本发明属于功能材料技术领域,具体涉及一种微型石墨烯气凝胶器件的制备方法及其应用。
背景技术:
随着科学技术的进步,设备都倾向于柔性化及微型化进行发展,目前微型化设备主要集中于成熟的硅基的cmos工艺进行制造,但是由于其性能有限,对于许多复杂的环境很难进行性能兼容,因此急需发展新型的材料及工艺弥补这一问题。石墨烯是由单层的碳原子以sp2杂化形式构筑的纳米碳材料,其导带与价带相交于狄拉克点,从而致使其具有超快的电子传输速度,其具有极高的导电、导热及力学性能,是最具有希望解决微型化器件的材料之王。但是由于石墨烯之间具有极强的范德华作用力,从而在宏观组装材料中维持其单层的性质,限制了其应用。
石墨烯气凝胶,由单层或少层的石墨烯片层与空气所搭接的三维多孔网络而成,从而利用间隙削弱了层间作用力,可发挥其固有的性能,得到许多的应用研究。当材料中纳米厚度的石墨烯受到微弱外界的刺激,如力、电、热、声音等,材料整体信号产生扰动,从而可实现多种刺激的探测;此外,由于石墨烯气凝胶中多孔结构的存在,为其电荷离子提供了较多的传输通道,因此在能源储存领域也发挥了不可忽视的作用。但是,石墨烯气凝胶目前主要采用冷冻模板法制备而成,但是由于冷冻结冰过程中冰晶很难避免缺陷的存在,因此导致其性能大幅度降低,且后续繁琐的模板去除也导致其很难进行微型化、集成化及大规模化生产。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
技术实现要素:
本发明的目的在于提供一种微型石墨烯气凝胶器件的制备方法,其主要是利用原位发泡在器件的基底上获得微型级别的石墨烯气凝胶单元,该方法主要是将氧化石墨烯以溶液的形式滴加至器件表面,然后在器件表面实现原位发泡,提高了气凝胶器件的精密性。
上述的滴加可以采用3d打印来实现,3d打印具有极高的精度,所得气凝胶阵列可实现微型化,且所得气凝胶的稳定性较为优异,因此可以获得具有较高分辨率的石墨烯气凝胶阵列式传感器。
本发明的另一个目的在于提供一种微型石墨烯气凝胶器件的制备方法,其主要是结合溶剂塑化和原位气泡的产生,该方法区别于现有的热塑性发泡,其是在溶液环境下,塑化剂渗入到膜材料中,降低膜材料内部的分子间作用力,降低发泡阻力;同时,解决了非热塑性材料的发泡难题,提高了气凝胶器件的稳定性。
为了实现上述任一目的,本申请采用如下方案:以氧化石墨烯溶液为墨水,打印在器件的基底上,经过固化后,滴加含有发泡剂的极性溶液,使得氧化石墨烯发生塑化发泡,经过干燥还原后在器件基底上得到微型石墨烯气凝胶单元。
或采用如下等同方案:
以掺有发泡剂的氧化石墨烯溶液为墨水,打印在器件的基底上,经过固化后,滴加极性溶液,使得氧化石墨烯发生塑化发泡,经过干燥还原后在器件基底上得到微型石墨烯气凝胶单元。
上述的发泡剂包括自发泡剂和反应型发泡剂,所述反应型发泡剂为可通过与氧化石墨烯含氧官能团反应并产生气体的发泡剂,包括但不限于水合肼、硼氢化盐,所述自发泡剂为可分解产生气体的发泡剂,包括但不限于碳酸氢盐。
作为本领域的公知常识,引发自发泡剂发泡的方法包括但不限于:加入引发剂、加热;其中所述的引发剂引发所述发泡剂前驱体产生气体。
上述的极性溶液为水、有机溶剂、或水与有机溶剂的混合溶液。所述的有机溶剂选自:二甲基甲酰胺、二甲基乙酰胺、异丙醇、乙醇等。极性溶液中的极性分子为可降低石墨烯的分子间作用力。
上述的氧化石墨烯溶液的溶剂可以是水、二甲基甲酰胺、二甲基乙酰胺、乙醇、二甲基亚砜。
上述方法中,所述的干燥可以采用任意形式,例如可采用直接干燥、溶剂置换干燥等方式实现。
在某些实施例中,在打印所述氧化石墨烯前,先将电路图打印于所述器件的基底上,以保证电路引线位于打印的石墨烯功能单元下方,有利于器件稳定性;当然,本申请所述的方法也可以先将氧化石墨烯墨水进行打印,再进一步打印电路。
本发明的另一个目的是提供一种微型石墨烯气凝胶器件,该器件具有极高的精度,可以用于微型器件的高精度敏感单元。
本发明的另一个目的是提供一种微型石墨烯气凝胶器件,该器件具有极高的稳定性,适用于需要长时间稳定服役的微型器件领域。
