本发明涉及的是一种航空发动机制造领域的技术,具体是一种基于蒙特卡洛法的多维度叶片几何误差性能影响仿真实现方法,可应用于航空发动机等各种叶轮机械领域。
背景技术:
航空发动机中的轴流压气机叶片作为高负荷做功部件,其截面位置度、扭转度及轮廓度等参数对于压气机性能有不可忽视的影响。由于实际加工中误差种类及其分布位置具有高度随机性,为得到叶片几何误差与压气机性能间的关系,所需要的叶片几何样本数量巨大,实验成本很高。即使应用计算流体力学对每个样本进行逐一几何生成和计算仿真,也需要大量的人力成本与工作时间。
技术实现要素:
本发明针对现有叶片几何误差的性能影响研究多数仍采用单维度的误差叶片仿真方法无法适用于多维度叶片几何误差的性能影响分析的不足,提出一种基于蒙特卡洛法的多维度叶片几何误差性能影响仿真实现方法,通过批量生成几何样本、网格自动生成、计算仿真及计算结果自动获取实现了多维度叶片几何误差性能影响的自动化仿真流程,以减少仿真所耗费的人力及时间成本。
本发明是通过以下技术方案实现的:
本发明针对几何误差类型设置高斯分布概率密度函数,然后在选定的叶片控制截面上抽样加入几何误差以批量生成新叶片几何样本,用于自动生成网格后通过仿真计算获得压气机性能参数及其概率估计量。
所述的几何误差类型包括:叶片控制截面叶型的轴向位置度、周向位置度、扭转度及轮廓度。
所述的高斯分布概率密度函数为:
所述的叶片控制截面是指:垂直于径向的叶片横截面,其数量与位置可依需要确定。
所述的抽样加入是指:对单类几何误差的样本值采用但不限于拉丁超立方抽样方法经随机组合后得到带多维度误差的叶片几何样本。
所述的网格,采用但不限于商业计算流体力学软件(numeca)自动生成,其对应的网格绘制模块为autogrid,对应的计算模块为fineturbo。
所述的压气机性能参数包括但不限于一级压气机的折合流量、总压比、等熵效率、轴向推力及扭矩;所述的概率估计量包括但不限于期望值、均方差及拟合概率密度分布函数。
本发明涉及一种实现上述方法的系统,包括:样本抽样模块、几何生成模块、网格生成模块、性能仿真模块及结果读取分析模块,其中:样本抽样模块与几何生成模块相连并传输几何误差样本值用于生成误差模型,几何生成模块与网格生成模块相连并传输误差模型用于生成相应网格,网格生成模块与性能仿真模块相连并传输网格数据用以计算压气机级性能参数,性能仿真模块与结果读取分析模块相连并传输性能参数计算结果,最后得到结果报告及性能参数概率估计量。
技术效果
本发明实现了叶片多维度几何误差性能影响仿真,与现有的单维度叶片误差构造相比,此方法构造的叶片几何更贴近实际生产情况,仿真结果更具工程应用价值。同时本发明通过自动化流程设计,减少了仿真消耗的人力成本及时间成本,提高了仿真效率,使得更大样本的批量计算成为可能。
附图说明
图1为实施例的压气机转、静子示意图;
图2为实施例的压气机转子叶片轴向位置度产生偏差时的几何示意图;
图中:δz表示轴向误差,数字为轴向误差大小示例;
图3为实施例的压气机转子叶片周向位置度产生偏差时的几何示意图;
图中:δy表示周向误差,数字为周向误差大小示例;
图4为实施例的压气机转子叶片扭转度定义及其产生偏差时的几何示意图;
图中:γ表示扭转度,c表示弦长,δγ表示扭转度误差,数字为周向误差大小示例;
图5为实施例的压气机转子叶片轮廓度产生偏差时的几何示意图;
图中:δp表示周向误差,数字为周向误差大小示例;
图6为实施例计算生成的概率密度分布拟合图;
图中:横轴为新叶片性能参数与原型参数的相对误差,纵轴为概率密度,直方图为样本概率密度分布情况,其面积等于样本出现频率,曲线为概率密度分布正态拟合结果。
具体实施方式
如图1所示,本实施例为某轴流压气机的转子叶片几何误差对压气机级性能的影响分析,具体包括以下步骤:
步骤1、叶片几何误差的概率密度函数设置及多截面组合抽样:
1.1如图2至图5所示,所述的叶片几何误差为:轴向位置度误差δz、周向位置度误差δy、扭转度误差δγ及轮廓度δp。
1.2所述的概率密度函数为:对于本压气机叶片,确定轴、周向位置度、扭转度及轮廓度的高斯分布概率密度函数标准差σ分别为0.5mm、0.5°及0.05mm。
1.3所述的多截面组合抽样为:将动叶沿径向15%、50%、85%叶高处横截面作为3个控制截面,分别进行上述4类几何误差抽样,使得叶片共具有12个维度的几何误差。
