本发明涉及无线电能传输技术领域,特别是一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法。
背景技术:
谐振式无线传能技术在发射与接收线圈相互耦合的前提下,通过发射线圈和接受线圈的谐振电容,使得磁耦合系统的发送线圈与接收线圈处于相同的谐振频率,进而实现能量传输。发射与接收线圈之间的互感是影响无线电能传输输出特性关键参数,同时线圈电阻的大小及其所带来的损耗是影响无线电能传输系统效率的关键影响因素。
在ss型补偿中,一旦系统工作频率固定,互感的大小直接决定了输出电流的大小。一般设计时,在发送侧与接收侧谐振频率已经选定且发射与接收线圈的最大尺寸已经给定的前提下,可以通过发射线圈与接收线圈的设计(即互感的设计)获得所需要的输出特性。
如果互感大小相同,其输出特性就保持不变。在保证输出特性不变即互感不变的前提下存在着许多的设计方案:1、增大发射线圈的匝数增大其自感,减小接收线圈的匝数减小其自感,但保持互感相同;2、增大接收线圈的匝数增大其自感,减小发射线圈的匝数减小其自感,但保持互感相同。不同的匝数设计将直接影响其线圈电阻的大小和磁耦合系统的线圈损耗大小,进而影响无线电能传输系统的效率。如何在频率及磁耦合系统尺寸给定的条件下,通过设计发射与接收线圈的感量和匝数,使系统在实现相同输出性能的前提下,获得最小的损耗和最高的效率,是无线电能传输磁耦合系统的关键。
就目前的研究与设计方案而言,对线圈的优化设计方法大多基于发射线圈、接收线圈结构完全一致的前提下设计磁耦合系统,缺乏发射线圈与接收线圈匝数不等的优化设计方案。图1即为现有技术中无线电能传输系统平面折角型线圈设计流程,包括步骤:确定系统参数的输出指标、电路拓扑及方形线圈面积;建立发射与接收线圈间互感和内阻表达式,结合线圈机构效率表达式,得到效率和线圈匝数间关系,求得线圈机构效率最大时对应的最优线圈匝数;以原边能量发射线圈和副边能量拾取线圈之间的互感值最大为目标问题,以线圈倒圆角的圆角半径和线圈边长为优化变量,建立优化模型,将最优线圈匝数代入优化模型,然后根据线圈倒圆角的圆角半径和线圈边长之间的关系求解优化模型,得到最优的圆角半径和线圈边长。该设计方法的发射与接收线圈的尺寸结构完全一致,缺乏发射与接收线圈匝数优化设计。
上述设计的不足之处在于:发射与接收线圈尺寸结构完全相同,即发射与接收线圈匝数、导线线径均相同。而电流密度是导线线径选择的依据,发射及接收线圈的工作电流不同则导线线径不同。该方法为了保证两个线圈最基本的通流能力,需要使用线径更粗的导线来绕制线圈,使得制造成本上升;在线圈最大尺寸确定的前提下,缺乏对线圈匝数的优化设计。
技术实现要素:
有鉴于此,本发明的目的是提出一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,能够在保证输出特性一样的前提下使系统获得最小的绕组损耗及最高的效率。
本发明采用以下方案实现:一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,所述无线电能传输磁耦合系统包括正对平行放置的原边能量发射线圈和副边能量接收线圈;原边能量发射线圈和副边能量接收线圈为平面螺旋线圈结构,发射线圈与接收线圈的内径及外径相等但匝数不同;包括以下步骤:
步骤s1:根据ss型补偿电路拓扑,确定无线电能传输磁耦合系统的输入及输出的关系:
式中,ip为发射线圈的输入电流,is为接收线圈的输出电流;up为发射线圈的输入电压,re为整流侧等效输入负载电阻,m为发射线圈与接收线圈之间的互感,ω为无线电能传输磁耦合系统的工作角频率;
步骤s2:根据无线电能传输系统的主电路拓扑,推导无线电能传输磁耦合系统输入及输出指标与互感m及收发线圈的电流ip、is的关系(上述输入、输出指标包含系统的电源输入电压、工作频率、负载输出电流及输出功率):
式中,uin为电源输入电压,
步骤s3:以相同的电流密度j确定发射线圈的导线截面积sp、导线半径rp和接收线圈的导线截面积ss、导线半径rs;
步骤s4:以发射线圈的厚度hp、接收线圈的厚度hs、磁耦合系统的最大外径rout及传输距离d(rout及d由实际应用场合决定)建立单匝平面螺旋线圈的电磁场有限元仿真模型或理论计算模型,以发射线圈、接收线圈间的耦合系数k最大为目标,通过仿真或理论计算确定平面螺旋线圈的最优内径rin;