为了实现上述任意一个目的,本申请采用如下技术方案:微型石墨烯气凝胶器件包含多个微型石墨烯气凝胶单元,多个微型石墨烯气凝胶单元构成阵列,所述的微型石墨烯气凝胶单元可以采用原位发泡和溶剂塑化结合的方式制备得到。
上述器件中的电路可以根据需求任意设计加工,为本领域的成熟技术。
上述器件可以构成传感器,所述微型石墨烯气凝胶单元进行数据采集;通过原位发泡和溶剂塑化结合的方式制备得到微型石墨烯气凝胶单元对力学信号、位移信号、声波振动信号具有高度的响应性,通过将微型石墨烯气凝胶单元构成阵列后,结合深度机器学习,即可获得高灵敏度、高精度的传感控制系统。所述的深度机器学习可以采用目前所有可实现数据处理、运算、提出、识别的程序。
上述器件可以构成平面型储能器件,通过原位发泡和溶剂塑化结合的方式制备得到微型石墨烯气凝胶单元具有层层的取向结构,因此,利用该微型石墨烯气凝胶单元构建微型电容器,具有较快的离子传输能力,因此所得储能器件的倍率性能优异。
上述器件可以构成储能器件,通过原位发泡和溶剂塑化结合的方式制备得到微型石墨烯气凝胶单元具有多孔的结构,因此,利用该微型石墨烯气凝胶单元构建微型电池,具有较高的循环稳定性。
上述传感器和储能器件中,电路设计为本领域成熟的技术手段。
本发明的有益效果在于:本发明通过结合原位打印和溶液塑化发泡,制备得到了微尺寸的微型石墨烯气凝胶单元,且其具有优异的柔性及稳定性,可适合于多种应用场所,如传感、储能等。
本申请所述的微型,不是对尺寸进行限定,而是指通过本发明可以将器件尺寸做到更小,器件精度更高。本发明也适用于大型器件的制备,但大型器件制备不是本发明的主要目的。
本发明的有益效果在于:本发明所提供的阵列传感器具有极高的稳定性,因此具有较高的精度及可靠性,结合深度机器学习可赋予机器智能学习识别的功能,为下一代人工智能的发展起到极大的推动。
附图说明
图1为实施例3所制备得到8阵列化传感器示意图。
图2为实施例3所制备的8阵列化传感器采集到的数据示意图。
图3为实施例4所制备得到的8阵列化石墨烯气凝胶传感器示意图。
图4为实施例4在不同的位移阶梯下的数据变化曲线。
图5为实施例5所制备得到的10*10阵列化石墨烯气凝胶传感器示意图。
图6为实施例6所制备的传感器的位移校正拟合曲线。
图7为为实施例7所使用的氮化铝压电谐振式传感器示意图。
图8为实施例9所制备得到的叉指式微型石墨烯气凝胶电容器示意图。
图9为实施例9所制备电容器在不断扫描速度下的循环伏安曲线。
图10为实施例9所制备电容器的电容循环性能曲线。
图11为实施例10所制备的锂离子-石墨烯气凝胶微型电池的示意图。
图12为实施例10所制备电池的长时间循环下的电容和库伦效率维持率曲线。
图13为应用例所述10*10电极对于手掌形状的识别图。
图14为高集成化8*8手指阵列化石墨烯气凝胶传感器示意图。
图15为8*8传感器每个通道的数据采集曲线。
图16为8*8阵列传感器集成在机械手并利用机械臂控制的示意图。
图17为利用深度机器学习和石墨烯气凝胶阵列传感器进行字母识别的电路及原理示意图。
图18为实施例1所制备得到截面图。
图19为实施例2所制备得到截面图。
具体实施方式
下面结合实施例对本发明进一步描述。但本发明的保护范围不仅限于此。
实施例1
以20mg/ml的氧化石墨烯水悬浮液为墨水,通过3d打印方法打印在聚酰亚胺基底上,液滴直径为20um左右;经过固化后,滴加含有浓度为50%的水合肼的水溶液0.1ml,使得氧化石墨烯发生塑化发泡,5min后干燥,氢碘酸原位还原后得到微型石墨烯气凝胶单元。
对该聚酰亚胺基底进行截面扫描,如图18所示,从图中可以看出,聚酰亚胺基底上构成了石墨烯气凝胶,石墨烯片相互搭接形成孔洞结构,其孔隙率与常规发泡的石墨烯气凝胶相差无几。可以预见,这种石墨烯气凝胶具备常规方法制备得到的宏观气凝胶的力学性能、电学性能、力电性能等。
此外,石墨烯气凝胶与聚酰亚胺基底结合良好,能有效保障器件的稳定性。
实施例2
