本案是分案申请,其母案为于2016年2月1日(优先权日期:2015年1月30日)提交的发明名称为“发光装置”、申请号为201610070548.2的申请。本发明涉及一种发光装置。
背景技术:
:发光二极管(led)是一种半导体装置,其利用化合物半导体特性将电转换成紫外光或可见光来实现信号的发送/接收,并且发光二极管也可以作为光源使用。作为诸如led或激光二极管(ld)等发光装置的核心材料,iii-v族氮化物半导体由于其物理和化学特性而受到关注。这样的led或ld不包括对环境有害的材料,诸如在常规的发光装置,例如荧光灯和白炽灯泡中使用的水银(hg)包括,因而是环境友好型的,并且具有多种优势,诸如长使用寿命和低能耗。因此,常规光源正加速被led取代。具体来说,这类发光装置的应用范围正在拓宽以包围各种领域,例如用于车辆的头灯或手电筒。因此,包括发光装置的发光装置需要具有优良的光提取效率(lightextractioneffciency),并且,对于小型化、轻量化和低制造成本的需求也会持续增长。技术实现要素:实施例提供一种可靠性改善、制造成本低、构造简化且效率提升的发光装置。在一个实施例中,一种发光装置,包括:至少一个光源,所述至少一个光源被配置为发出沿直线传播的激发光;以及反射器,所述反射器被配置为将沿直线传播且以入射方向引入的所述激发光朝出射方向反射,所述出射方向与所述入射方向相反且平行。例如,所述发光装置可以另外包括被配置为转换所述激发光的波长的波长转换器,所述反射器可以将沿直线传播且以所述入射方向引入的所述激发光反射到所述波长转换器,并且还可以将波长经所述波长转换器转换的转换光朝所述出射方向反射。例如,所述发光装置可以另外包括至少一个光路改变单元,所述至少一个光路改变单元被配置为将从所述光源发出的所述激发光的方向改变为所述入射方向。例如,所述反射器可以包括被配置为反射所述激发光和所述转换光的抛物曲面。所述抛物曲面可以经受金属镜涂布(metalmirrorcoating)。所述抛物曲面可以具有适于在内部将所有的所述激发光反射至所述波长转换器的梯度。所述梯度可以在0至1.5或1.5以下的范围内。所述出射方向可以是由所述抛物曲面反射出的所述转换光平行出射的方向。例如,所述发光装置可以另外包括在所述反射器与所述波长转换器之间的可由所述激发光和所述转换光通过的空间中所填充的折射部件。所述折射部件可以具有与所述转换光出射进入的空气接触的边界表面,并且,所述边界表面可以垂直于所述出射方向。所述折射部件可以具有第一折射率,所述第一折射率与所述波长转换器的第二折射率不同。所述第一折射率可以在1.4至1.8的范围内。所述激发光可以包括蓝色波长带(bluewavelengthband)的蓝光,所述发光装置可以另外包括位于在所述折射部件与空气之间的边界表面上的蓝光路径中的蓝光屏蔽单元。所述蓝光屏蔽单元可以包括能够吸收所述蓝光的材料,并且,可以包括能够反射所述蓝光的镜涂布表面。例如,所述发光装置可以另外包括在所述折射部件与所述转换光出射进入到的空气之间的边界表面上所设置的抗反射膜。例如,所述光路改变单元可以包括至少一个镜,所述至少一个镜用于将从所述光源发出的所述激发光改变到所述入射方向。所述镜可以包括:第一镜,所述第一镜用于将从所述光源发出的在平行于所述出射方向的方向上的所述激发光以直角反射;以及第二镜,所述第二镜用于将经所述第一镜反射的所述激发光以直角反射到所述入射方向上。所述光路改变单元可以包括棱镜,所述棱镜用于将从所述光源发出的所述激发光折射到所述入射方向上。例如,所述光源可以包括多个用于发出所述激发光的光源,所述光路改变单元可以将从所述光源发出的所述激发光的方向改变到所述入射方向。所述光路改变单元可以包括多个光路改变单元,所述多个光路改变单元分别用于将从所述光源发出的所述激发光的方向改变到所述入射方向。例如,所述光源和所述光路改变单元可以位于从所述反射器出射的所述转换光的照亮区域周围的周边区域。所述光路改变单元可以位于在所述周边区域中所包含的内周边区域或外周边区域中的至少一个中并且将来自所述内周边区域的所述激发光引入到所述反射器中,所述光源可以位于所述内周边区域或所述外周边区域中的至少一个中,并且,所述内周边区域可以包括面对所述反射器的区域,并且,所述外周边区域可以包括邻近所述内周边区域但不面对所述反射器的区域。所述光路改变单元可以位于所述照亮区域上方或所述照亮区域一侧中的至少一处的周边区域中。例如,所述光源可以定位成将所述激发光朝内周边区域引导到所述反射器,所述内周边区域面对所述反射器且被包括在所述转换光出射的照亮区域周围的周边区域中。例如,所述发光装置可以另外包括位于所述光源与所述反射器之间的光传输单元。例如,沿直线传播的所述激发光可以具有处于0°至1°范围内的发散角或会聚角。附图说明可以参考以下附图详细描述布置和实施例,其中,类似附图标记指代类似元件,其中:图1a是根据一个实施例所述的发光装置的组装截面图,图1b是图1a所示的发光装置的分解截面图;图2是用于说明照亮区域和周边区域的反射器和基板的前视图;图3a和图3b分别为根据另一实施例所述的发光装置的组装截面图和分解截面图;图4是用于说明在图3a和图3b中所示的反射器的梯度(gradient)的视图;图5是根据另一实施例所述的发光装置的截面图;图6是根据另一实施例所述的发光装置的截面图;图7是根据另一实施例所述的发光装置的截面图;图8是根据另一实施例所述的发光装置的截面图;图9是根据另一实施例所述的发光装置的截面图;图10a至图10c分别为根据另一实施例所述的发光装置的截面图、平面图和前视图;图11a和图11b分别为根据另一实施例所述的发光装置的平面图和前视图;图12a至图12c分别为根据另一实施例所述的发光装置的截面图、平面图和前视图;以及图13是根据另外一实施例所述的发光装置的截面图。具体实施方式下文中,将参考附图详细描述示例性实施例以有助于理解实施例。