本发明涉及工业仿真领域,尤其是涉及光机热联合仿真领域,特别是涉及一种基于遗传优化算法的光学产品模型优化方法及系统。
背景技术:
:在复杂环境中,典型的光机热耦合分析的温度场可以影响表面位移、折射率,进而影响光学镜头的性能,结构载荷以及结构自身的重力载荷也会影响表面位移。一般位移、温度影响和应力影响都会最终拟合成多项式的形式输入为光学面型结果。传统的光机热耦合分析流程,只能评估该工况下对光学系统的影响,并不能优化光学设计,还需要结构、光学等学科工程师的人工经验,才能给出优化方向。传统的设计优化主要通过工程师的经验进行,项目设计目的是否达到依赖于工程师经验的丰富与否,经验丰富的工程师在设计优化的过程中通常需要持续的使用仿真软件进行模型参数修改、结果分析、再次模型修改、再次结果分析找到满意解,整个过程中有大量的重复性工作,而且多项式拟合对于后期加工改进并没有实质性的修复。技术实现要素:本发明针对现有技术存在的问题和不足,提供一种新型的基于遗传优化算法的光学产品模型优化方法及系统,在光机热流程的基础上,通过引入遗传优化算法控制实现优化设计,可以被广泛用于工业产品设计初期的优化方案选择。本发明是通过下述技术方案来解决上述技术问题的:本发明提供一种基于遗传优化算法的光学产品模型优化方法,其特点在于,其包括以下步骤:s1、对光学产品的光学产品仿真模型的结构参数进行多组数值初始化,并建立遗传优化算法中的编码机制;针对每组数值结构参数对应的光学产品仿真模型:s2、将热载荷加载至光学产品仿真模型中,对光学产品仿真模型的温度场进行分析以得到温度场分布信息;s3、将结构载荷和温度场分布信息加载至光学产品仿真模型中,对光学产品仿真模型的应力进行分析,从而得到光学产品仿真模型的各个面型的位移;s4、根据光学产品仿真模型的各个面型的位移进行光学产品仿真模型的曲率拟合,以得到拟合后的光学曲率;s5、对光学产品仿真模型进行光学分析,获取成像质量评价分析结果;s6、基于光学产品仿真模型的各个面型的位移、光学曲率、成像质量评价分析结果建立评价指标代价函数,将步骤s3中的各个面型的位移、步骤s4中的拟合后的光学曲率、步骤s5中的成像质量评价分析结果代入评价指标代价函数以获得光学产品性能评价指标;s7、从获得的多组数值结构参数对应的光学产品性能评价指标中选出最优光学产品性能评价指标;s8、判断最优光学产品性能评价指标是否满足预先设定要求,若是则进入步骤s12,否则进入步骤s9;s9、最优光学产品性能评价指标对应的光学产品仿真模型的结构参数数值作为遗传优化算法中的新的父代,根据编码机制对新的父代进行编码;s10、根据遗传优化算法基于新的父代遗传交叉产生新的子代,通过编码机制对新的子代进行解码以获取更新的结构参数数值;s11、基于更新的结构参数数值更新光学产品仿真模型,并再次执行步骤s2;s12、结束流程。较佳地,在步骤s4中,光学产品仿真模型的面型的方程为:如存在位移dz,则构造光学产品仿真模型的原始面型与拟合后的拟合面型的拟合误差函数f:其中,x为面型的x轴坐标,y为面型的y轴坐标,k为二次标准曲面系数,c0为原始面型对应的原始光学曲率,dz是面型z轴方向的轴向变化量,c1是拟合后的光学曲率,bz是拟合后的面型z轴方向的轴向平移量,w是有限元网格的权重,s(c0,k,xj,yj)为原始曲面z方向坐标,s(c1,k,xj,yj)为拟合后的曲面z坐标,使用因子迭代算法进行曲率拟合。较佳地,因子迭代算法为:s41、初始自然坐标c10、bz0,c10初始值选为c0,bz0初始值选为0,β表示高阶参数;s42、根据公式(3)计算c1、bz;s43、判断(c1-c10)≤σ,(bz-bz0)≤σ,σ表示判断参数,若判断出均为是则将c1作为拟合后的光学曲率,否则c10=c1、bz0=bz,重复执行步骤s42和s43。