的触发过程描述为:
其中,γj,k为事件是否触发的指示参数;γj,k=1时事件触发,γj,k=0时事件不触发;
f(·)为量测方程,表示配电网系统状态量和量测量之间的函数关系;fj(·)为量测方程f(·)的第j个分量;yj,k是k时刻量测量yk的第j个分量;
基于公式(1),估计中心首先根据k-1时刻的状态估计量得到k时刻的预测量测量
当以上两者第j个分量的差值超出触发阈值σj时,事件触发,γj,k=1,通信网络将量测量传输到估计中心,估计中心将量测量作为观测量进行状态估计;
当以上两者第j个分量的差值没有超出触发阈值σj时,量测量不会被传输,事件不触发,γj,k=0,估计中心将预测量测量
因此,得到估计中心观测量第j个分量zj,k的表达式,如公式(2)所示:
ii.构造递推滤波器,具体过程分为如下三步;
1)根据配电网特性建立系统状态模型;
xk 1=akxk uk wk(3)
其中,xk 1、xk∈rn分别表示k 1时刻、k时刻的状态变量,代表配电网中各个节点电压的实部和虚部,rn表示n维状态空间;ak是状态转移矩阵,向量uk表示状态轨迹的变化趋势,两者采用holt-winters双指数平滑法在线更新;wk是k时刻的有界的系统噪声并且满足:
其中,wi,k表示系统噪声wk的第i个分量,|wi,k|表示wi,k的绝对值,μw,i,k表示wi,k的上界;e{wk}表示系统噪声wk的期望,期望值为0;
2)根据配电网特性建立混合量测模型;
pmus和scada中的分布式远程终端联合来为远程估计提供混合量测;
根据电路定律,得到系统的混合量测模型如下:
yk=f(xk) vk(5)
式中,yk∈rm是k时刻的混合量测量,包括节点电压幅值、节点的有功功率和无功功率数据,由pmus终端和scada中的分布式远程终端获取,rm表示m维状态空间;
f(·)是量测方程,vk是k时刻的有界的量测噪声,并且满足:
其中,vj,k表示量测噪声vk的第j个分量,|vj,k|表示vj,k的绝对值,vj,k的上界为μv,j,k;e{vk}表示量测噪声vk的期望,期望值为0;
其中,
vl,k表示节点电压幅值对应的量测噪声;
3)构建递推滤波器;
考虑到事件触发机制和配电网系统方程(3)和(5),构建递推滤波器如公式(8)所示;
其中,
由以上公式(8)得知,在递推滤波器的设计过程中,只有滤波增益kk 1未知,下一步将通过带有不确定项的二阶非线性函数的线性化方法求取滤波增益;
iii.求取滤波增益;
基于配电网状态估计的特点,将高阶非线性电压幅值测量转化为误差有界的二次非线性形式,以简化状态估计中雅克比矩阵和海森矩阵计算过程;具体过程分为如下四步:
1)化简混合量测模型,具体过程如下:
用电压幅值的平方υn,k代替k时刻节点电压幅值vn,k,即:
其中,
其中,e{φl,k}、
进一步得到υn,k的量测噪声
则
化简后得到新的混合量测模型如下:
其中,
其中,fj(xk)表示f(xk)的第j个量测方程;量测误差
其中,vj,k代表vk的第j个分量,
其中:
其中
2)将非线性量测方程线性化;
采用一个带有不确定项的二阶非线性函数的线性化方法,求取滤波增益;
具体过程如下:
首先将化简后的量测方程
其中,
如果存在正数rk,使得
其中,
δk 1是时变矩阵且满足:
mk 1的表达式如下:
其中,a0表示初始状态转移矩阵;kk为k时刻滤波增益,fk为k时刻的雅克比矩阵;μw,i,0表示初始过程噪声的上界,