但是,这些实施例可以以各种方式变化,并且实施例范围不应理解为受限于以下描述。实施例意图给本领域技术人员提供更完整的解释。在以下对于实施例的描述中,应理解,当将每一元件被称为形成在另一元件“上”或“下”时,其可以直接位于该另一元件“上”或“下”,或者可以在两者之间间接形成一个或多个中间元件。此外,还应理解,在该元件“上”或“下”可以表示该元件的向上方向和向下方向。此外,在说明书和权利要求书中的相关术语“第一”、“第二”、“顶部/上/上方”、“底部/下/下方”及其类似术语可以用于在任一物质或元件与其他物质或元件之间进行区分,并且,并非一定表示在这些物质或元件之间的任何物理或逻辑关系或特定顺序。下文中将参考附图描述根据实施例所述的发光装置100a至100k。为了便利,尽管会使用笛卡尔座标系(包括x轴、y轴和z轴)来描述根据实施例所述发光装置100a至100k,但是当然也可以使用其他座标系来描述所述发光装置。此外,尽管在笛卡尔座标系中的x轴、y轴和z轴相互垂直,但是实施例不限于此。也就是说,在其他实施例中,x轴、y轴和z轴可以相互相交,而不是相互垂直。图1a是根据一个实施例所述的发光装置100a的组装截面图,图1b是在图1a中所示的发光装置100a的分解截面图。参见图1a和图1b,根据实施例所述的发光装置100a可以包括光源110、波长转换器120、反射器130、基板140、反射层150和光传输单元(light-transmittingunit)(或光学单元)160。为便于描述,在图1b中所示的反射层150在图1a中被省略。光源110用于发出激发光(excitationlight)。尽管光源110可以包括发光二极管(led)或激光二极管(ld)中的至少一种,但是对于光源110的种类实施例不限于此。此外,尽管图1a和图1b仅示出一个光源110,但是对于光源110的数量实施例不限于此。也就是说,可以提供多个光源110,如在图10a至图12c中示例性地示出。此外,尽管从光源110发出的激发光可以具有在从400nm至500nm波长带中的任意峰值波长,但是对于所发出的激发光的波长带实施例不限于此。光源110可以发出具有10nm或10nm以下的光谱半高宽(光谱半最大值全宽度,spectralfullwidthathalfmaximum,sfwhm)。该sfwhm对应于取决于强度(intensity)的波长宽度。然而,实施例不限于该sfwhm的任何特定值。此外,尽管从光源110发出并引入到波长转换器120中的激发光的fwhm可以是3nm或3nm以下,但是实施例不限于此。光传输单元160可以位于光源110与反射器130之间,并且用于对从光源110发出的激发光进行聚焦和准直。此外,光传输单元160可以包括折射率为1(与空气的折射率相同)的的透明介质,或可以包括折射率大于1且小于等于2的透明介质。此外,光传输单元160可以包括至少一个具有各种形状中的任意一种的透镜。在一些情况下,发光装置100a可以不包括光传输单元160。此外,从光源110发出的激发光可以沿直线传播(travel)。或者,即使从光源110发出的激发光不是沿直线传播,还可以使用光传输单元160来赋予激发光以直线性。实施例对光源110的种类不做限制,对光传输单元160的种类也不做限制,对于光传输单元160是否存在也不做限制,只要从光源110出射的激发光在沿直线传播时送往反射器130沿直线传播。此处,激发光沿直线传播指的是激发光的发散角或会聚角落入0°至1°的范围内。此处,激发光的发散角或会聚角在0°至1°的范围内指的是激发光的发散程度相对于光源110的光轴在0°至0.5°的范围内。波长转换器120用于将从光源110发出并经反射器130反射的激发光的波长进行转换并发出具有转换后的波长的光(下文中称作“转换光”)。波长转换器120可以是许多点光源的集合,并且,每个点光源可以吸收该激发光并发出转换光。由于从波长转换器120发出的光具有各向同性,即是不定向的,所以所有来自波长转换器120的光可以从波长转换器120的相对的表面以差不多相等的量和相同的分布发出。具体来说,由于波长转换器120的散射特性,激发光和转换光均可以在波长转换器120内散射,从波长转换器120前侧和后侧发出的光的分布或光的数量会略微不同。所示的波长转换器120是反射型的而不是透射型(transmissivetype)的。因此,通过将要向后发出(discharged)的所有光以对应于反射板的反射率的量向前反射,确保所使用的所有光向前发出,波长转换器120可以具有高效率。此外,波长转换器120可以设置在基板140上。基板140可以直接面对反射器130,如图1a中所示例性地示出,或者,可以面对反射器130,并在两者中间插入有反射层150,如图1b中所示例性地示出。基板140可以具有可供放置波长转换器120的凹槽142。由于从光源110发出的激发光的波长经波长转换器120转换,所以可以从发光装置100a发出白光或具有所要色温的光。为此,波长转换器120可以包括磷光体,例如,陶瓷磷光体、发光荧光体(lumiphors)或yag单晶体中的至少一种。此处,术语“发光荧光体”指的是发光材料或含发光材料的结构。此外,通过调整例如,在波长转换器120中所包含的各种材料的浓度、粒径和粒径分布、波长转换器120的厚度、波长转换器120的表面粗糙度和气泡,可以从发光装置100a发出具有所要色温的光。例如,波长转换器120可以转换出具有在3000k至9000k范围内色温的光的波长带。也就是说,尽管波长经波长转换器120转换的转换光可以位于从3000k至9000k的色温范围内,但是实施例不限于此。波长转换器120可以是各种类型中的任意一种。例如,尽管波长转换器120可以是三种类型即含磷光体玻璃(phosphor-in-glass,pig)型、多晶型(或陶瓷型)和单晶型,但是实施例不限于此。