本发明还提供一种基于遗传优化算法的光学产品模型优化系统,其特点在于,其包括初始化模块、第一加载分析模块、第二加载分析模块、曲率拟合模块、光学分析模块、评价模块、选择模块、判断模块、编码模块、获取模块和更新模块;所述初始化模块用于对光学产品的光学产品仿真模型的结构参数进行多组数值初始化,并建立遗传优化算法中的编码机制;针对每组数值结构参数对应的光学产品仿真模型:所述第一加载分析模块用于将热载荷加载至光学产品仿真模型中,对光学产品仿真模型的温度场进行分析以得到温度场分布信息;所述第二加载分析模块用于将结构载荷和温度场分布信息加载至光学产品仿真模型中,对光学产品仿真模型的应力进行分析,从而得到光学产品仿真模型的各个面型的位移;所述曲率拟合模块用于根据光学产品仿真模型的各个面型的位移进行光学产品仿真模型的曲率拟合,以得到拟合后的光学曲率;所述光学分析模块用于对光学产品仿真模型进行光学分析,获取成像质量评价分析结果;所述评价模块用于基于光学产品仿真模型的各个面型的位移、光学曲率、成像质量评价分析结果建立评价指标代价函数,将第二加载分析模块中的各个面型的位移、曲率拟合模块中的拟合后的光学曲率、光学分析模块中的成像质量评价分析结果代入评价指标代价函数以获得光学产品性能评价指标;所述选择模块用于从获得的多组数值结构参数对应的光学产品性能评价指标中选出最优光学产品性能评价指标;所述判断模块用于判断最优光学产品性能评价指标是否满足预先设定要求,在为是时结束,否则调用编码模块;所述编码模块用于将最优光学产品性能评价指标对应的光学产品仿真模型的结构参数数值作为遗传优化算法中的新的父代,并根据编码机制对新的父代进行编码;所述获取模块用于根据遗传优化算法基于新的父代遗传交叉产生新的子代,通过编码机制对新的子代进行解码以获取更新的结构参数数值;所述更新模块用于基于更新的结构参数数值更新光学产品仿真模型,并再次调用第一加载分析模块。较佳地,光学产品仿真模型的面型的方程为:如存在位移dz,则构造光学产品仿真模型的原始面型与拟合后的拟合面型的拟合误差函数f:其中,x为面型的x轴坐标,y为面型的y轴坐标,k为二次标准曲面系数,c0为原始面型对应的原始光学曲率,dz是面型z轴方向的轴向变化量,c1是拟合后的光学曲率,bz是拟合后的面型z轴方向的轴向平移量,w是有限元网格的权重,s(c0,k,xj,yj)为原始曲面z方向坐标,s(c1,k,xj,yj)为拟合后的曲面z坐标,使用因子迭代算法进行曲率拟合。较佳地,因子迭代算法为:初始自然坐标c10、bz0,c10初始值选为c0,bz0初始值选为0,β表示高阶参数;根据公式(3)计算c1、bz;判断(c1-c10)≤σ,(bz-bz0)≤σ,σ表示判断参数,若判断出均为是时则将c1作为拟合后的光学曲率,否则c10=c1、bz0=bz,重复计算c1和bz直至满足判断条件。在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。本发明的积极进步效果在于:本发明通过把曲率拟合和遗传优化算法引入到光机热耦合分析,从而解决光学设计优化结果可以用于实际工程制造加工,进而实现设计分析的试验制造。可直接用于光机热的设计优化,工程师不再仅仅依靠人工经验优化。附图说明图1为本发明较佳实施例的基于遗传优化算法的光学产品模型优化方法的流程图。图2为本发明较佳实施例的基于遗传优化算法的光学产品模型优化系统的结构框图。具体实施方式为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。如图1所示,本实施例提供一种基于遗传优化算法的光学产品模型优化方法,其包括以下步骤:s1、对光学产品的光学产品仿真模型的结构参数进行多组数值初始化,并建立遗传优化算法中的编码机制(见表1和表2)。编码机制,例如变量在1-255之间,有两个变量表1二进制转化表编码方式原始值000000001000000012000000103000000114000001005……表2两个变量的编码方式编码方式原始值000000000000000011000000010000000021000000000000000112000000010000000122000000110000000132……针对每组数值结构参数对应的光学产品仿真模型:s2、将热载荷加载至光学产品仿真模型中,对光学产品仿真模型的温度场进行分析以得到温度场分布信息。s3、将结构载荷和温度场分布信息加载至光学产品仿真模型中,对光学产品仿真模型的应力进行分析,从而得到光学产品仿真模型的各个面型的位移。s4、根据光学产品仿真模型的各个面型的位移进行光学产品仿真模型的曲率拟合,以得到拟合后的光学曲率。光学产品仿真模型的面型的方程为:如存在位移dz,则构造光学产品仿真模型的原始面型与拟合后的拟合面型的拟合误差函数f:其中,x为面型的x轴坐标,y为面型的y轴坐标,k为二次标准曲面系数,c0为原始面型对应的原始光学曲率,dz是面型z轴方向的轴向变化量,c1是拟合后的光学曲率,bz是拟合后的面型z轴方向的轴向平移量,w是有限元网格的权重,s(c0,k,xj,yj)为原始曲面z方向坐标,s(c1,k,xj,yj)为拟合后的曲面z坐标,使用因子迭代算法进行曲率拟合。