往10mg/ml的氧化石墨烯的dmf悬浮液中掺加等质量的碳酸氢钠均匀混合(氧化石墨烯溶液与碳酸氢钠质量比1:1),得到3d打印用氧化石墨烯墨水。
利用3d打印的方法在透明pet基底上进行打印,液滴直径为20um左右;经过干燥固化后,将其放置于水中,40摄氏度加热,产生气泡,1min后干燥,氢碘酸原位还原得到微型石墨烯气凝胶单元。
对该pet基底进行截面扫描,如图19所示,从图中可以看出,pet基底上构成了石墨烯气凝胶,石墨烯片相互搭接形成孔洞结构,其孔隙率与常规发泡的石墨烯气凝胶相差无几。可以预见,这种石墨烯气凝胶具备常规方法制备得到的宏观气凝胶的力学性能、电学性能、力电性能等。
此外,石墨烯气凝胶与pet基底结合良好,能有效保障器件的稳定性。
实施例3
利用丝印的方法在聚酰亚胺基底上(0.8×1.0mm2)打印如图1所示的8对电极的传感器电路图,其中单个电极尺寸为50×100um2,每一对电极构成一个测试单元。另外在底部设置8个引出电极和一个总电极;随后在电路图中的测试单元上进行氧化石墨烯墨水的3d打印,其中氧化石墨烯溶液为20mg/ml的水悬浮液,经过干燥固化后,滴加(同样以3d打印手段进行滴加,下同)浓度为50%的水合肼的水溶液0.1ml,以对氧化石墨烯进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了稳定的阵列传感器,其中单个微型石墨烯气凝胶单元的尺寸在150×150um2以内,且覆盖在相应的一对电极上。
将8电极传感器的电路引出到数据采集卡中,且连接电路,通过总电极向各个测试单元输入2v的测试偏压。采用0.2pa的压强对8个测试单元同时施压,经过8次重复测试(ch1~ch8),结果表明电流信号稳定,其响应时间为100ms,如图2。
逐步增加压力,使得压强分别增加至0.4pa、0.6pa、0.8pa、1.0pa,即获得模拟曲线,基于该模拟曲线即可进行力的测量。
实施例4
利用3d打印的方法在透明pet基底(0.8×1.0mm2)上打印8对电极的传感器电路图,其中单个电极尺寸为50×100um2,另外在底部设置8个引出电极和一个总电极;随后在电路图中的每一对电极处进行氧化石墨烯墨水的3d打印,其中氧化石墨烯溶液为10mg/ml的二甲基甲酰胺悬浮液,经过干燥固化后,滴加浓度为0.5%的硼氢化钠的水溶液0.1ml,以对氧化石墨烯进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了石墨烯气凝胶传感器,每个微型石墨烯气凝胶单元的尺寸在150×150um2以内,且覆盖在一对电极上,如图3所示。
将8电极传感器的电路引出到8通道的数据采集卡中,采用斑马纸连接电路,施加一个2v的直流电压,采用一步进电机的输出探针压缩石墨烯气凝胶。对初始的电流曲线进行归一化,随后在不同压缩量下的信号进行采集,进行数据拟合,随后可得到压缩量与电流响应值的拟合曲线,经过程序输入拟合数据到单片机中,当每个传感器感受到不同的电信号变化时,可及时将其转为压缩位移信号,从而探测每个传感器的位移变化,如图4所示,在连续的20um,40um,60um及80um的位移递进下都可以观察到明显的信号变。
实施例5
利用3d打印的方法在透明pet基底上打印10*10电极的传感器电路图,其中单个电极尺寸为1*1mm,随后在电路图中的传感部件处进行氧化石墨烯墨水的3d打印,其中氧化石墨烯墨水为浓度为10mg/ml的氧化石墨烯的二甲基乙酰胺悬浮液,经过干燥固化后,利用3d打印的方法滴加浓度为2%的硼氢化钠的乙醇溶液0.2ml,以对氧化石墨烯进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了稳定的阵列传感器,其中单个石墨烯气凝胶传感器的尺寸为1.5*2mm,如图5。
将10*10电极传感器的电路引出到8通道的数据采集卡中,采用斑马纸连接电路,施加一个2v的直流电压,当利用不同的压力进行压缩时可发现其每个传感器都具有明显的响应信号,证实所制备的传感器可以准确的采集不用的压力信号,其最小的响应压力为0.32pa,响应时间为120ms。