尽管未示出,但是由金属材料形成的散热板可以设置在波长转换器120与凹槽142之间以改散热效应(heatradiationeffect)。同时,反射器130用于将以沿直线传播且在入射方向(例如,z轴负方向)上引入的激发光朝波长转换器120反射。此外,反射器130可以将波长经波长转换器120转换的转换光反射到出射方向(emissiondirection)(例如,沿着z轴的正方向),该出射方向与入射方向相反且平行。此处,该出射方向(例如,沿着z轴的正方向)指的是从反射器130的抛物曲面132反射的全部转换光平行出射的方向。当反射器130具有抛物曲面形状时,波长转换器120可以位于抛物曲面形状的焦点位置。此时,反射器130既可以反射波长经波长转换器120转换的转换光,也可以反射波长没有经波长转换器120转换的光。反射器130可以包括抛物曲面132,其适于反射沿直线传播且在入射方向上被引入的激发光,也适于将转换光反射到与入射方向相反且平行的出射方向上。在一个实例中,反射器130的抛物曲面132可能受到金属镜涂布(metalmirrorcoating)。当抛物曲面132受到金属镜涂布时,该激发光可以从抛物曲面132反射到波长转换器120,并且,转换光可以从抛物曲面132反射以在出射方向上出射。在一些情况中,可以将上述波长转换器120省略。当发光装置100a不包括波长转换器120时,反射器130可以对沿直线传播且从入射方向引入的激发光进行反射,以在与入射方向相反且平行的出射方向上出射激发光。尽管下文将描述发光装置100a包括波长转换器120的情况,但是以下描述也可以适用于发光装置100a不包括波长转换器120的情况。图2是用于说明照亮区域la和周边区域pa的反射器130和基板140的前视图。参见图1a、图1b和图2,照亮区域la可以定义为经反射器130反射的转换光在出射方向(例如,沿z轴的正方向)上出射的区域。此外,周边区域pa可以定义为照亮区域la周围的区域。周边区域pa可以被划分为内周边区域ipa和外周边区域opa。内周边区域ipa可以定义为面对反射器130内侧132的周边区域,并且外周边区域opa可以定义为没有面对反射器130内侧132并且从内周边区域ipa延伸的周边区域。此时,如在图1a或图1b所示例性示出,尽管光源110可以位于能够使光源将激发光出射到围绕照亮区域la的周边区域pa中所包含的内周边区域ipa的位置处,但是实施例不限于此。也就是说,如下文描述,即使当光源110位于外周边区域opa中时,激发光可以被引入到内周边区域ipa中。送往反射器130的激发光的宽度(或尺寸)低于5mm是优选的但是难以实施。当指向反射器130的激发光的宽度是30mm或30mm以上时,照亮区域la可以是狭窄的。基于此,尽管激发光的宽度可以在5mm至30mm的范围内,但是实施例不限于此。此外,基于所要的亮度分布,反射器130可以包括选自非球面、自由形态的曲面、菲涅尔透镜和全息光学元件(hoe)中的至少一种。这里,该自由形态的曲面(freeformcurvedsurface)可以是提供具备各种形状的曲线表面(curvilinearsurfaces)的形式。当使用菲涅尔透镜作为反射器130时,菲涅尔透镜可以用作反射器130,其能够反射波长没有在波长转换器120中转换的光,也能够反射波长被转换的转换光。同时,图1b中所示的反射层150可以以膜的形式或涂层的形式(coatedform)附接至波长转换器120或基板140。当反射层150的反射率低于60%时,反射层150就不能恰当地执行反射。因此,尽管反射层150的反射率可以在60%至100%的范围内,但是实施例不限于此。在一些情况中,反射层150可以被省略。图3a和图3b分别是根据另一实施例所述的发光装置100b的组装截面图和分解截面图。出于简便,在图3b中示出的反射层150在图3a中省略。在图3a和图3b中所示出的发光装置100b可以包括光源110、波长转换器120、反射器130、基板140、反射层150、光传输单元160以及折射部件170。与图1a和图1b中示出的发光装置100a不同,在图3a和图3b中示出的发光装置100b可以另外包括折射部件170。除了此项差异之外,在图3a和图3b中示出的发光装置100b与在图1a和图1b中示出的发光装置100a相同,因此,相同的组件会标以相同的附图标记,并且下文将省略其重复描述。基板140可以与折射部件170直接接触,如图3a所示例性示出,或者,可以面对折射部件170并且反射层150插入在基板140与折射部件170之间,如图3b所示例性示出。参见图3a和图3b,可以将折射部件170填充在反射器130与波长转换器120之间的空间中,激发光和转换光通过该空间,并且折射部件170可以用以折射经反射器130反射的激发光或者折射来自波长转换器120的转换光。折射部件170被定位以填充在经波长转换器120进行波长转换后的转换光朝反射器130传播而通过的整个空间中,从而确保来自波长转换器120的转换光通过的空间中不含空气。进而,从波长转换器120送往反射器130的转换光可以经过折射部件170而不用经过空气来到达反射器130,并且,在通过折射部件170之后,经反射器130反射的光可以通过边界表面172出射到空气中。此外,从光源110发出的激发光在通过折射部件170之后由反射器130反射,经反射器130反射的光可以经由折射部件170到达波长转换器120。在折射部件170与空气之间的边界表面172可以在垂直于出射方向(例如,沿着z轴的正方向)的方向(例如,沿着y轴方向)上延伸,由反射器130的抛物曲面132所反射的转换光从边界表面172出射。当出射方向垂直于边界表面172时,激发光可以平行于抛物曲面132而引入且不会在边界表面172处发生折射。此外,折射部件170的第一折射率n1可以不同于波长转换器120的第二折射率n2。