因子迭代算法为:s41、初始自然坐标c10、bz0,c10初始值选为c0,bz0初始值选为0,β表示高阶参数;s42、根据公式(3)计算c1、bz;s43、判断(c1-c10)≤σ,(bz-bz0)≤σ,σ表示判断参数,若均是结束,否则c10=c1、bz0=bz,重复执行步骤s42和s43。s5、对光学产品仿真模型进行光学分析,获取成像质量评价分析结果。s6、基于光学产品仿真模型的各个面型的位移、光学曲率、成像质量评价分析结果建立评价指标代价函数,将步骤s3中的各个面型的位移、步骤s4中的拟合后的光学曲率、步骤s5中的成像质量评价分析结果代入评价指标代价函数以获得光学产品性能评价指标。s7、从获得的多组数值结构参数对应的光学产品性能评价指标中选出最优光学产品性能评价指标。s8、判断最优光学产品性能评价指标是否满足预先设定要求,若是则进入步骤s12,否则进入步骤s9。s9、最优光学产品性能评价指标对应的光学产品仿真模型的结构参数数值作为遗传优化算法中的新的父代,根据编码机制对新的父代(见表3)进行编码。例如,初始群体编码即一个父代表3初始父代群编号原始值编码方式11708710101001010101102881190101011101110110s10、根据遗传优化算法基于新的父代遗传交叉产生新的子代,通过编码机制对新的子代进行解码以获取更新的结构参数数值。父代群体产生交叉变异种群:表41-2交叉子代群编号编码方式5100101110111011060110100101010110710101011011101108010101010101011091010100101110110100101011101010110表51-2变异子代群编号编码方式111010010101011110120101011101110110131010110100010110140101001101110010交叉变异的子代解码:表6解码s11、基于更新的结构参数数值更新光学产品仿真模型,并再次执行步骤s2。s12、结束流程。如图2所示,本发明还提供一种基于遗传优化算法的光学产品模型优化系统,其包括初始化模块1、第一加载分析模块2、第二加载分析模块3、曲率拟合模块4、光学分析模块5、评价模块6、选择模块7、判断模块8、编码模块9、获取模块10和更新模块11。所述初始化模块1用于对光学产品的光学产品仿真模型的结构参数进行多组数值初始化,并建立遗传优化算法中的编码机制。针对每组数值结构参数对应的光学产品仿真模型:所述第一加载分析2模块用于将热载荷加载至光学产品仿真模型中,对光学产品仿真模型的温度场进行分析以得到温度场分布信息。所述第二加载分析3模块用于将结构载荷和温度场分布信息加载至光学产品仿真模型中,对光学产品仿真模型的应力进行分析,从而得到光学产品仿真模型的各个面型的位移。所述曲率拟合模块4用于根据光学产品仿真模型的各个面型的位移进行光学产品仿真模型的曲率拟合,以得到拟合后的光学曲率。光学产品仿真模型的面型的方程为:如存在位移dz,则构造光学产品仿真模型的原始面型与拟合后的拟合面型的拟合误差函数f:其中,x为面型的x轴坐标,y为面型的y轴坐标,k为二次标准曲面系数,c0为原始面型对应的原始光学曲率,dz是面型z轴方向的轴向变化量,c1是拟合后的光学曲率,bz是拟合后的面型z轴方向的轴向平移量,w是有限元网格的权重,s(c0,k,xj,yj)为原始曲面z方向坐标,s(c1,k,xj,yj)为拟合后的曲面z坐标,使用因子迭代算法进行曲率拟合。因子迭代算法为:初始自然坐标c10、bz0,c10初始值选为c0,bz0初始值选为0,β表示高阶参数;根据公式(3)计算c1、bz;判断(c1-c10)≤σ,(bz-bz0)≤σ,σ表示判断参数,若均是结束,否则c10=c1、bz0=bz,重复计算c1和bz直至满足判断条件。所述光学分析模块5用于对光学产品仿真模型进行光学分析,获取成像质量评价分析结果。所述评价模块6用于基于光学产品仿真模型的各个面型的位移、光学曲率、成像质量评价分析结果建立评价指标代价函数,将第二加载分析模块中的各个面型的位移、曲率拟合模块中的拟合后的光学曲率、光学分析模块中的成像质量评价分析结果代入评价指标代价函数以获得光学产品性能评价指标。