本发明涉及锂电技术领域,尤其涉及一种锂电动力电池正极材料用高耐用性窑具的制备方法。
背景技术:
随着锂电新能源汽车对续航里程要求的标准的进一步提升,相应的对动力电池的容量提出更高的要求,因此对动力电池容量起决定意义的正极材料性能的提升就成为至关重要的一环。目前高端的动力电池首选高镍三元体系,而且为了满足新能源汽车厂商对动力电池能量密度的最大限度的追求,全球各大知名的正极材料生产商对正极材料相应的材料体系和制备工艺相比常规动力三元有巨大的改进,主要凸显在两个方面:一是三元体系走向高镍化(比如811体系或者更高体系);二是锂源的引入采取活性更强、碱性更大的氢氧化锂来取代之前的碳酸锂作为锂源材料。正是由于这两方面的变化,对用于承载正极材料烧成的高温窑具面临严峻的高温抗强碱腐蚀性能的挑战,传统匣钵在此种情况下的使用寿命仅为2~3次,这不仅增加了正极材料的生产消耗成本,同时增加了正极材料厂的生产管控难度,加大了生产工人的劳动强度,降低了生产效率,甚至会因为匣钵材料的腐蚀脱落导致正极材料受污染影响电池的性能。因此,研制一种适应当前锂电动力正极材料工艺体系要求的高耐久性的窑具对正极材料的品质提升和成本控制具有非常重要的作用。
锂电池正极材料合成过程中所用的容器一般为刚玉质、莫来石质、石英质和堇青石质耐高温容器。其中堇青石质和刚玉质容器用的最多,通过适当增加匣钵材质中的高铝原料基本可以同步满足常规三元体系正极材料体系和工艺,包括后来的622或者811体系,但是随着新一代高镍三元工艺的升级,传统的单纯提高铝含量和增加碱性耐火原料的匣钵渐渐的不适应了,原因有两点:一是,如果大量提高高铝含量的原料成分会导致匣钵自身重量过大(规格330*330*100的匣钵重量超过8公斤),导致窑炉棍棒承载压力过大,造成装载量降低和“断棒、拱炉”的严重后果;二是,新工艺体系中采用了氢氧化锂为锂源,活性更强,碱性更大,使得三元前驱体体系ph值高达13以上,高温烧成过程中对匣钵的腐蚀情况极据增加,99%含量纯氧化铝都不能满足抗碱性腐蚀性要求。因此必须对匣钵的材料体系进行重新设计,同时改进匣钵的制造工艺,既满足抗腐蚀性能的要求,同时还要满足窑炉热工对匣钵重量、尺寸等方面的要求。所以有必要发明一种可以有效减轻自重、防腐蚀性能优异的锂电动力电池正极材料用高耐用性窑具的制备方法。
技术实现要素:
发明目的:为了克服现有技术中存在的不足,本发明提供一种可以有效减轻自重、防腐蚀性能优异的锂电动力电池正极材料用高耐用性窑具的制备方法。
技术方案:为实现上述目的,本发明的一种锂电动力电池正极材料用高耐用性窑具的制备方法,窑具的内外层分别采用不同材质;将外层的基底层与内层的抗腐蚀层叠压成型,再进行烧成处理。
进一步地,所述抗腐蚀层设置在所述基底层的内侧底部,厚度为3-5mm。
进一步地,所述基底层为堇青石、莫来石和高岭土的混合物。
进一步地,所述堇青石、莫来石和高岭土的质量分数分别为35%、40%、25%。
进一步地,所述抗腐蚀层在烧成前的原材料为高铝类耐高温材料、偏碱性耐高温材料和辅助反应材料的混合物;所述辅助反应材料包括氧化锆、二氧化钛、活性氧化铝、轻质氧化镁粉中的任一种或多种的组合。
进一步地,所述高铝类耐高温材料包括板状刚玉。
进一步地,所述偏碱性耐高温材料包括铝镁尖晶石。
进一步地,所述抗腐蚀层的各原材料配比为,板状刚玉粉40wt.%;电熔镁铝尖晶石微粉18wt.%;活性氧化铝粉10wt.%、高岭土10wt.%、氧化锆粉7wt.%、二氧化钛4wt.%、轻质活性氧化镁粉7wt.%、碳酸钡3wt.%。
进一步地,窑具的制备步骤为,
步骤一,将基底层的原材料按照工艺要求的比例充分混合均匀,并加水困料处理;
步骤二,将抗腐蚀层的原材料按工艺要求的比例称量,再通过湿法球磨的方式均匀混合制成粉料;
步骤三,将步骤二中的粉料干燥处理,随后进行困料;