在折射部件170的第一折射率n1与波长转换器120的第二折射率n2之间的差δn越小,发光装置100b的光提取效率改善越大。但是,当在第一折射率n1与第二折射率n2之间的差δn增大时,光提取效率的改善程度会降低。可以借此考虑来选择波长转换器120和折射部件170的构成材料。例如,折射部件170可以包括al2o3单晶体、al2o3或sio2玻璃中的至少一种。此外,第二折射率n2会基于波长转换器120的类型而改变。当波长转换器120是pig类型时,第二折射率n2可以位于1.3至1.7的范围内。当波长转换器120是多晶体类型(polycrystallinetype)时,第二折射率n2可以位于1.5至2.0的范围内。当波长转换器120是单晶体类型(single-crystallinetype)时,第二折射率n2可以位于1.5至2.0的范围内。因此,尽管第二折射率n2可以位于1.3至2.0的范围内,但是实施例不限于此。此外,当折射部件170具有高导热性时,折射部件170可以有利地散发由波长转换器120产生的热量。可以根据折射部件170的构成材料的种类和参考温度(即周围环境的温度)来改变该导热率。基于上述考虑,折射部件170可以包括具有1w/mk至50w/mk范围内导热率的材料和/或在20k至400k范围内的参考温度。如上所述,可以鉴于根据折射部件170的材料的种类来确定光提取效率和散热的事实,来确定折射部件170的材料。如图1a和图1b所示例性地示出,当发光装置100a不包括折射部件170时,如菲涅尔方程(fresnelequation)描述,在经波长转换器120转换波长的光传播到反射器130的同时,会不可避免地出现光损失。这是由于在波长转换器120与出现在波长转换器120和抛物曲面132间的空气之间的折射率差异,导致的光全内反射(tir)角很小,因此,只有在波长转化器120内以窄角发出的转换光被准许传播到抛物曲面132。另外,在使用诸如激光二极管ld的光源110来出射以高得多的输入功率密度沿直线传播的激发光时,在波长转换器120与空气之间的折射率差会进一步增加,进而导致更大的光损失。这是因为在使用ld的情况中,除了具有高折射率的单晶/多晶材料之外,不存在适于波长转换器120的材料。然而,如图3a和图3b所示例性示出,当发光装置100b包括折射部件170时,在经波长转换器120将波长进行转换的光传播到反射器130时的上述光损失可以得到解决。基于此考虑,折射部件170可以由具有与空气的折射率相似的折射率的材料来形成。当折射部件170通过具有与空气的折射率相似的折射率的材料来实施时,经波长转换器120将波长转换的转换光会没有损失地到达抛物曲面132。例如,尽管第一折射率n1在1.4至1.8的范围内,但是实施例不限于此。此外,反射器130和折射部件170可以一体形成。在这种情况下,折射部件170不仅可以作为透镜使用,还可以作为反射器使用。当反射器130和折射部件170如上所述一体形成时,就杜绝了从波长转换器120向反射器130传播的转换光与空气接触的可能性。此外,根据在发光装置100b中希望实现的所要的亮度分布(luminancedistribution),折射部件170和基板140可以具有选自二维图案和三维图案中的至少一种图案。同时,在图3a和图3b中所示的反射器130可以受到金属镜涂布(metalmirrorcoating),以执行与在图1a和图1b中所示反射器130相同的功能。或者,在图3a和图3b中所示的反射器130可以不受到金属镜涂布。在此情况下,反射器130的抛物曲面132可以具有梯度(gradient)(或斜坡),该梯度适于所有激发光朝波长转换器120的内反射(internalreflection)以及所有波长经波长转换器120转换的转换光在与入射方向相反且平行的出射方向的内反射。参见图3a,从入射方向引入的所有激发光可以在抛物曲面132的部分“a”处经历内反射。图4是用于说明在图3a和图3b中所示的反射器130的梯度的视图。当反射器130的抛物曲面132的梯度处于从零度到某一特定值(即最大梯度)的情况下,在激发光或转换光到达反射器130时,可以发生全内反射。所述最大梯度为与全内反射角θc对应的梯度,因此该最大梯度可以从tan(90°-θc)获得。以下将对此详细描述。首先,反射器130的抛物曲面132的梯度可以通过方程式2获得,其中,y’是方程式1的微分值。方程式1y2=4pz方程式2此处,在方程式1和方程式2中,p为焦距,z为光轴座标。从方程式2可以了解,当焦距p与光轴座标z之比的平方根处于从零到所述最大梯度的范围内时,在抛物曲面132处会发生全内反射。基于折射部件170的第一折射率n1的在全内反射角θc与所述最大梯度之间的关系在以下表1中表示。表1第一折射率全内反射角最大梯度1.445.580.97981.541.811.11801.638.681.24901.736.031.37481.833.751.4967可以从上述方程式2和表1了解,尽管关于全内反射的反射器130的梯度处于0到1.5的范围内,但是实施例不限于此。图5是根据另一实施例所述的发光装置100c的截面图。图5所示的发光装置100c可以包括光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170和抗反射(ar)膜180。与图3a和图3b中所示发光装置100b不同,图5所示发光装置100c可以另外包括抗反射膜180。除了此项差异之外,图5所示的发光装置100c与图3a所示发光装置100b相同,因此,下文将省略重复描述。也就是说,图5中所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170分别执行与图3a中所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170相同的功能。