所述选择模块7用于从获得的多组数值结构参数对应的光学产品性能评价指标中选出最优光学产品性能评价指标。所述判断模块8用于判断最优光学产品性能评价指标是否满足预先设定要求,在为是时结束,否则调用编码模块9。所述编码模块9用于将最优光学产品性能评价指标对应的光学产品仿真模型的结构参数数值作为遗传优化算法中的新的父代,并根据编码机制对新的父代进行编码。所述获取模块10用于根据遗传优化算法基于新的父代遗传交叉产生新的子代,通过编码机制对新的子代进行解码以获取更新的结构参数数值。所述更新模块11用于基于更新的结构参数数值更新光学产品仿真模型,并再次调用第一加载分析模块。本发明提供的基于遗传优化算法的光学产品模型优化方法及系统,在光机热流程的基础上,通过引入遗传优化控制实现优化设计,可以被广泛用于工业产品设计初期的优化方案选择。本发明为解决人工经验优化问题,把曲率拟合和遗传优化算法引入到光机热耦合分析中,从而解决光学设计优化结果可以用于实际工程制造加工,进而实现设计分析的试验制造。可直接用于光机热的设计优化,工程师不再仅仅依靠人工经验优化。虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。当前第1页1 2 3 
                        
                        
                        
                                                                                            
技术特征:1.一种基于遗传优化算法的光学产品模型优化方法,其特征在于,其包括以下步骤:
s1、对光学产品的光学产品仿真模型的结构参数进行多组数值初始化,并建立遗传优化算法中的编码机制;
针对每组数值结构参数对应的光学产品仿真模型:
s2、将热载荷加载至光学产品仿真模型中,对光学产品仿真模型的温度场进行分析以得到温度场分布信息;
s3、将结构载荷和温度场分布信息加载至光学产品仿真模型中,对光学产品仿真模型的应力进行分析,从而得到光学产品仿真模型的各个面型的位移;
s4、根据光学产品仿真模型的各个面型的位移进行光学产品仿真模型的曲率拟合,以得到拟合后的光学曲率;
s5、对光学产品仿真模型进行光学分析,获取成像质量评价分析结果;
s6、基于光学产品仿真模型的各个面型的位移、光学曲率、成像质量评价分析结果建立评价指标代价函数,将步骤s3中的各个面型的位移、步骤s4中的拟合后的光学曲率、步骤s5中的成像质量评价分析结果代入评价指标代价函数以获得光学产品性能评价指标;
s7、从获得的多组数值结构参数对应的光学产品性能评价指标中选出最优光学产品性能评价指标;
s8、判断最优光学产品性能评价指标是否满足预先设定要求,若是则进入步骤s12,否则进入步骤s9;
s9、最优光学产品性能评价指标对应的光学产品仿真模型的结构参数数值作为遗传优化算法中的新的父代,根据编码机制对新的父代进行编码;
s10、根据遗传优化算法基于新的父代遗传交叉产生新的子代,通过编码机制对新的子代进行解码以获取更新的结构参数数值;
s11、基于更新的结构参数数值更新光学产品仿真模型,并再次执行步骤s2;
s12、结束流程。
2.如权利要求1所述的基于遗传优化算法的光学产品模型优化方法,其特征在于,在步骤s4中,光学产品仿真模型的面型的方程为:
如存在位移dz,则构造光学产品仿真模型的原始面型与拟合后的拟合面型的拟合误差函数f:
其中,x为面型的x轴坐标,y为面型的y轴坐标,k为二次标准曲面系数,c0为原始面型对应的原始光学曲率,dz是面型z轴方向的轴向变化量,c1是拟合后的光学曲率,bz是拟合后的面型z轴方向的轴向平移量,w是有限元网格的权重,s(c0,k,xj,yj)为原始曲面z方向坐标,s(c1,k,xj,yj)为拟合后的曲面z坐标,使用因子迭代算法进行曲率拟合。
3.如权利要求1所述的基于遗传优化算法的光学产品模型优化方法,其特征在于,因子迭代算法为:
s41、初始自然坐标c10、bz0,c10初始值选为c0,bz0初始值选为0,β表示高阶参数;
s42、根据公式(3)计算c1、bz;
s43、判断(c1-c10)≤σ,(bz-bz0)≤σ,σ表示判断参数,若判断出均为是则将c1作为拟合后的光学曲率,否则c10=c1、bz0=bz,重复执行步骤s42和s43。