线性化后得到k 1时刻预测误差ek 1|k、估计误差ek 1|k 1以及预测误差ek 1|k、估计误差ek 1|k 1对应的误差协方差矩阵pk 1|k和pk 1|k 1,分别表示如下:
其中,ek|k表示k时刻的估计误差,ek 1|k 1表示k 1时刻的估计误差;
3)求取滤波误差协方差上界,具体过程如下:
首先定义如下两个方程:
其中,kk 1表示k 1时刻的滤波增益;
tk 1满足:
假设初始时刻的估计误差协方差矩阵p0|0及其上界∑0|0满足:σ0|0=p0|0≥0;
如果方程(21)有正定解σk 1|k和σk 1|k 1,且在任意k时刻,
4)求取使滤波误差协方差上界最小时的滤波增益kk 1:
iv.将公式(22)中求取的滤波增益kk 1回带到递推滤波器中对配电网进行状态估计。
本发明具有如下优点:
如上所述,本发明提出了一种基于事件触发传输机制和混合量测的配电网状态估计方法,通过引入事件触发机制,在降低通信负担的同时,使得估计中心得到尽量多的有用信息,从而保证了状态估计的性能。此外,本发明方法在求取滤波增益的过程中,通过简化混合量测模型和提出一种二阶非线性函数的不确定项线性变换方法,在保证估计性能的前提下,降低了算法的计算难度,减少了算法的计算时间,最终提高了配电网状态估计的效率。
附图说明
图1为本发明实施例中基于事件触发传输机制和混合量测的配电网状态估计方法的流程图;
图2为本发明实施例中配电网中事件触发传输机制流程图;
图3为本发明方法与soekf方法在各步计算时间上的比较图。
图4为本发明方法与et-ekf方法的性能对比图。
图5为某一节点电压真值与采用本发明估计方法所得到的估计值的对比图。
具体实施方式
本发明的基本思想:
首先提出一种闭环的事件触发数据传输机制,利于减少通信负担。
然后设计考虑事件触发机制和混合量测的递推滤波器,在求取滤波器滤波增益时,将高阶非线性电压幅值测量转化为误差有界的二次非线性形式,以减少线性化过程中的计算难度。
虽然soekf方法是二阶非线性系统中较为精确的估计方法,但将soekf方法应用于高速、高维采样的状态估计仍然存在一定的困难。
基于此,设计一种二阶非线性函数的不确定项线性变换方法。
该方法考虑了事件触发策略引起的间歇传输,在此基础上提出了递归滤波算法,得到滤波误差协方差的上界,并通过适当设计滤波增益使其最小化。
将使滤波误差上界最小时的滤波增益带回递推滤波器中完成对配电网的状态估计。
名词解释:
soekf,全称:secondorderextendedkalmanfilter;中文名称:二阶扩展卡尔曼滤波。
下面结合附图以及具体实施方式对本发明作进一步详细说明:
如图1所示,本发明中配电网状态估计方法大致包括如下步骤:
首先,scada中的分布式远程终端drtus和pmus获取配电网中的量测量,配电网中的量测量包括节点电压幅值、节点的有功功率和无功功率等数据。
然后,参考递推滤波器返回的预测反馈,通过事件触发传输机制对配电网中的量测量进行筛选,将满足触发条件的数据传输给估计中心(计算机或运算器),如图2所示。
估计中心得到数据后,在简化混合量测和考虑非触发误差的情况下进行滤波估计。
其中,滤波估计的大致过程为:
首先构造一个递推滤波器,然后求取滤波增益;
在求取滤波增益时,将高阶非线性电压幅值测量转化为误差有界的二次非线性形式;此外,本发明还设计了一种二阶非线性函数的不确定项线性变换方法;
接下来找到滤波误差协方差的上界,求取使滤波误差上界最小时的滤波增益。
最后,将滤波增益带回递推滤波器中完成对配电网的状态估计。
下面对本发明中的配电网状态估计方法作进一步详细说明:
基于事件触发传输机制和混合量测的配电网状态估计方法,包括如下步骤:
i.获取配电网中量测量,根据事件触发机制将符合条件的数据传输到估计中心。
如图2所示,pmus和scada中的分布式远程终端(drtus)获取配电网中量测量,包括节点电压幅值、节点的有功功率和无功功率等数据。
得到的量测量需要通过通信网络传输到估计中心进行状态估计。
其中,上面提到的pmus和scada中的分布式远程终端(drtus)均为量测装置。
本发明考虑到pmu的应用产生的大量数据及通信带宽的限制,采用事件触发机制对量测量进行选择性的传输。事件触发机制的触发过程描述为:
其中,γj,k为事件是否触发的指示参数;γj,k=1时事件触发;γj,k=0时事件不触发;
f(·)为量测方程,表示系统状态量和量测量之间的函数关系;fj(·)为f(·)的第j个分量;yj,k是k时刻量测量yk的第j个分量;
基于公式(1),估计中心首先根据k-1时刻的状态估计量得到k时刻的预测量测量
当以上两者第j个分量的差值超出触发阈值σj时,事件触发,γj,k=1,通信网络将量测量传输到估计中心,估计中心将其作为观测量进行状态估计。
当以上两者第j个分量的差值没有超出触发阈值σj时,量测量不会被传输,γj,k=0,估计中心将预测量测量
此时,量测量和观测量之间的误差就是非触发误差。
由此,可得到估计中心观测量第j个分量zj,k的表达式,如公式(2)所示:
上述过程构成了一个完整的闭环事件触发机制,减少了不必要的数据传输,而且使得估计中心得到了尽量多的有用信息,保证了状态估计的精度。
接下来,估计中心将根据得到的观测量,构造一个考虑到事件触发机制的递推滤波器,以便对配电网进行状态估计,具体过程如步骤ii所示。
ii.构造递推滤波器。
本发明实施例中提出的递推滤波器在扩展卡尔曼滤波器的基础上,考虑到了事件触发机制和混合量测,其构造过程可具体分为如下三步:
1)根据配电网特性建立系统状态模型;
xk 1=akxk uk wk(3)
其中,xk 1、xk∈rn分别表示k 1时刻、k时刻的状态变量,代表配电网中各个节点电压的实部和虚部,rn表示n维状态空间;
ak是状态转移矩阵,向量uk表示状态轨迹的变化趋势,两者采用holt-winters双指数平滑法在线更新。wk是k时刻的有界的系统噪声并且满足:
其中,wi,k表示系统噪声wk的第i个分量,|wi,k|表示wi,k的绝对值,μw,i,k表示wi,k的上界;e{wk}表示系统噪声wk的期望,期望值为0。
2)根据配电网特性建立混合量测模型。
由于经济和技术的限制,只有部分地区部署了pmus。因此,通常drtus与pmus联合来为远程估计提供混合量测。根据电路定律,得到系统的混合量测模型如下:
yk=f(xk) vk(5)
式中,yk∈rm是k时刻的混合量测量,包括节点电压幅值、节点的有功功率和无功功率数据,由pmus终端和scada中的分布式远程终端获取,rm表示m维状态空间。
f(·)是量测方程,vk是k时刻的有界的量测噪声,并且满足:
其中,vj,k表示量测噪声vk的第j个分量,|vj,k|表示vj,k的绝对值,vj,k的上界为μv,j,k;e{vk}表示量测噪声vk的期望,期望值为0。
设混合量测量yk中第l个分量为k时刻节点电压幅值vn,k,即:
其中,
vl,k表示节点电压幅值对应的量测噪声。
由式(7)能够看出,vn,k的表达式具有高阶非线性,会使状态估计的计算变得复杂。
下面步骤iii中将对k时刻节点电压幅值vn,k进行化简以简化计算过程。
3)构建递推滤波器。