抗反射膜180可以设置在光源110与折射部件170之间。抗反射膜180可以设置在折射部件170与转换光出射进入的空气之间的边界表面172上。在一些情况下,抗反射膜180可以省略。图6是根据另一实施例所述的发光装置100d的截面图。图6所示的发光装置100d可以包括光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170和光路改变单元190a。与图3a所示发光装置100b不同,图6所示发光装置100d可以另外包括光路改变单元190a。在此情况下,图6所示光源110的可以设置在不同于图3a所示光源110所设置的位置的位置处。除了此项差异之外,图6所示发光装置100d与图3a所示发光装置100b相同,因此下文将省略详细描述。也就是说,图6所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170分别执行与在图3a中所示的光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170相同的功能。光路改变单元190a用于将从光源110发出的沿直线传播的激发光的方向改变到入射方向上。光源110和光路改变单元190a可以布置在周边区域pa中。具体来说,如在图6中示例性示出,光路改变单元190a可以位于适宜改变从光源110发出的激发光的光路位置上以使得激发光从内周边区域ipa传播到反射器130。也就是说,在图6中,光路改变单元190a可以位于内周边区域ipa和外周边区域opa上以改变从光源110发出的激发光的入射方向。此时,光源110可以位于外周边区域opa中。参见图6,光路改变单元190a可以包括镜(mirror)。此处,光路改变单元190a的镜面用于将从光源110发出的激发光的方向改变为入射方向。也就是说,当从光源110发出的激发光在y轴负方向沿直线传播时,镜190a用于反射来自光源110的激发光以将激发光朝沿着y轴负方向的方向改变到沿着z轴负方向的入射方向上。图7是根据另一实施例所述的发光装置100e的截面图。图7所示的发光装置100e可以包括光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170以及光路改变单元190b。图7所示的发光装置100e可以包括光路改变单元190b,其不同于图6所示的发光装置100d的光路改变单元190a。也就是说,图7所示光路改变单元190b可以包括棱镜(prism)。该棱镜用于将从光源110朝y轴负方向发出的沿直线传播的激发光朝在与沿着z轴负方向对应的入射方向上折射。在此情况下,图7所示棱镜形式的光路改变单元190b可以位于适宜将激发光的入射光路改变到内周边区域ipa的位置处,方式与图6所示光路改变单元190a相同,并且,光源110可以位于外周边区域opa中。如上所述,除了光路改变单元190b的形状不同之外,图7所示发光装置100e与图6所示发光装置100d相同,因此下文将省略重复描述。也就是说,图7所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170分别执行与在图6中所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170相同的功能。图8是根据另一实施例所述的发光装置100f的截面图。图8所示发光装置100f可以包括光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170和光路改变单元190c。图8所示发光装置100f可以包括光路改变单元190c,光路改变单元190c不同于图6所示的发光装置100d的光路改变单元190a。也就是说,图6所示的光路改变单元包括单个镜(mirror),而图8所示光路改变单元190c可以包括多个镜190c-1和190c-2。在图8中,第一镜190c-1将从光源110发出的激发光以与出射方向(例如,z轴正方向)平行的方向成直角反射。经第一镜190c-1反射的激发光朝y轴负方向传播。此外,第二镜190c-2将经第一镜190c-1反射的激发光成直角反射在入射方向上。也就是说,经第二镜190c-2反射的激发光送往与z轴负方向对应的入射方向上。此外,构成图6所示光路改变单元190a的镜位于内周边区域ipa和外周边区域opa上,而图8所示的光路改变单元190c的第二镜190c-2可以位于内周边区域ipa和外周边区域opa上,第一镜190c-1可以仅位于外周边区域opa中。如上所述,除了在镜的数量和镜的安装位置不同之外,图8所示的发光装置100f与图6所示的发光装置100d相同,因此将省略重复描述。也就是说,图8所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170分别执行与图6中所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170相同的功能。图9是根据另一实施例所述的发光装置100g的截面图。图9所示的发光装置100g可以包括光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170和光路改变单元190d。图9所示发光装置100g可以包括光路改变单元190d,光路改变单元190d的形状不同于图7所示的发光装置100e的光路改变单元190b的形状。也就是说,图7所示光路改变单元190b包括三角形棱镜,而图9所示光路改变单元190d可以包括梯形棱镜。光路改变单元190d的棱镜首先将从光源110发出的在出射方向(例如,z轴正方向)上的激发光以直角反射,然后将经上述直角反射的激发光再次以直角反射到入射方向上。也就是说,经棱镜形式的光路改变单元190d反射的激发光被送往与z轴负方向的入射方向上。