本发明属于风力发电机组领域,特别涉及该领域中的一种风力机叶片防冰涂料涂抹位置的确定方法。
背景技术:
现阶段风力机的防冰涂料价格昂贵,如果在风力机叶片全表面涂抹防防冰涂料,成本非常高。
技术实现要素:
本发明所要解决的技术问题就是提供一种风力机叶片防冰涂料涂抹位置的确定方法。
本发明采用如下技术方案:
一种风力机叶片防冰涂料涂抹位置的确定方法,其改进之处在于,包括如下步骤:
(1)组分输运模型:
湿空气为干空气和水蒸气的混合气体,组分输运模型将混合气体定义为一种二元混合气体,具有两者的物理属性,求解过程作为单相处理,湿空气密度按照不可压缩理想气体方程计算,湿空气的控制方程如下所述,质量方程:
式中:ρm为混合物密度,kg/m3;u为流速;
动量方程:
式中:p为混合压力,pa;τ为切应力张量;b为体受力向量,
能量方程:
式中:
组分质量:
式中:yi为局部质量分数;
式中:sct为湍流施密特数;μt为湍流黏度,kg/(m·s);di,m为质量扩散系数;
(2)膜凝结模型:
模型采用bell蒸汽壁面冷凝模型,水蒸气扩散通过传质边界层,遇冷壁面释放潜热形成液膜,液体膜达到壁温,蒸汽扩散和凝结在气液截面持续发生,冷凝率取决于蒸汽的扩散速率,反过来又取决于边界层的水蒸汽浓度差,在边界层的一端是大量混合流体,浓度取决于混合物的参数,边界层的另一端是凝结液体水膜和气体混合物界面,假定在液体膜—水蒸汽混合物界面存在局部平衡,这意味着在界面处的水蒸汽浓度等于在膜温度下的饱和值,因此,膜界面温度决定了整个边界层的浓度差,并反过来控制冷凝率,假设如下所述:
(21)由于水蒸汽通过组分边界层扩散导致冷凝,这个假设用于导出冷凝水体积数学表达式,
(22)液膜和壁面存在热平衡,液膜温度tfilm等于壁面温度twall,
(23)气液界面是饱和状态。即交界面水蒸气分压力等于壁面温度下的饱和蒸汽压力,结合(22),壁面温度决定气液界面的蒸汽浓度,控制总的蒸汽扩散和通过边界层的浓度比,
(24)不考虑液膜运动带来的影响,由于流体剪切力和重力,液膜可能运动,但是运动不影响空气流动和凝结,
(25)分析仅限于膜状凝结,不考虑滴状冷凝,
(26)液膜的热阻忽略不计。
由于模型是基于以上假设建立的,凝结速率取决于水蒸气朝壁面的扩散速率,空气和水蒸气各组分的质量流量方程为:
式中:ω为质量分数;
用户自定义函数中,假定壁面温度等于或小于表面水蒸气分压力对应的饱和温度时发生凝结,如果温度高于饱和温度,水蒸气质量分数等于壁面邻近单元值,为了满足气液交界面局部热力学平衡的假设,当温度低于或等于饱和温度时,代表气液交界面的水蒸气质量分数被分配一个值,使得水蒸汽的分压等于水在局部壁面温度下的饱和压力,
混合物的体积质量源项为:
式中:acellwall为壁面单元面积;vcell为计算单体体积,
水蒸气的体积质量源项为:
(3)欧拉壁面模型:
欧拉壁面膜模型,实体表面膜不需划分网格,以表面虚拟膜代替,不影响核心流动动量场,多数情况下,表面薄膜的分离、脱落、蒸发不影响核心流动场的流动,通常情况下,模拟此种类型薄膜需要极大的计算资源,尤其在多相工况下精确计算相间通量,需要极细的网格来模拟水膜,而欧拉壁面膜模型不需要划分水膜网格,同时可以预测收集效率、耦合离散相模型,满足模拟壁面收集液滴形成水膜过程的需求,将水分考虑为小液滴,液滴在表面汇集成水膜,计算不考虑相变,
质量守恒方程:
膜动量守恒方程:
式中:h为膜高度;ρ1液体密度;
膜能量守恒方程:
式中:ts为界面温度;tf为膜平均温度;vf为膜速度;kf为膜热导;tw为壁面温度;假设膜的温度变化为线性分段变化,下半部分从壁面温度到膜平均温度tf,上半部分由平均温度tf到界面温度ts;
当离散粒子或液滴撞击壁面,会被液膜吸收,吸收后,其质量和动量增加到质量方程和动量方程的源项中,质量源项和动量源项分别为:
式中
式中
质量源项:
式中:αd为第二相体积;ρd为第二相密度;vdn为垂直于壁面的相速度;a为壁面表面积,动量源项
(4)水汽会在风力机叶片的前缘和尾缘位置凝结,故应在前缘和尾缘位置涂抹防冰涂料。