4.一种基于遗传优化算法的光学产品模型优化系统,其特征在于,其包括初始化模块、第一加载分析模块、第二加载分析模块、曲率拟合模块、光学分析模块、评价模块、选择模块、判断模块、编码模块、获取模块和更新模块;
所述初始化模块用于对光学产品的光学产品仿真模型的结构参数进行多组数值初始化,并建立遗传优化算法中的编码机制;
针对每组数值结构参数对应的光学产品仿真模型:
所述第一加载分析模块用于将热载荷加载至光学产品仿真模型中,对光学产品仿真模型的温度场进行分析以得到温度场分布信息;
所述第二加载分析模块用于将结构载荷和温度场分布信息加载至光学产品仿真模型中,对光学产品仿真模型的应力进行分析,从而得到光学产品仿真模型的各个面型的位移;
所述曲率拟合模块用于根据光学产品仿真模型的各个面型的位移进行光学产品仿真模型的曲率拟合,以得到拟合后的光学曲率;
所述光学分析模块用于对光学产品仿真模型进行光学分析,获取成像质量评价分析结果;
所述评价模块用于基于光学产品仿真模型的各个面型的位移、光学曲率、成像质量评价分析结果建立评价指标代价函数,将第二加载分析模块中的各个面型的位移、曲率拟合模块中的拟合后的光学曲率、光学分析模块中的成像质量评价分析结果代入评价指标代价函数以获得光学产品性能评价指标;
所述选择模块用于从获得的多组数值结构参数对应的光学产品性能评价指标中选出最优光学产品性能评价指标;
所述判断模块用于判断最优光学产品性能评价指标是否满足预先设定要求,在为是时结束,否则调用编码模块;
所述编码模块用于将最优光学产品性能评价指标对应的光学产品仿真模型的结构参数数值作为遗传优化算法中的新的父代,并根据编码机制对新的父代进行编码;
所述获取模块用于根据遗传优化算法基于新的父代遗传交叉产生新的子代,通过编码机制对新的子代进行解码以获取更新的结构参数数值;
所述更新模块用于基于更新的结构参数数值更新光学产品仿真模型,并再次调用第一加载分析模块。
5.如权利要求4所述的基于遗传优化算法的光学产品模型优化系统,其特征在于,光学产品仿真模型的面型的方程为:
如存在位移dz,则构造光学产品仿真模型的原始面型与拟合后的拟合面型的拟合误差函数f:
其中,x为面型的x轴坐标,y为面型的y轴坐标,k为二次标准曲面系数,c0为原始面型对应的原始光学曲率,dz是面型z轴方向的轴向变化量,c1是拟合后的光学曲率,bz是拟合后的面型z轴方向的轴向平移量,w是有限元网格的权重,s(c0,k,xj,yj)为原始曲面z方向坐标,s(c1,k,xj,yj)为拟合后的曲面z坐标,使用因子迭代算法进行曲率拟合。
6.如权利要求4所述的基于遗传优化算法的光学产品模型优化系统,其特征在于,因子迭代算法为:
初始自然坐标c10、bz0,c10初始值选为c0,bz0初始值选为0,β表示高阶参数;
根据公式(3)计算c1、bz;判断(c1-c10)≤σ,(bz-bz0)≤σ,σ表示判断参数,若判断出均为是时则将c1作为拟合后的光学曲率,否则c10=c1、bz0=bz,重复计算c1和bz直至满足判断条件。
                                                                
                        
                        
                        
                                                                                            技术总结基于遗传优化算法的光学产品模型优化方法及系统包括:对仿真模型结构参数进行多组数值初始化,建立编码机制;将热载荷加至仿真模型中得到温度场分布信息;将结构载荷和温度场分布信息加至仿真模型中得到各个面型位移;据各个面型位移进行曲率拟合;对仿真模型进行光学分析获取成像质量评价分析结果;将各个面型的位移、拟合后光学曲率、成像质量评价分析结果代入评价指标代价函数获得性能评价指标;从多组性能评价指标中选出最优;判断最优性能评价指标是否满足要求,若是结束,否则最优性能评价指标对应结构参数作为新父代,对新父代编码;基于新父代遗传交叉产生新子代,对新子代解码获取更新结构参数;基于更新结构参数更新光学产品仿真模型。
技术研发人员:张克;陈灏;袁从敏
受保护的技术使用者:上海索辰信息科技有限公司
技术研发日:2020.01.07
技术公布日:2020.06.05