如上所述,除了棱镜形状不同之外,图9所示发光装置100g与图7所示发光装置100e相同,因此下文将省略重复描述。也就是说,图9所示的光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170分别执行与图7所示光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170相同的功能。同时,当根据本实施例所述的发光装置用在例如用于车辆的照明装置上时,可以提供多个光源110。因而,可以根据本实施例所述的发光装置的应用场合以各种方式改变光源110的数量。下文中,将描述根据各个实施例所述的包括多个光源的发光装置100h至100j。此时,尽管下文将光源110的数目描述为三个,但是以下描述也可以适用于光源110数目小于三或大于三的场合。此外,尽管下文将根据实施例所述的发光装置100h至100j中所包括的光路改变单元描述为图9中所示的光路改变单元190d,但是实施例不限于此。也就是说,以下描述也可以适用于当发光装置包括图6至图8中所示光路改变单元190a、190b和190c中的任一种的场合而非仅仅是光路改变单元190d。图10a至图10c分别为根据另一实施例所述的发光装置100h的截面图、平面图和前视图。图10b是对图10a所示反射器130沿线i-i’截取的平面图,用于示出波长转换器120的位置以及激发光和转换光的移动。在图10a至图10c中所示的发光装置100h可以包括多个光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170和光路改变单元190d。参见图10a至图10c,发光装置100h可以包括三个光源110,并且每一个光源可以出射激发光。此时,单个光路改变单元190d可以将从该三个光源110发出的激发光的方向改变到入射方向上。也就是说,该三个光源110可以共用该单个光路改变单元190d。如上所述,除了光源110的数量差异之外,图10a至图10c所示发光装置100h与图9所示发光装置100g相同,因此下文将省略重复描述。也就是说,图10a至图10c中所示的波长转换器120、反射器130、基板140、光传输单元160以及折射部件170分别执行与在图9中所示的波长转换器120、反射器130、基板140、光传输单元160以及折射部件170相同的功能。图11a和图11b分别是根据另一实施例所述的发光装置100i的平面图和前视图。此处,除了在光路改变单元190d的形状上的差异之外,图11a和图11b的截面图与图10a的截面图相同,因此下文将省略详细描述。图11a和图11b中所示的发光装置100i可以包括多个光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170以及多个光路改变单元190d。图10a至图10c所示发光装置100h具有多个光源110共用单个光路改变单元190d的结构,而在图11a和图11b中所示的发光装置100i具有多个光路改变单元190d逐一的分配给每个光源110的结构。如上所述,除了光路改变单元190d的数量与光源110的数量相同之外,在图11a和图11b中所示的发光装置100i分别于在图10b和图10c中示出的发光装置100h相同,因此下文将省略关于相同配置的重复描述。参见图11a和图11b,该三个光路改变单元190d将从该三个光源110发出的激发光的方向分别改变为入射方向。也就是说,在图10b和图10c中所示的单个光路改变单元190d相对于多个光源110以一对多的比值方式布置,而在图11a和图11b中所示的光路改变单元190d相对于多个光源110以一一对应的方式布置。图12a至图12c分别是根据另一实施例所述的发光装置100j的截面图、平面图和前视图。在图12a至图12c中所示的发光装置100j可以包括多个光源110-1、110-2和110-3、波长转换器120、反射器130、基板140、多个光传输单元160-1、160-2和160-3、折射部件170以及多个光路改变单元190d-1、190d-2和190d-3。尽管在图6至图11b中所示的发光装置100d至100i具有光路改变单元190a至190d布置在照亮区域la上方的周边区域pa中的结构,但是实施例不限于此。在其他实施例中,如在图12a至图12c中所示例性示出,光路改变单元190d-1至190d-3可以布置在照亮区域la上方的周边区域pa和在照亮区域la相对侧处的周边区域pa中。参见图2和图12a至图12c,第一光路改变单元190d-1用于改变从第一光源110-1发出的通过第一光传输单元160-1的沿直线传播的激发光的光路,并且位于所述照亮区域la上方的周边区域pa中。另一方面,第二光路改变单元190d-2用于改变从第二光源110-2发出的通过第二光传输单元160-2的沿直线传播的激发光的光路,并且位于照亮区域la左侧的周边区域pa中。此外,第三光路改变单元190d-3用于改变从第三光源110-3发出的通过第三光传输单元160-3的沿直线传播的激发光的光路,并且位于照亮区域la右侧的周边区域pa中。可以从图12a至图12c看出,光源110-1至110-3可以位于外周边区域opa中。如上所述,除了光传输单元160-1、160-2和160-3的数量以及光路改变单元190d-1、190d-2和190d-3的数量上的差异以及在光源110-1、110-2和110-3的布置、光传输单元160-1、160-2和160-3的布置以及光路改变单元190d-1、190d-2和190d-3的布置上的差异之外,图12a、图12b和图12c中所示的发光装置100j与图10a、图10b和图10c中所示的发光装置100i相同,因此下文将省略对于相同配置的重复描述。图13是根据另外一实施例所述的发光装置100k的截面图。