进一步的,使用的模型包括但不限于水蒸气凝结模型、欧拉壁面膜模型和颗粒磨损模型。
本发明的有益效果是:
通过本发明所公开的方法,确定不同条件下叶片表面上的结冰位置,在相应的结冰位置涂抹防冰涂料,既达到减轻结冰程度的目的,又节省涂料,降低成本。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本实施例的原理是通过cfd方法,采用数值模拟技术,模拟全尺寸叶片表面液滴撞击叶片表面的位置及水分汇集的位置,在该位置涂抹防冰涂料。
实施例1,本实施例公开了一种风力机叶片防冰涂料涂抹位置的确定方法,包括如下步骤:
(1)组分输运模型:
湿空气为干空气和水蒸气的混合气体,组分输运模型将混合气体定义为一种二元混合气体,具有两者的物理属性,求解过程作为单相处理,湿空气密度按照不可压缩理想气体方程计算,湿空气的控制方程如下所述,质量方程:
式中:ρm为混合物密度,kg/m3;u为流速;
动量方程:
式中:p为混合压力,pa;τ为切应力张量;b为体受力向量,
能量方程:
式中:
组分质量:
式中:yi为局部质量分数;
式中:sct为湍流施密特数;μt为湍流黏度,kg/(m·s);di,m为质量扩散系数;
(2)膜凝结模型:
模型采用bell蒸汽壁面冷凝模型,水蒸气扩散通过传质边界层,遇冷壁面释放潜热形成液膜,液体膜达到壁温,蒸汽扩散和凝结在气液截面持续发生,冷凝率取决于蒸汽的扩散速率,反过来又取决于边界层的水蒸汽浓度差,在边界层的一端是大量混合流体,浓度取决于混合物的参数,边界层的另一端是凝结液体水膜和气体混合物界面,假定在液体膜—水蒸汽混合物界面存在局部平衡,这意味着在界面处的水蒸汽浓度等于在膜温度下的饱和值,因此,膜界面温度决定了整个边界层的浓度差,并反过来控制冷凝率,假设如下所述:
(21)由于水蒸汽通过组分边界层扩散导致冷凝,这个假设用于导出冷凝水体积数学表达式,
(22)液膜和壁面存在热平衡,液膜温度tfilm等于壁面温度twall,
(23)气液界面是饱和状态。即交界面水蒸气分压力等于壁面温度下的饱和蒸汽压力,结合(22),壁面温度决定气液界面的蒸汽浓度,控制总的蒸汽扩散和通过边界层的浓度比,
(24)不考虑液膜运动带来的影响,由于流体剪切力和重力,液膜可能运动,但是运动不影响空气流动和凝结,
(25)分析仅限于膜状凝结,不考虑滴状冷凝,
(26)液膜的热阻忽略不计。
由于模型是基于以上假设建立的,凝结速率取决于水蒸气朝壁面的扩散速率,空气和水蒸气各组分的质量流量方程为:
式中:ω为质量分数;
用户自定义函数中,假定壁面温度等于或小于表面水蒸气分压力对应的饱和温度时发生凝结,如果温度高于饱和温度,水蒸气质量分数等于壁面邻近单元值,为了满足气液交界面局部热力学平衡的假设,当温度低于或等于饱和温度时,代表气液交界面的水蒸气质量分数被分配一个值,使得水蒸汽的分压等于水在局部壁面温度下的饱和压力,
混合物的体积质量源项为:
式中:acellwall为壁面单元面积;vcell为计算单体体积,
水蒸气的体积质量源项为:
(3)欧拉壁面模型:
欧拉壁面膜模型,实体表面膜不需划分网格,以表面虚拟膜代替,不影响核心流动动量场,多数情况下,表面薄膜的分离、脱落、蒸发不影响核心流动场的流动,通常情况下,模拟此种类型薄膜需要极大的计算资源,尤其在多相工况下精确计算相间通量,需要极细的网格来模拟水膜,而欧拉壁面膜模型不需要划分水膜网格,同时可以预测收集效率、耦合离散相模型,满足模拟壁面收集液滴形成水膜过程的需求,将水分考虑为小液滴,液滴在表面汇集成水膜,计算不考虑相变,
质量守恒方程:
膜动量守恒方程:
式中:h为膜高度;ρ1液体密度;
膜能量守恒方程:
式中:ts为界面温度;tf为膜平均温度;vf为膜速度;kf为膜热导;tw为壁面温度;假设膜的温度变化为线性分段变化,下半部分从壁面温度到膜平均温度tf,上半部分由平均温度tf到界面温度ts;
当离散粒子或液滴撞击壁面,会被液膜吸收,吸收后,其质量和动量增加到质量方程和动量方程的源项中,质量源项和动量源项分别为:
式中
式中
质量源项:
式中:αd为第二相体积;ρd为第二相密度;vdn为垂直于壁面的相速度;a为壁面表面积,动量源项