步骤s5:建立单匝平面螺旋线圈模型,得到单匝平面螺旋线圈模型的耦合系数k1、发射线圈与接收线圈的单匝电感lp01、ls01;
步骤s6:建立互感m与发射线圈及接收线圈的匝数np、ns的关系式:
步骤s7:建立发射线圈及接收线圈的电阻rp、rs与发射线圈匝数np或接收线圈匝数ns的关系式,其中,与发射线圈匝数np的关系如下:
式中,ρ为线圈导线的电阻率,leq为线圈平均匝长;
其中,与接收线圈匝数ns的关系式如下:
步骤s8:建立线圈损耗ploss与发送线圈匝数np的关系:
或者建立线圈损耗ploss与接收线圈匝数ns的关系:
步骤s9:求取线圈损耗ploss的最小值,并解出对应的最优发射线圈及接收线圈匝数组合;根据步骤s8得到的线圈损耗表达式,可采用数值方法分析,即通过求导的方法求得线圈损耗的理论最小值,并以此求取对应的最优np或ns,同时推出相对应的ns或np,最终得到最优发射线圈及接收线圈匝数组合;例如先求取:
需要指出的是:接收线圈与发射线圈之间的互感是影响电磁场能量转换的主要因素,即发射线圈向接收线圈传递的能量主要由互感决定,视k、lp0、ls0等参数不变,可以通过改变np、ns来调整感量;线圈匝数是决定线圈电阻的主要参数;接收线圈与发射线圈各自的工作电流不同。综上三点可以在保证互感不变的前提下,优化调整原副边的匝数,减小磁耦合系统线圈的总体损耗。即ploss=ip2rp is2rs存在发射及接收线圈最优匝数组合,使ploss为最小值。
步骤s10:以rin为内径,rout为外径,采用均匀匝间距的方式布置线圈;
步骤s11:根据得到的最优发射线圈及接收线圈匝数组合以及步骤s10所布置的多匝线圈为基础构造有限元仿真模型或理论计算模型,仿真或计算得到此时的耦合系数及收发线圈的平均单匝电感,记为k2、lp02、ls02;分别将k2、lp02、ls02与k1、lp01、ls01做差,若三个差值分别小于5%的k1、lp01、ls01,则进入步骤s13,否则令k1=k2、lp01=lp02、ls01=ls02,并返回步骤s6;
步骤s12:根据当前最优发射线圈及接收线圈的匝数组合计算发射及接收线圈的自感感量,并按照自感完全补偿的方式,确定发射侧及接收侧的补偿电容容值,以配置补偿电容的参数,即
进一步地,所述步骤s3中,发射线圈的导线截面积sp、导线半径rp和接收线圈的导线截面积ss、导线半径rs采用下式确定:
进一步地,步骤s4中,采用公式hp=2rp、hs=2rs来确定发射线圈与接收线圈的厚度。
进一步地,步骤s4还包括步骤:由线圈的最优内径rin及最大外径rout得到线圈平均匝长leq的表达式:leq=π(rin rout)。
进一步地,步骤s5具体为:以前述步骤中的rin及rout作为接收线圈与发射线圈的内径及外径,hp作为接收线圈的厚度,hs作为发射线圈的厚度,建立单匝平面螺旋线圈模型仿真模型或理论计算模型,通过仿真或理论计算的方式得到此时的耦合系数k以及收发线圈的单匝电感lp0、ls0,并将此时的结果k、lp0、ls0作为单匝平面螺旋线圈模型所对应的结果,记为k1、lp01、ls01。
进一步地,步骤s10具体为:在单层密绕无法实现绕制的情况下,以rin为内径,rout为外径进行多层绕制;在密绕完一层后,将剩余的匝数按照rin为内径,rout为外径,均匀匝间距绕制线圈。
进一步地,步骤s11中,通过多匝平面螺旋线圈模型得到发射线圈与接收线圈的电感lp与ls,接下来发射及接收线圈的平均单匝电感lp02、ls02采用下式确定:
与现有技术相比,本发明有以下有益效果:本发明从磁耦合系统线圈损耗的角度来分析无线电能传输系统的效率,量化线圈损耗所占的比重,为提高系统的效率提供思路;同时本发明基于发射及接收线圈匝数的优化调整,在不改变现有线圈的尺寸、保证相同输出指标的同时,减小线圈损耗;发射与接收线圈的线径根据相同的电流密度来选择,可以降低线圈设计成本。
附图说明
图1为现有技术中无线电能传输系统平面折角型线圈设计流程。
图2为本发明实施例的磁耦合系统示意图。
图3为本发明实施例的ss型补偿拓扑。