图13所示的发光装置100k可以包括光源110、波长转换器120、反射器130、基板140、光传输单元160、折射部件170、光路改变单元190d和蓝光屏蔽单元200。当从光源110发出的激发光包括位于蓝色波长带内的光(下文称作“蓝光”)时,该蓝光经反射器130反射然后被引入到波长转换器120中。此时,由于在波长转换器120与折射部件170之间的折射率差异,蓝光的一部分可以被镜面反射,而不是被波长转换器120按照菲涅尔方程进行波长转换。也就是说,该蓝光可以不被引入到波长转换器120中,而是可以由波长转换器120的表面反射。此时,镜面反射(mirror-reflected)的蓝光的量取决于在折射部件170与波长转换器120之间的折射率的差异以及为蓝光的激发光被引入到波长转换器120中的角度。当在折射部件170与波长转换器120之间不存在折射率差异时,蓝光不会被波长转换器120镜面反射。然而,当在折射部件170与波长转换器120之间存在折射率差异时,蓝光激发光不会发生波长转换,并且,蓝光经镜面反射后会通过折射部件170朝出射方向出射。因而,该发光装置可能无法出射所要的光色。为防止此类问题,蓝光屏蔽单元200可以位于在折射部件170与空气之间的边界表面172处的蓝光的路径中以屏蔽蓝光。此处,由于沿直线传播的激发光的入射角是已知的,所以可以预计出蓝光经波长转换器120镜面反射并通过边界表面172出射的路径。在一个实施例中,蓝光屏蔽单元200可以包括能够吸收蓝光的材料。在另一实施例中,蓝光屏蔽单元200可以包括能够反射蓝光的镜涂布表面。因而,蓝光屏蔽单元200可以通过吸收或反射蓝光来防止蓝光通过边界表面172出射。如上所述,除了添加了蓝光屏蔽单元200之外,图13中所示的发光装置100k与图10a中所示的发光装置100h相同,因此下文将省略关于相同配置的重复描述。也就是说,图13所示的光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170分别与在图10a中所示的光源110、波长转换器120、反射器130、基板140、光传输单元160和折射部件170相同,因此将省略对于相同配置的重复描述。尽管在图1b或3b中示出的反射层150没有在图5至图13中的发光装置100c至100k中示出,但实施例不限于此。也就是说,在其他实施例中,图5至图13中的发光装置100c至100k可以包括在图1b或图3b中示出的反射层150。此外,图6至图13中所示的发光装置100d至100k可以另外包括抗反射膜180,抗反射膜180可以设置成图5所示的形式。此外,在图6至图13中示出的发光装置100d至100k中,折射部件170可以省略。总体来说,当发光装置包括多个光源时,该发光装置需要采用复杂的光学系统。也就是说,常规的发光装置需要一个光学系统来给多个光源准直以及额外需要另一个光学系统来将从各个光源发出的激发光聚焦在波长转换器的单个点上。此外,当激光二极管用作所述光源时,该光学系统需要是复杂且精巧的,因为入射到并聚焦到波长转换器上的激发光必须是大小为100μm的很小的点。总体来说,当将发光装置用于车辆的头灯时,该发光装置包括多个光源以出射足够量的光。这样会增加车辆的构成元件的成本,在量产性和可靠性(例如抗震性)上很不利。另一方面,如上所述,在根据实施例所述的发光装置100a至100k中,沿直线传播的激发光的入射方向与转换光的出射方向相反且平行。经波长转换器120进行波长转换的转换光经抛物曲面132反射以借助抛物曲面132的特性平行传播。由于抛物曲面132的此特性,当沿直线传播的激发光被以平行入射方向送往抛物曲面132时,在经抛物曲面132反射之后,激发光会传播到波长转换器120。此时,此时,沿直线传播的激发光可以朝波长转换器120传播且而不用管激发光从抛物曲面132上的反射位置,只要激发光的入射方向与出射方向相反且平行即可,与要引入到抛物曲面132的激发光送往抛物曲面132上的位置也无关。也就是说,激发光总是可以到达波长转换器120,与激发光是否是从照亮区域la上方的内周边区域ipa传播到反射器130(如图1a、图1b、图3a、图3b、图5至图11c和图13所示)无关,与激发光是否是从照亮区域la侧的内周边区域ipa传播到反射器130(如图12a至图12c所示)无关。如上所述,在本实施例中,借助抛物曲面132的特性,激发光以与出射方向相反且平行的入射方向传播到反射器130,激发光可以容易地且有效率地聚焦在波长转换器120的单个点上。因此,激发光传输到波长转换器120通过的路径可以设计得简单,能够降低成本、便于量产并提升可靠性。也就是说,本实施例的发光装置可以实现简化配置和高的光转换效率。此外,如图1a和图1b所示例性示出,当抛物曲面132受到金属镜涂布且激发光的聚焦程度高时,经金属镜涂布的抛物曲面132可能会受损。此外,金属镜涂布的抛物曲面132的反射率只能在70%至90%的范围内。然而,如图3a、图3b和图5至图13所示,当发光装置100b至100k包括折射部件170时,金属镜涂层是不需要的,因为所有光都经抛物曲面132的全内反射来反射。因此,当激发光聚焦在抛物曲面上时,抛物曲面132受损的可能性降低。此外,在全内反射的情况中,经抛物曲面132反射的光的反射率可以最大化为100%。以此方式,抛物曲面132不受损地达到最大化反射率,发光装置的可靠性和效率可以得到改善。此外,根据上述实施例所述的发光装置100a至100k采用从波长转换器120反射激发光的反射型方法来转换激发光的波长,而不是通过波长转换器120传输激发光的透射型方法(transmissiontypemethod)。当波长转换器120通过将光反射来转换该光的波长时,与透射型方法相比,由于其特性,光转换效率可以提升,从而从波长转换器120相对方向发出的转换光被收集在了一个方向上。