1.4所述的抽样所用的方法具体为:确定叶片样本数量,此例中样本数量为200片,随后进行拉丁超立方抽样,将每个维度的误差概率密度函数分为等概率的200个误差区间,从每个区间中随机抽取一个误差样本值,再进行多维度误差样本值的随机组合,最终得到200个叶片的几何误差样本,记录为表格形式误差文件。
步骤2、基于原型几何模型数据及几何误差抽样数据,在径向控制截面内加入几何误差,批量生成新叶片的几何模型数据:
2.1所述的几何模型数据为叶片三个控制截面的轮廓控制点坐标集合,本例中每个截面各有190个轮廓控制点。
2.2所述的叶片径向截面内的坐标系是以叶轮机械转轴为中心轴的圆柱坐标系。
2.3所述的批量生成的方法具体为:通过python脚本读取误差文件内的叶片几何误差值,在原型叶片控制截面轮廓点的基础上进行平移、旋转及缩放坐标变换,生成具有位置度、扭转度、轮廓度误差的截面轮廓点坐标,再将三个截面组合形成新叶片的几何模型。
此例中的200个算例使用英特尔酷睿i7-5500ucpu处理器生成,耗时7秒。
步骤3、执行脚本,将新叶片几何模型导入商业计算流体力学软件numeca中的网格模块autogrid,使用与原型网格相同的参数自动批量生成网格并保存。
3.1所述的脚本文件为autogrid性能影响仿真模块支持的python语言脚本,用以自动设置并生成网格数据文件。
3.2所述的原型网格的参数具体为:转子流道径向网格点数为105,静子流道径向网格点数为89,转子和静子叶片径向网格点数均为33。
3.3所述的批量生成的方法为:将多个新叶片几何对应的网格生成指令写入一个代码文件中并运行,即可批量获得所有网格文件。
此例中网格生成使用英特尔酷睿i7-5500ucpu处理器生成,每个样本耗时约2.5分钟,200个样本网格生成共耗时约8.5小时。
步骤4、执行脚本,将网格文件导入numeca中的计算模块fineturbo中,使用与原型计算文件相同的设置和参数进行批量计算。
4.1所述的脚本文件为fineturbo模块支持的python语言脚本,用以自动执行计算步骤。
4.2所述的原型计算文件的设置和参数具体为:流体为空气,流动模型设为定常,湍流模型使用spalart-allmaras;给定转子旋转速度-1.6×104rpm、进口给定总温600k、总压9.5×105pa及流动与轴向夹角arctg(vt/vz)=-0.1rad,arctg(vr/vz)=-0.1rad;出口给定静压1.08×103kpa,满足径向平衡方程。
4.3所述的批量生成的方法为:将多个文件的设置计算指令写入一个代码文件中运行,即可批量进行运算。
此例中的每个样本在英特尔cpu处理器上进行本地四核并行计算,每个样本平均耗时约1小时,且该cpu可支持四个样本并行计算,本例中200个样本共耗时约50小时。
步骤5、如图6所示,自动获取计算结果并得到概率估计量。
5.1所述的自动获取计算结果的方法为:运行python语言脚本批量读取计算结果数据,本例中读取压气机级进出口质量流量、总压比、等熵效率、扭矩及轴向推力数据,记录为结果文件。
5.2所述的得到概率估计量的方法为:运行python语言脚本从结果文件中读取结果数值大小,并导入matlab运行概率统计分析脚本计算得到概率估计量的值,本例中对计算所得样本无量纲化后的总压比参数进行概率估计量计算及正态分布拟合,得到参数数学期望值为1.0000,标准差为1.081×10-3,拟合得到正态分布数学期望值为1.0000,标准差为1.091×10-3。
本方法的几何生成模块对系统最终技术效果给出了最大贡献,显著提高了叶片几何误差维度并使模型生成耗时显著降低。在本实施例中,以叶片几何误差维度和仿真中各步骤耗时为性能指标进行本方法的评估,对比现有的单维度叶片几何误差性能仿真方法与本方法的性能指标,如表1所示。由表1可见,相比于现有方法,叶片几何误差参数由1个提升至12个,各仿真步骤耗时均有降低,本实施例中整个系统可于3日内自动完成200个样本的生成与计算,有效降低了时间成本及人力成本。
表1各性能指标对比
本方法实现了叶片多维度几何误差性能影响仿真,与现有的单维度叶片误差构造相比,此方法构造的叶片几何更贴近实际生产情况,仿真结果更具工程应用价值。同时本方法通过自动化流程设计,减少了仿真消耗的人力成本及时间成本,提高了仿真效率,使得更大样本的批量计算成为可能。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。