图4为本发明实施例的无线电能传输系统ss补偿恒流型输出电路主拓扑。
图5为本发明实施例的方法流程示意图。
图6为本发明实施例的ss型补偿拓扑等效电路图。
图7为本发明实施例的电容滤波的整流侧等效电路。
图8为本发明实施例的平面螺旋线圈示意图。其中(a)为平面线圈的外径限制,(b)为收发线圈的间距。
图9为本发明实施例的2d单匝仿真模型。
图10为本发明实施例的耦合系数与内径的变化趋势仿真结果示意图。
图11为本发明实施例的系统输出功率仿真结果。其中,(a)为输出功率,(b)为输出电流。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本实施例提供了一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,所述无线电能传输磁耦合系统(如图2所示)包括正对平行放置的原边能量发射线圈和副边能量接收线圈;原边能量发射线圈和副边能量接收线圈为平面螺旋线圈结构,发射线圈与接收线圈的内径及外径相等但匝数不同;本实施例取输入输出指标为直流输入uin=150v、线圈最大外径r=0.1m、传输距离d=0.05m、工作频率f=100khz、恒流输出io=1a、输出功率po=200w。
如图5所示,本实施例具体包括以下步骤:
步骤s1:根据ss型补偿电路拓扑(如图3所示),确定无线电能传输磁耦合系统的输入及输出的关系:
根据电路理论,可以得到磁耦合系统等效模型的阻抗参数矩阵:
由上述的推导可知在原副边完全补偿的情况下,互感与磁耦合系统接收线圈电流的关系
由反射阻抗的概念可以得到如图6所示的电路等效模型(忽略线圈电阻),其中,
步骤s2:根据无线电能传输系统的主电路拓扑(如图4),推导无线电能传输磁耦合系统输入及输出指标与互感m及收发线圈的电流ip、is的关系:本实施例采用不对称半桥获取高频电压激励。不对称半桥的开关管控制策略为一个周期内上下管轮流导通,不考虑死区的情况下,占空比均为0.5。uab为不对称半桥输出的高频方波电压,其值为:
以上式作为激励源时,所得的响应与下式一致:
其傅里叶表达式为:
本实施例采用不控桥式整流。当直流侧采用图7时的电容滤波时,根据基波分析法可以得到以下结论:
其中,uab为uab基波分量的有效值、is为is基波分量的有效值、re为整流侧等效输入负载。
由
步骤s3:以相同的电流密度j=5a/mm2确定发射线圈的导线截面积sp、导线半径rp和接收线圈的导线截面积ss、导线半径rs;
由s=πr2可知:
步骤s4:以发射线圈的厚度hp、接收线圈的厚度hs、磁耦合系统的最大外径rout及传输距离d(rout=100mm,d=50mm)建立单匝平面螺旋线圈的电磁场有限元仿真模型或理论计算模型,以发射线圈、接收线圈间的耦合系数k最大为目标,通过仿真或理论计算确定平面螺旋线圈的最优内径rin;其中,采用公式hp=2rp、hs=2rs来确定发射线圈与接收线圈的厚度:
由线圈的最优内径rin及最大外径rout得到线圈平均匝长leq的表达式:leq=π(rin rout)。从平面螺旋线圈示意图8可知平面螺旋线圈是轴对称结构。以maxwell作为有限元仿真软件,选择maxwell2drz坐标系构造仿真模型如图9所示。以线圈内径rin作为参数化仿真变量,确定最优内径。从图10的仿真结果可以看出,在内径约为30mm时,收发线圈的耦合系数取到最大值。所以取最优内径rin=30mm。
步骤s5:建立单匝平面螺旋线圈模型,得到单匝平面螺旋线圈模型的耦合系数k1、发射线圈与接收线圈的单匝电感lp01、ls01;具体为:以前述步骤中的rin及rout作为接收线圈与发射线圈的内径及外径,hp作为接收线圈的厚度,hs作为发射线圈的厚度,建立单匝平面螺旋线圈模型仿真模型或理论计算模型,通过仿真或理论计算的方式得到此时的耦合系数k以及收发线圈的单匝电感lp0、ls0,并将此时的结果k、lp0、ls0作为单匝平面螺旋线圈模型所对应的结果,记为k1、lp01、ls01。本实施例中,仿真结果为:k1=0.304、lp01=127.12nh、ls01=127.16nh。
步骤s6:建立互感m与发射线圈及接收线圈的匝数np、ns的关系式:
步骤s7:建立发射线圈及接收线圈的电阻rp、rs与发射线圈匝数np或接收线圈匝数ns的关系式,其中,与发射线圈匝数np的关系如下:
又
式中,ρ为线圈导线的电阻率,leq为线圈平均匝长;
其中,与接收线圈匝数ns的关系式如下(发射线圈电阻rp与接收线圈匝数ns的关系推导过程与上述接收线圈电阻rs与发射线圈匝数np的关系推导过程一致,在此不再赘述,直接给出结果,且下文中线圈损耗表达式及最优匝数表达式亦是同理,仅给出线圈损耗及最优匝数与发射线圈匝数表达式的推导,与接收线圈匝数的相关表达式将直接给出结果,后续不再特殊说明):
步骤s8:建立线圈损耗ploss与发送线圈匝数np的关系:
或者建立线圈损耗ploss与接收线圈匝数ns的关系:
步骤s9:求取线圈损耗ploss的最小值,并解出对应的最优发射线圈及接收线圈匝数组合;根据第步骤s8得到的线圈损耗表达式,可采用数值方法分析,即通过求导的方法求得线圈损耗的理论最小值,并以此求取对应的最优np或ns,同时推出相对应的ns或np,最终得到最优发射线圈及接收线圈匝数组合:令
需要指出的是:接收线圈与发射线圈之间的互感是影响电磁场能量转换的主要因素,即发射线圈向接收线圈传递的能量主要由互感决定,视k、lp0、ls0等参数不变,可以通过改变np、ns来调整感量;线圈匝数是决定线圈电阻的主要参数;接收线圈与发射线圈各自的工作电流不同。综上三点可以在保证互感不变的前提下,优化调整原副边的匝数,减小磁耦合系统线圈的总体损耗。即ploss=ip2rp is2rs存在发射及接收线圈最优匝数组合,使ploss为最小值。
步骤s10:以rin为内径,rout为外径,采用均匀匝间距的方式布置线圈;具体为:在单层密绕无法实现绕制的情况下,以rin为内径,rout为外径进行多层绕制;在密绕完一层后,将剩余的匝数按照rin为内径,rout为外径,均匀匝间距绕制线圈。
步骤s11:根据得到的最优发射线圈及接收线圈匝数组合以及步骤s10所布置的多匝线圈为基础构造有限元仿真模型或理论计算模型,仿真或计算得到此时的耦合系数及收发线圈的平均单匝电感,记为k2、lp02、ls02;分别将k2、lp02、ls02与k1、lp01、ls01做差,若三个差值分别小于5%的k1、lp01、ls01,则进入步骤s13,否则令k1=k2、lp01=lp02、ls01=ls02,并返回步骤s6;其中,通过多匝平面螺旋线圈模型得到发射线圈与接收线圈的电感lp与ls,接下来发射及接收线圈的平均单匝电感lp02、ls02采用下式确定:
采用本实施例的方法优化后的仿真结果中,原边感值为122.41uh,副边感值为838.52uh,耦合系数为0.30431,线圈欧姆损耗为6.04065w(互感为97.49uh)。而无优化的传统设计的多匝线圈模型(即接收线圈与发射线圈结构完全对称的设计方案)的仿真结果中,原边感值为318.23uh,副边感值为319.3uh,耦合系数为0.30434,欧姆损耗为7.0521w(互感为97.01uh)。本实施例的仿真结果与理论结算结果基本一致,优化设计方案的最终耦合系数k2=0.30431、原边平均单匝电感lp02=127.38nh、副边平均单匝电感ls02=127.803nh,与单匝平面螺旋线圈初值参数k1、lp01、ls01之差均小于5%,满足误差要求;有无匝数优化的两种设计方案的仿真对比结果表明两种设计方案均能满足理论计算所要求的互感值(互感为96.75uh),但在采用优化设计方案时,可以减小接收线圈、发射线圈的总体损耗,提升系统效率。
步骤s12:根据当前最优发射线圈及接收线圈的匝数组合计算发射及接收线圈的自感感量,并按照自感完全补偿的方式,确定发射侧及接收侧的补偿电容容值,以配置补偿电容的参数,即
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
1.一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,所述无线电能传输磁耦合系统包括正对平行放置的原边能量发射线圈和副边能量接收线圈;原边能量发射线圈和副边能量接收线圈为平面螺旋线圈结构,发射线圈与接收线圈的内径及外径相等但匝数不同;其特征在于,包括以下步骤:
步骤s1:根据ss型补偿电路拓扑,确定无线电能传输磁耦合系统的输入及输出的关系:
式中,ip为发射线圈的输入电流,is为接收线圈的输出电流;up为发射线圈的输入电压,re为整流侧等效输入负载电阻,m为发射线圈与接收线圈之间的互感,ω为无线电能传输磁耦合系统的工作角频率;
步骤s2:推导无线电能传输磁耦合系统输入及输出指标与互感m及收发线圈的电流ip、is的关系:
式中,uin为电源输入电压,
步骤s3:以相同的电流密度j确定发射线圈的导线截面积sp、导线半径rp和接收线圈的导线截面积ss、导线半径rs;
步骤s4:以发射线圈的厚度hp、接收线圈的厚度hs、磁耦合系统的最大外径rout及传输距离d建立单匝平面螺旋线圈的电磁场有限元仿真模型或理论计算模型,以发射线圈、接收线圈间的耦合系数k最大为目标,通过仿真或理论计算确定平面螺旋线圈的最优内径rin;
步骤s5:建立单匝平面螺旋线圈模型,得到单匝平面螺旋线圈模型的耦合系数k1、发射线圈与接收线圈的单匝电感lp01、ls01;
步骤s6:建立互感m与发射线圈及接收线圈的匝数np、ns的关系式:
步骤s7:建立发射线圈及接收线圈的电阻rp、rs与发射线圈匝数np或接收线圈匝数ns的关系式;
步骤s8:建立线圈损耗ploss与发射线圈匝数np或接收线圈匝数ns的关系;
步骤s9:求取线圈损耗ploss的最小值,并解出对应于最小线圈损耗时的最优收发线圈匝数组合;
步骤s10:以rin为内径,rout为外径,采用均匀匝间距的方式布置线圈;
步骤s11:根据得到的最优发射线圈及接收线圈匝数组合以及步骤s10所布置的多匝线圈为基础构造有限元仿真模型或理论计算模型,仿真或计算得到多匝平面螺旋线圈模型对应的的耦合系数及收发线圈的平均单匝电感,记为k2、lp02、ls02;分别将k2、lp02、ls02与k1、lp01、ls01做差,若三个差值分别小于5%的k1、lp01、ls01,则进入步骤s12,否则令k1=k2、lp01=lp02、ls01=ls02,并返回步骤s6;
步骤s12:根据当前最优发射线圈及接收线圈的匝数组合计算发射及接收线圈的自感感量,并按照自感完全补偿的方式,确定发射侧及接收侧的补偿电容容值,以配置补偿电容的参数;其中,所述当前最优发射线圈及接收线圈的匝数组合为选取步骤s11中计算所依据的最优发射线圈及接收线圈匝数组合的±20%。
2.根据权利要求1所述的一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,其特征在于,所述步骤s3中,发射线圈的导线截面积sp、导线半径rp和接收线圈的导线截面积ss、导线半径rs采用下式确定:
3.根据权利要求1所述的一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,其特征在于,步骤s4中,采用公式hp=2rp、hs=2rs来确定发射线圈与接收线圈的厚度。
4.根据权利要求1所述的一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,其特征在于,步骤s4还包括步骤:由线圈的最优内径rin及最大外径rout得到线圈平均匝长leq的表达式:leq=π(rin rout)。
5.根据权利要求1所述的一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,其特征在于,步骤s5具体为:以前述步骤中的rin及rout作为接收线圈与发射线圈的内径及外径,hp作为接收线圈的厚度,hs作为发射线圈的厚度,建立单匝平面螺旋线圈模型仿真模型或理论计算模型,通过仿真或理论计算的方式得到此时的耦合系数k以及收发线圈的单匝电感lp0、ls0,并将此时的结果k、lp0、ls0作为单匝平面螺旋线圈模型所对应的结果,记为k1、lp01、ls01。
6.根据权利要求1所述的一种基于ss补偿的无线电能传输磁耦合系统的发射与接收线圈匝数优化设计方法,其特征在于,步骤s10具体为:在单层密绕无法实现绕制的情况下,以rin为内径,rout为外径进行多层绕制;在密绕完一层后,将剩余的匝数按照rin为内径,rout为外径,均匀匝间距绕制线圈。
技术总结