考虑到事件触发机制和配电网系统方程(3)和(5),构建递推滤波器如公式(8)所示;
其中,
将
由以上公式(8)得知,在递推滤波器的设计过程中,只有滤波增益kk 1未知,下一步将通过带有不确定项的二阶非线性函数的线性化方法求取滤波增益。
iii.求取滤波增益。
ekf方法对滤波增益的求取通常基于非线性系统的线性逼近。
当考虑高阶项时会涉及到雅克比矩阵和海森矩阵的求取,当量测量的表达式具有高阶非线性特性时,会使计算变得很复杂,然而忽略高阶项又不可避免地会导致估计性能下降。
本发明充分考虑到配电网状态估计的特点,将高阶非线性电压幅值测量转化为误差有界的二次非线性形式,简化了状态估计中雅克比矩阵和海森矩阵计算过程,计算量大大减少。
值得注意的是,对于二阶非线性系统,soekf是目前最合适的算法。
然而,soekf需要计算{ljpk 1|k}和{ljpk 1|klgpk 1|k 1}的迹;其中j,g=1,2,3,…,m且
为了克服这一不足,本发明提出一个带有不确定项的二阶非线性函数的线性化方法求取滤波增益,可省去上述迹的计算,提高了计算速度。具体过程分为如下四步:
1)化简混合量测模型
对于混合量测模型(5),电压幅值量测量具有高阶非线性特性,很难实现令人满意的线性化。因此,本发明在滤波过程中采用具有二次非线性特性的电压幅值的平方υn,k作为新的系统测量,代替原来复杂的高阶项,这样减少了状态估计的计算量,使状态估计更加迅速。
具体方法如下:
用电压幅值的平方υn,k代替k时刻节点电压幅值vn,k,即:
其中,
其中,e{φl,k}、
进一步得到υn,k的量测噪声
则
上式中,
μv,l,k表示vl,k的误差上界,
mk[◇]表示矩阵mk中对应变量◇的对角元素,mk将在式(19)中定义。
通过对比式(7)与式(9)能够看出,电压幅值vn,k的表达式为根号下平方和的形式,对其求导时计算难度大,而用电压幅值的平方υn,k代替vn,k作为量测量后,求导时计算量大大降低,所以化简混合量测模型能够减少计算量,降低计算难度。
化简后得到新的混合量测模型如下:
其中,
其中,fj(xk)表示f(xk)的第j个量测方程;量测误差
其中,vj,k代表vk的第j个分量,
其中:
其中
2)将非线性量测方程线性化。
本发明采用一个带有不确定项的二阶非线性函数的线性化方法,求取滤波增益,可省去传统扩展卡尔曼滤波算法中大量求矩阵迹的计算,提高了计算速度。具体过程如下:
首先将化简后的量测方程
其中,
如果存在正数rk,使得
其中,
δk 1是时变矩阵且满足:
mk 1的表达式如下:
其中,a0表示初始状态转移矩阵;
kk为k时刻滤波增益,fk为k时刻的雅克比矩阵;
μw,i,0表示初始过程噪声的上界,
trace{mk}为矩阵mk的迹。
线性化后得到k 1时刻预测误差ek 1|k、估计误差ek 1|k 1以及预测误差ek 1|k、估计误差ek 1|k 1对应的误差协方差矩阵pk 1|k和pk 1|k 1,分别表示如下:
其中,ek|k表示k时刻的估计误差,ek 1|k 1表示k 1时刻的估计误差;
ρk 1=zk 1-yk 1为触发误差,yk 1表示k 1时刻配电网系统的量测量;
3)求取滤波误差协方差上界。
虽然得到的估计误差协方差矩阵带有不确定项,但是可以通过以下方式求取其上界。
首先定义如下两个方程:
其中,kk 1表示k 1时刻的滤波增益。
tk 1满足:
假设初始时刻的估计误差协方差矩阵p0|0及其上界∑0|0满足:σ0|0=p0|0≥0。
如果方程(21)有正定解σk 1|k和σk 1|k 1,且在任意k时刻,