实施例6
往10mg/ml的氧化石墨烯的dmf悬浮液中掺加等质量的碳酸氢钠均匀混合(氧化石墨烯溶液与碳酸氢钠质量比1:1),得到3d打印用氧化石墨烯墨水。
利用3d打印的方法在透明pet基底上打印8电极的传感器电路图,其中单个电极尺寸为1*2mm,随后在电路图中的传感部件处进行氧化石墨烯墨水的3d打印,经过干燥固化后,将其放置于水中,40摄氏度加热,产生气泡,1min后干燥,氢碘酸原位还原后便得到了稳定的阵列传感器,其中单个石墨烯气凝胶传感器的尺寸为2*4mm2。
将8电极传感器的电路引出到数据采集卡中,采用斑马纸连接电路,施加一个2v的直流电压,采用一物体对石墨烯气凝胶进行压缩,对初始的电流曲线进行归一化,随后在不同位移下的信号进行采集,进行数据拟合,如图6,随后可得到物体位移与电流响应值的拟合曲线,其应变灵敏度(gf)最高可达到2,经过程序输入拟合数据到单片机中,当每个传感器感受到不同的电信号变化时,可及时将其转为位移信号,从而探测每个物体的位移变化。
实施例7
利用商用化的氮化铝压电谐振式传感器,如图7,在其200*200um的振动部件处打印进行氧化石墨烯墨水的3d打印,其中氧化石墨烯墨水为浓度为100mg/ml的氧化石墨烯的乙醇悬浮液,经过干燥固化后,利用3d打印的方法滴加浓度为20%的水合肼的二甲基甲酰胺溶液0.3ml,以对氧化石墨烯进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了稳定的阵列传感器,其中单个石墨烯气凝胶传感器的尺寸为300*300um2。
利用上述传感器可制成被动式的声波检测系统。当出现某一频率的声波时(在压电谐振器带宽内,一般1mhz以下),压电薄膜产生周期性的振动(百纳米级振幅),由于正压电效应,周期性的应变产生了对应频率的感应电流(微安级),谐振器上石墨烯气凝胶的电特性变化则放大了电信号(十微安级)。感应电流在上下电极分别汇集并通过引线键合的方式接到电路板上。该信号经过功率放大电路和滤波电路可以被检测到(放大到毫安级)。根据该信号的频率和幅值信息,可以提取出声波的频率和强度等信息。
实施例8
利用商用化的氮化铝压电谐振式传感器,在其振动部件处进行氧化石墨烯墨水的3d打印,其中氧化石墨烯墨水为浓度为10mg/ml的氧化石墨烯的二甲基乙酰胺悬浮液,经过干燥固化后,利用3d打印的方法滴加浓度为20mg/ml的二甲基乙酰胺/水(1:1wt/wt)溶液0.3ml,以对氧化石墨烯进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了稳定的阵列传感器,其中单个石墨烯气凝胶单元的尺寸为500*500um2。
利用上述传感器可制成力学及位移检测系统,压电器件具有周期性的振动(百纳米级振幅),当出现极小的力学或应变信号时,由于气凝胶的电学信号发生变化,经过振动器件的信号放大,可放大10~100倍,从而具有极高的检测精度。最小检测压力为0.001pa,最小检测位移为0.01%。
实施例9
利用3d打印的方法在透明pet基底上打印10*10电极的叉指式银电路图作为集流体,如图8,其中单个电极尺寸为20*1mm,随后在电路图中的电极部件处进行氧化石墨烯墨水的3d打印,其中氧化石墨烯溶液为浓度为15mg/ml的氧化石墨烯的dmf悬浮液,经过干燥固化后,利用3d打印的方法滴加浓度为4%的硼氢化钠的异二甲基乙酰胺丙醇溶液0.2ml,以对氧化石墨烯进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了稳定的阵列微型电容器,其中单个石墨烯气凝胶单元的尺寸为20*1mm2。
打印得10个上述叉指式电容器,随后将其进行串联,将两端电极引出到电化学工作站中,在不同的扫描速度下进行循环伏安测试时,发现其具有明显的电容储存的能力,如图9,且其瞬时输出电压较大,可达10v,可循环稳定10000次,电容无明显下降,如图10,证实此类微型阵列化超级电容器在未来微型电子领域具有极为巨大的潜在应用价值。