1.一种基于蒙特卡洛法的多维度叶片几何误差性能影响仿真实现方法,其特征在于,针对几何误差类型设置高斯分布概率密度函数,然后在选定的叶片控制截面上抽样加入几何误差以批量生成新叶片几何样本,用于自动生成网格后通过仿真计算获得压气机性能参数及其概率估计量;
所述的几何误差类型包括:叶片控制截面叶型的轴向位置度、周向位置度、扭转度及轮廓度;
所述的抽样加入是指:对单类几何误差的样本值采用但不限于拉丁超立方抽样方法经随机组合后得到带多维度误差的叶片几何样本。
2.根据权利要求1所述的方法,其特征是,所述的高斯分布概率密度函数为:
3.根据权利要求1所述的方法,其特征是,所述的叶片控制截面是指:垂直于径向的叶片横截面。
4.根据权利要求1所述的方法,其特征是,所述的网格,采用numeca自动生成,其对应的网格绘制模块为autogrid,对应的计算模块为fineturbo。
5.根据权利要求1所述的方法,其特征是,所述的压气机性能参数包括:一级压气机的折合流量、总压比、等熵效率、轴向推力及扭矩;所述的概率估计量包括:期望值、均方差及拟合概率密度分布函数。
6.根据权利要求1所述的方法,其特征是,具体包括:
步骤1、叶片几何误差的概率密度函数设置及多截面组合抽样;
步骤2、基于原型几何模型数据及几何误差抽样数据,在径向控制截面内加入几何误差,批量生成新叶片的几何模型数据;
步骤3、执行脚本,将新叶片几何模型导入商业计算流体力学软件numeca中的网格模块autogrid,使用与原型网格相同的参数自动批量生成网格并保存;
步骤4、执行脚本,将网格文件导入numeca中的计算模块fineturbo中,使用与原型计算文件相同的设置和参数进行批量计算;
步骤5、自动获取计算结果并得到概率估计量。
7.根据权利要求6所述的方法,其特征是,所述的步骤1包括:
1.1设置叶片几何误差为:轴向位置度误差δz、周向位置度误差δy、扭转度误差δγ及轮廓度δp;
1.2设置概率密度函数为:对于本压气机叶片,确定轴、周向位置度、扭转度及轮廓度的高斯分布概率密度函数标准差σ分别为0.5mm、0.5°及0.05mm;
1.3设置多截面组合抽样为:将动叶沿径向15%、50%、85%叶高处横截面作为3个控制截面,分别进行上述4类几何误差抽样,使得叶片共具有12个维度的几何误差;
1.4抽样:确定叶片样本数量,此例中样本数量为200片,随后进行拉丁超立方抽样,将每个维度的误差概率密度函数分为等概率的200个误差区间,从每个区间中随机抽取一个误差样本值,再进行多维度误差样本值的随机组合,最终得到200个叶片的几何误差样本,记录为表格形式的误差文件。
8.根据权利要求6所述的方法,其特征是,所述的步骤3包括:
3.1设置脚本文件为autogrid性能影响仿真模块支持的python语言脚本,用以自动设置并生成网格数据文件;
3.2设置原型网格的参数具体为:转子流道径向网格点数为105,静子流道径向网格点数为89,转子和静子叶片径向网格点数均为33;
3.3批量生成:将多个新叶片几何对应的网格生成指令写入一个代码文件中并运行,即可批量获得所有网格文件。
9.根据权利要求6所述的方法,其特征是,所述的步骤4包括:
4.1设置脚本文件为fineturbo模块支持的python语言脚本,用以自动执行计算步骤;
4.2设置原型计算文件的设置和参数具体为:流体为空气,流动模型设为定常,湍流模型使用spalart-allmaras;转子旋转速度-1.6×104rpm、进口给定总温600k、总压9.5×105pa及流动与轴向夹角arctg(vt/vz)=-0.1rad,arctg(vr/vz)=-0.1rad;出口给定静压1.08×103kpa,满足径向平衡方程;
4.3批量生成:将多个文件的设置计算指令写入一个代码文件中运行,即可批量进行运算。
10.一种实现上述任一权利要求所述方法的系统,其特征在于,包括:样本抽样模块、几何生成模块、网格生成模块、性能仿真模块及结果读取分析模块,其中:样本抽样模块与几何生成模块相连并传输几何误差样本值用于生成误差模型,几何生成模块与网格生成模块相连并传输误差模型用于生成相应网格,网格生成模块与性能仿真模块相连并传输网格数据用以计算压气机级性能参数,性能仿真模块与结果读取分析模块相连并传输性能参数计算结果,最后得到结果报告及性能参数概率估计量。
技术总结