4)求取使滤波误差协方差上界最小时的滤波增益kk 1:
由式(22)不难发现,求取滤波增益过程中并没有对{ljpk 1|k}和{ljpk 1|kllpk 1|k 1}的迹的计算,且计算过程较为简单。本实施例还对本发明方法与soekf的计算时间进行了对比,如图3所示,由该图不难看出,本发明方法比soekf的计算时间更短,计算效率更高。
iv.将式(22)中滤波增益kk 1回带到递推滤波器中对配电网进行状态估计。
本发明通过事件触发机制减轻通信负担,并将量测方程的化简与带有不确定项的二阶非线性函数的线性化方法相结合,既考虑到了线性化过程中的高阶项问题,使滤波性能有所保证,又大大降低方法的计算难度,减少计算时间,从而实现对配电网快速准确的状态估计。
此外,本实施例还将本发明方法与基于事件触发扩展卡尔曼滤波算法(et-ekf)相比,如图4所示,通过对比发现,在传输率较低时本发明方法估计误差更小,估计精度更高。
这是由于et-ekf对间歇测量造成的观测误差很敏感,而本发明对触发误差和线性化误差都进行了特殊的考虑,并且设计了合适的递推滤波器以更好的权衡通信资源和估计性能。
当数据传输频率高时,非触发误差较小,误差协方差的上界过大,保守性过强,导致了较劣的估计精度。随着数据传输频率降低,误差协方差矩阵与其上界相差较小,推导出的上界能够较为紧密的包含所有不确定误差,使得本发明方法的估计性能要优于et-ekf。
如图5所示,在考虑闭环事件触发机制的基础上,本发明方法所估计的状态能够很好地接近真实值。通过事件触发机制,对量测信息进行选择,当量测信息含有较多有用信息时,才将其通过通信网络传输的估计中心。
以上触发机制能够减少通信网络数据传输量,减轻通信负担,又使估计中心得到尽量多的有用信息,保证了状态估计的性能,有效缓解了通信堵塞和估计精度之间的矛盾。
本发明实施例通过设计上述基于事件触发传输和简化混合量测的配电网鲁棒预测辅助状态估计方法,在保证估计性能的前提下,大大简化了计算过程,缩短了计算时间,利于提高配电网状态的估计效率,从而有效提高电力系统的监控性能。
当然,以上说明仅仅为本发明的较佳实施例,本发明并不限于列举上述实施例,应当说明的是,任何熟悉本领域的技术人员在本说明书的教导下,所做出的所有等同替代、明显变形形式,均落在本说明书的实质范围之内,理应受到本发明的保护。
1.基于事件触发传输机制和混合量测的配电网状态估计方法,其特征在于,
包括如下步骤:
i.获取配电网中的量测量,根据事件触发机制将符合条件的数据传输到估计中心;
pmus和scada中的分布式远程终端获取配电网中量测量,采用事件触发机制将量测量进行选择性的传输,并通过通信网络传输到估计中心进行状态估计;
其中,配电网中量测量包括节点电压幅值、节点的有功功率和无功功率数据;
事件触发机制的触发过程描述为:
其中,γj,k为事件是否触发的指示参数;γj,k=1时事件触发,γj,k=0时事件不触发;
f(·)为量测方程,表示配电网系统状态量和量测量之间的函数关系;fj(·)为量测方程f(·)的第j个分量;yj,k是k时刻量测量yk的第j个分量;
基于公式(1),估计中心首先根据k-1时刻的状态估计量得到k时刻的预测量测量
当以上两者第j个分量的差值超出触发阈值σj时,事件触发,γj,k=1,通信网络将量测量传输到估计中心,估计中心将量测量作为观测量进行状态估计;
当以上两者第j个分量的差值没有超出触发阈值σj时,量测量不会被传输,事件不触发,γj,k=0,估计中心将预测量测量