实施例10
利用3d的方法在透明pet基底上打印两对3*3电极的叉指式银电路图并联作为集流体,利用商业化的碳涂敷的li4ti5o12粒子进行打印在叉指电极的一端,作为阳极材料;在阴极打印60mg/ml的氧化石墨烯的二甲基亚砜悬浮液,干燥后,利用3d打印的方法滴加25%水合肼的异丙醇溶液0.1ml,以对其进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了稳定的阵列锂离子电池,如图11,其具有超高的能量密度,可达59.8mwh·cm-3,其中多孔气凝胶结构可极大的增加其电解质的电子传输速度,加快充放电速度,经过5000次的充放电,其电容和库伦效率的基本不变,如图12,所制备的微型电池的倍率性能较好。
应用例1
电极的制备如实施例5所示的10*10气凝胶阵列,将其连接到两个64通道的数据采集卡中同时采集100通道信号,当降手掌按压在气凝胶阵列上时,经过数据处理可观察到明显的手的形状,如图13。
应用例2
利用fct工艺在聚酰亚胺基底上打印8*8电极的传感器电路图,单个气凝胶电极的尺寸为300*400um,随后在电路图中的传感部件处进行氧化石墨烯墨水的3d打印,其中氧化石墨烯溶液为20mg/ml的水悬浮液,经过干燥固化后,滴加浓度为50%的水合肼的水溶液0.1ml,以对氧化石墨烯进行原位发泡,5min后干燥,氢碘酸原位还原后便得到了稳定的阵列传感器,如图14。
将8*8电极传感器的电路引出到单片机中,采用导线连接电路,利用轮读的方法对数据进行采集,如图15可证明所有传感器具有明显的响应信号。将所制备的传感器固定于灵巧手的手指上,并利用机械臂进行驱动,如图16,分别对26个字母进行按压,将得到的数据输入到计算机卷积神经网络,进行深度学习;得到训练后神经网络,随后随机选取不同的字母利用灵巧手进行按压,在1s内便可快速实现对于未知字母的识别,识别准确率远远高于人手指的识别率(~30%),可达到100%,具体机器学习示意图见图17。
1.一种微型石墨烯气凝胶器件的制备方法,所述器件包含微型石墨烯气凝胶单元,其特征在于,该方法为:以氧化石墨烯溶液为墨水,打印在器件的基底上,经过固化后,滴加含有发泡剂的极性溶液,使得氧化石墨烯发生塑化发泡,经过干燥还原后在器件基底上得到微型石墨烯气凝胶单元。
2.根据权利要求1所述的制备方法,其特征在于:所述的发泡剂包括自发泡剂和反应型发泡剂,所述反应型发泡剂为可通过与氧化石墨烯含氧官能团反应并产生气体的发泡剂,所述自发泡剂为可分解产生气体的发泡剂。
3.根据权利要求2所述的制备方法,其特征在于:所述的反应型发泡剂包括水合肼、硼氢化盐;所述的自发泡剂包括碳酸氢盐等。
4.据权利要求1所述的制备方法,其特征在于:所述的极性溶液为水、有机溶剂、或水与有机溶剂的混合溶液。
5.据权利要求4所述的制备方法,其特征在于:所述的有机溶剂选自:二甲基甲酰胺、二甲基乙酰胺、异丙醇、乙醇等。
6.根据权利要求1所述的制备方法,其特征在于:所述的氧化石墨烯溶液的溶剂可以是水、二甲基甲酰胺、二甲基乙酰胺、乙醇、二甲基亚砜。
7.根据权利要求1所述的制备方法,其特征在于,在打印所述氧化石墨烯前,先将电路图印刷于所述器件的基底上。
8.一种微型石墨烯气凝胶器件,其特征在于,包含多个微型石墨烯气凝胶单元,多个微型石墨烯气凝胶单元构成阵列。
9.根据权利要求8所述的微型石墨烯气凝胶器件,其特征在于,所述器件为压阻式传感器,其中,通过所述微型石墨烯气凝胶单元进行力学、位移数据信号采集。
10.根据权利要求9所述的微型石墨烯气凝胶器件,其特征在于,所述的传感器为谐振式传感器,其中通过所述微型石墨烯气凝胶单元进行力学信号、位移信号、或声波振动信号采集。
11.根据权利要求8所述的微型石墨烯气凝胶器件,其特征在于,所述器件为储能器件,其中采用微型石墨烯气凝胶单元构建微型电容器。
12.根据权利要求8所述的微型石墨烯气凝胶器件,其特征在于,所述器件为储能器件,其中采用微型石墨烯气凝胶单元与金属电极构建微型电池。
技术总结