(4)水汽会在风力机叶片的前缘和尾缘位置凝结,故应在前缘和尾缘位置涂抹防冰涂料。
本实施例使用的模型包括但不限于水蒸气凝结模型、欧拉壁面膜模型和颗粒磨损模型。
1.一种风力机叶片防冰涂料涂抹位置的确定方法,其特征在于,包括如下步骤:
(1)组分输运模型:
湿空气为干空气和水蒸气的混合气体,组分输运模型将混合气体定义为一种二元混合气体,具有两者的物理属性,求解过程作为单相处理,湿空气密度按照不可压缩理想气体方程计算,湿空气的控制方程如下所述,质量方程:
式中:ρm为混合物密度,kg/m3;u为流速;
动量方程:
式中:p为混合压力,pa;τ为切应力张量;b为体受力向量,
能量方程:
式中:
组分质量:
式中:yi为局部质量分数;
式中:sct为湍流施密特数;μt为湍流黏度,kg/(m·s);di,m为质量扩散系数;
(2)膜凝结模型:
模型采用bell蒸汽壁面冷凝模型,水蒸气扩散通过传质边界层,遇冷壁面释放潜热形成液膜,液体膜达到壁温,蒸汽扩散和凝结在气液截面持续发生,冷凝率取决于蒸汽的扩散速率,反过来又取决于边界层的水蒸汽浓度差,在边界层的一端是大量混合流体,浓度取决于混合物的参数,边界层的另一端是凝结液体水膜和气体混合物界面,假定在液体膜—水蒸汽混合物界面存在局部平衡,这意味着在界面处的水蒸汽浓度等于在膜温度下的饱和值,因此,膜界面温度决定了整个边界层的浓度差,并反过来控制冷凝率,假设如下所述:
(21)由于水蒸汽通过组分边界层扩散导致冷凝,这个假设用于导出冷凝水体积数学表达式,
(22)液膜和壁面存在热平衡,液膜温度tfilm等于壁面温度twall,
(23)气液界面是饱和状态。即交界面水蒸气分压力等于壁面温度下的饱和蒸汽压力,结合(22),壁面温度决定气液界面的蒸汽浓度,控制总的蒸汽扩散和通过边界层的浓度比,
(24)不考虑液膜运动带来的影响,由于流体剪切力和重力,液膜可能运动,但是运动不影响空气流动和凝结,
(25)分析仅限于膜状凝结,不考虑滴状冷凝,
(26)液膜的热阻忽略不计。
由于模型是基于以上假设建立的,凝结速率取决于水蒸气朝壁面的扩散速率,空气和水蒸气各组分的质量流量方程为:
式中:ω为质量分数;
用户自定义函数中,假定壁面温度等于或小于表面水蒸气分压力对应的饱和温度时发生凝结,如果温度高于饱和温度,水蒸气质量分数等于壁面邻近单元值,为了满足气液交界面局部热力学平衡的假设,当温度低于或等于饱和温度时,代表气液交界面的水蒸气质量分数被分配一个值,使得水蒸汽的分压等于水在局部壁面温度下的饱和压力,
混合物的体积质量源项为:
式中:acellwall为壁面单元面积;vcell为计算单体体积,
水蒸气的体积质量源项为:
(3)欧拉壁面模型:
欧拉壁面膜模型,实体表面膜不需划分网格,以表面虚拟膜代替,不影响核心流动动量场,多数情况下,表面薄膜的分离、脱落、蒸发不影响核心流动场的流动,通常情况下,模拟此种类型薄膜需要极大的计算资源,尤其在多相工况下精确计算相间通量,需要极细的网格来模拟水膜,而欧拉壁面膜模型不需要划分水膜网格,同时可以预测收集效率、耦合离散相模型,满足模拟壁面收集液滴形成水膜过程的需求,将水分考虑为小液滴,液滴在表面汇集成水膜,计算不考虑相变,
质量守恒方程:
膜动量守恒方程:
式中:h为膜高度;ρ1液体密度;
膜能量守恒方程:
式中:ts为界面温度;tf为膜平均温度;vf为膜速度;kf为膜热导;tw为壁面温度;假设膜的温度变化为线性分段变化,下半部分从壁面温度到膜平均温度tf,上半部分由平均温度tf到界面温度ts;
当离散粒子或液滴撞击壁面,会被液膜吸收,吸收后,其质量和动量增加到质量方程和动量方程的源项中,质量源项和动量源项分别为:
式中
式中
质量源项:
式中:αd为第二相体积;ρd为第二相密度;vdn为垂直于壁面的相速度;a为壁面表面积,动量源项
(4)水汽会在风力机叶片的前缘和尾缘位置凝结,故应在前缘和尾缘位置涂抹防冰涂料。
2.根据权利要求1所述风力机叶片防冰涂料涂抹位置的确定方法,其特征在于:使用的模型包括但不限于水蒸气凝结模型、欧拉壁面膜模型和颗粒磨损模型。
技术总结