因此,得到估计中心观测量第j个分量zj,k的表达式,如公式(2)所示:
ii.构造递推滤波器,具体过程分为如下三步;
1)根据配电网特性建立系统状态模型;
xk 1=akxk uk wk(3)
其中,xk 1、xk∈rn分别表示k 1时刻、k时刻的状态变量,代表配电网中各个节点电压的实部和虚部,rn表示n维状态空间;ak是状态转移矩阵,向量uk表示状态轨迹的变化趋势,两者采用holt-winters双指数平滑法在线更新;wk是k时刻的有界的系统噪声并且满足:
其中,wi,k表示系统噪声wk的第i个分量,|wi,k|表示wi,k的绝对值,μw,i,k表示wi,k的上界;e{wk}表示系统噪声wk的期望,期望值为0;
2)根据配电网特性建立混合量测模型;
pmus和scada中的分布式远程终端联合来为远程估计提供混合量测;
根据电路定律,得到系统的混合量测模型如下:
yk=f(xk) vk(5)
式中,yk∈rm是k时刻的混合量测量,包括节点电压幅值、节点的有功功率和无功功率数据,由pmus终端和scada中的分布式远程终端获取,rm表示m维状态空间;
f(·)是量测方程,vk是k时刻的有界的量测噪声,并且满足:
其中,vj,k表示量测噪声vk的第j个分量,|vj,k|表示vj,k的绝对值,vj,k的上界为μv,j,k;e{vk}表示量测噪声vk的期望,期望值为0;
其中,
vl,k表示节点电压幅值对应的量测噪声;
3)构建递推滤波器;
考虑到事件触发机制和配电网系统方程(3)和(5),构建递推滤波器如公式(8)所示;
其中,
由以上公式(8)得知,在递推滤波器的设计过程中,只有滤波增益kk 1未知,下一步将通过带有不确定项的二阶非线性函数的线性化方法求取滤波增益;
iii.求取滤波增益;
基于配电网状态估计的特点,将高阶非线性电压幅值测量转化为误差有界的二次非线性形式,以简化状态估计中雅克比矩阵和海森矩阵计算过程;具体过程分为如下四步:
1)化简混合量测模型,具体过程如下:
用电压幅值的平方υn,k代替k时刻节点电压幅值vn,k,即:
其中,
其中,e{φl,k}、
进一步得到υn,k的量测噪声
则
化简后得到新的混合量测模型如下:
其中,
其中,fj(xk)表示f(xk)的第j个量测方程;量测误差
其中,vj,k代表vk的第j个分量,
其中:
其中
2)将非线性量测方程线性化;
采用一个带有不确定项的二阶非线性函数的线性化方法,求取滤波增益;
具体过程如下:
首先将化简后的量测方程
其中,
如果存在正数rk,使得
其中,
δk 1是时变矩阵且满足:
mk 1的表达式如下:
其中,a0表示初始状态转移矩阵;kk为k时刻滤波增益,fk为k时刻的雅克比矩阵;μw,i,0表示初始过程噪声的上界,
线性化后得到k 1时刻预测误差ek 1|k、估计误差ek 1|k 1以及预测误差ek 1|k、估计误差ek 1|k 1对应的误差协方差矩阵pk 1|k和pk 1|k 1,分别表示如下:
其中,ek|k表示k时刻的估计误差,ek 1|k 1表示k 1时刻的估计误差;
3)求取滤波误差协方差上界,具体过程如下:
首先定义如下两个方程:
其中,kk 1表示k 1时刻的滤波增益;
tk 1满足:
假设初始时刻的估计误差协方差矩阵p0|0及其上界∑0|0满足:σ0|0=p0|0≥0;
如果方程(21)有正定解σk 1|k和σk 1|k 1,且在任意k时刻,
4)求取使滤波误差协方差上界最小时的滤波增益kk 1:
iv.将公式(22)中求取的滤波增益kk 1回带到递推滤波器中对配电网进行状态估计。
技术总结