但是,与透射型方法相比,该反射型方法可以大体上涉及构造更复杂的发光装置以及相伴而生的结构不稳定性,这是因为激发光的光路和转换光的光路彼此重叠,因此,用于激发光的光学系统需要形成为不侵占转换光的光路。因为当不使用此类光学系统时光学效率会降低,并且当激发光以陡斜的方向引入时焦点大小会增大,所以使用激光二极管作为光源110的优势会减少。考虑到上述因素,如在图8、图9、图10a至图10c、图11a、图11b、图12a至图12c和图13所示,当光源110位于发出激发光的出射方向上且光路改变单元190c、190d和190d-1至190d-3将激发光的传播的激发光的方向改变为入射方向时,该发光装置可以实现更为稳定的配置。因而,本实施例所述的发光装置可以解决反射型方法中存在的问题同时通过反射型方法的优势来提供高的光转换效率。因此,与相关技术相比,本实施例所述的发光装置可以以相同的功耗实现更高性能,也可以在相同性能下实现更低功耗。根据上述实施例所述的发光装置100a至100k可以应用在各个领域中。例如,发光装置100a至100k可以应用在各个领域中,包括各种车辆灯具(例如,近光灯、远光灯、尾灯、侧灯、转向灯、日行灯(drl)和雾灯),以及闪光灯、交通等或各种其他照明用具。从以上描述中可以看出,通过借助抛物曲面特性来实现激发光传播到波长转换器的光路的简化设计,根据实施例所述的发光装置可以在成本、量产性和可靠性上做出改善。此外,该发光装置可以实现简化的配置和高的光转换效率,可以通过使用全内反射反射所有激发光和波长转换光来实现光照效率的提升,并且,可以防止反射型发光装置的缺点同时实现反射型发光装置的高的光转换效率的优势。以此方式,与相关技术相比,该发光装置可以在相同功耗下实现更高性能,并且可以在相同性能下实现更低功耗。尽管已经参考本发明多个说明性实施例描述了实施例,但是应理解,本领域技术人员可以在本发明原理的精神和范围内构思众多其他修改和实施例。更具体地,可以在说明书、附图和所附权利要求书范围内的主题组合布置的组成部分和/布置上做出各种变化和修改。除了在组成部分和/或布置上做出各种变化和修改以外,替代使用对于本领域技术人员也是一目了然。当前第1页1 2 3 
技术特征:1.一种发光装置,包括:
基板,所述基板包括凹槽;
反射器,所述反射器设置在所述基板上;
波长转换器,所述波长转换器设置在所述凹槽中;
折射部件,所述折射部件填充在所述反射器的抛物曲面与所述基板之间的空间中;以及
至少一个光源,所述至少一个光源被配置为朝所述反射器的所述抛物曲面发出激发光,
其中,所述激发光被所述反射器的所述抛物曲面反射并被传输到所述波长转换器,并且
其中,传输到所述波长转换器的光从所述反射器的所述抛物曲面反射回来并出射到所述折射部件的边界表面。
2.根据权利要求1所述的装置,进一步包括至少一个光路改变单元,所述至少一个光路改变单元设置在从所述至少一个光源发出的所述激发光的光路上以朝所述反射器的所述抛物曲面传播。
3.根据权利要求2所述的装置,其中,所述折射部件具有与所述抛物曲面反射所述光的出射方向垂直的所述边界表面。
4.根据权利要求1所述的装置,其中,所述折射部件具有第一折射率,所述第一折射率不同于所述波长转换器的第二折射率。
5.根据权利要求3所述的装置,其中,所述光路改变单元包括至少一个镜,所述至少一个镜被配置为将从所述至少一个光源发出的所述激发光的方向改变到入射方向。
6.根据权利要求5所述的装置,其中,所述镜包括:
第一镜,所述第一镜被配置为将从所述至少一个光源发出的所述激发光以直角反射;以及
第二镜,所述第二镜被配置为将经所述第一镜反射的所述激发光以直角反射。
7.根据权利要求5所述的装置,其中,所述出射方向与所述入射方向相反且平行。
8.根据权利要求3所述的装置,其中,所述光路改变单元包括棱镜,所述棱镜被配置为折射从所述至少一个光源发出的所述激发光。
9.根据权利要求2、3、5、6、7和8中任一项所述的装置,其中,所述至少一个光源包括多个光源,所述多个光源被配置为发出所述激发光,并且
其中,所述光路改变单元包括多个光路改变单元,所述多个光路改变单元被配置为分别改变从所述光源发出的所述激发光的所述方向。
10.根据权利要求9所述的装置,其中,所述至少一个光源和所述光路改变单元位于围绕从所述反射器出射的转换光进入的照亮区域的周边区域中。
11.根据权利要求10所述的装置,其中,所述光路改变单元位于在所述周边区域中所包含的内周边区域或外周边区域中的至少一个中并且将来自所述内周边区域的所述激发光引入到所述反射器中,
其中,所述至少一个光源位于所述内周边区域或所述外周边区域中的至少一个中,并且
其中,所述内周边区域包括面对所述反射器的区域,并且所述外周边区域包括邻近所述内周边区域但不面对所述反射器的区域。
12.根据权利要求1至8中任一项所述的装置,其中,沿直线传播的所述激发光具有处于0°至1°范围内的发散角或会聚角。
13.根据权利要求12所述的装置,其中,所述至少一个光源的入射到所述反射器的所述抛物曲面上的所述激发光与从所述边界表面出射的所述光平行。
14.根据权利要求1至8中任一项所述的装置,其中,所述激发光包括蓝色波长带的蓝光,并且
其中,所述发光装置进一步包括蓝光屏蔽单元,所述蓝光屏蔽单元位于在所述折射部件与空气之间的所述边界表面上的蓝光路径中。
15.根据权利要求14所述的装置,其中,所述蓝光屏蔽单元包括吸收所述蓝光的材料,并且包括反射所述蓝光的镜涂布表面。
技术总结实施例提供一种发光装置,所述发光装置包括:至少一个光源,所述至少一个光源被配置为发出沿直线传播的激发光;以及反射器,所述反射器被配置为将沿直线传播的在入射方向上引入的激发光反射到与所述入射方向相反且平行的出射方向上。
技术研发人员:朴康烈;金基喆;孙昌均
受保护的技术使用者:LG伊诺特有限公司
技术研发日:2016.02.01
技术公布日:2020.06.05