步骤四,将步骤一和步骤三中制备好的基底层材料、抗腐蚀层材料通过叠压方式一体成型;
步骤五,将步骤四得到的湿胚体进行干燥处理;
步骤六,将步骤五得到的半成品放入窑炉,按照工艺要求的热处理温度曲线完成烧成过程,最终得到窑具成品。
进一步地,窑具烧成过程的热处理工艺为:
(1)0~150℃,0.5℃/min;
(2)150~600℃,0.25℃/min;
(3)600~1200℃,0.5℃/min;
(4)1200℃,保温4小时;
(5)1200~1400℃,0.25℃/min;
(6)1400℃,保温6小时;
(7)随炉缓慢冷却。
有益效果:本发明的一种锂电动力电池正极材料用高耐用性窑具的制备方法,窑具的内外层分别采用不同材质;将外层的基底层与内层的抗腐蚀层叠压成型,再进行烧成处理;采用叠压一体成型技术,实现基底层和抗腐蚀层的一次成型,保证坯体结合力强,成品率高,成本低;内外层的设计,既可以利用外层取得良好的耐热性能,又可以利用内层获得强抗碱性,在不牺牲力学强度的前提下,达到窑具重量与耐腐蚀性能的兼顾。
附图说明
附图1为窑具制备流程图;
附图2为窑具结构剖面图;
附图3为烧成工艺的温度曲线图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
一种锂电动力电池正极材料用高耐用性窑具的制备方法,窑具的内外层分别采用不同材质;将外层的基底层与内层的抗腐蚀层叠压成型,再进行烧成处理;叠压处理保证坯体结合力强,成品率高,成本低;而内外层的设计,既可以利用外层取得良好的耐热性能,又可以利用内层获得强抗碱性,达到窑具重量与性能的兼顾。所述抗腐蚀层具体设置在所述基底层的内侧底部,厚度为3-5mm;如附图2所示,剖面线部分表示基底层部分,基底层内部的黑色条状部分表示抗腐蚀层。
所述基底层为堇青石、莫来石和高岭土的混合物,按照质量分数35%、40%、25%进行混合,通过与后续抗腐蚀层材料一体压制、烧成后可实现匣钵重量在5kg~6kg之间,完全满足高温窑炉对匣钵的重量要求,在保证正极材料装载充足的情况下,保证窑炉安全可靠运转,杜绝棍棒断裂的恶劣后果出现。
所述抗腐蚀层在烧成前的原材料为高铝类耐高温材料、偏碱性耐高温材料和辅助反应材料的混合物;所述辅助反应材料包括氧化锆、二氧化钛、活性氧化铝、轻质氧化镁粉中的任一种或多种的组合。
抗腐蚀材料体系设计的核心原则在于通过高铝材料体系(板状刚玉)、偏碱性的材料(镁铝尖晶石)、匣钵烧成过程可反应性材料体系(氧化锆、二氧化钛、活性氧化铝、轻质氧化镁粉)通过高温反应原位生成抗碱性性产物:镁铝尖晶石、镁锆复合氧化物;各组分的粒度和质量分数如下:
板状刚玉粉(40微米~70微米)40wt.%;电熔镁铝尖晶石微粉(40~70微米)18wt.%;活性氧化铝粉(5微米~10微米)10wt.%、高岭土(5~10微米)10wt.%、氧化锆粉(化学锆,5~10微米)7wt.%、二氧化钛(1~5微米)4wt.%、轻质活性氧化镁粉(10~40微米)7wt.%、碳酸钡3wt.%。
窑具的制备步骤如附图1所示:
步骤一,将基底层的原材料按照工艺要求的比例充分混合均匀,并加水困料处理,具体困料时间为24小时以上;
步骤二,将抗腐蚀层的原材料按工艺要求的比例称量,再通过湿法球磨的方式均匀混合制成粉料;比如称取抗腐蚀材料总体重量为10公斤,相应的称量10公斤的水放置于球磨机中充分球磨混合24小时以上,保证其颗粒大小合格且混合均匀;
步骤三,将步骤二中的粉料置于烘房中干燥处理,通过测试仪监控材料体系的含水量,当材料体系含水量达到3%~6%时候即停止干燥,随后将粉料放入带塑料内衬的袋子中进行困料;
步骤四,将步骤一和步骤三中制备好的基底层材料、抗腐蚀层材料通过叠压方式一体成型;抗腐蚀材料至于匣钵的底部,厚度控制在3~5mm以内;
步骤五,将步骤四得到的湿胚体置于烘房中进行24小时干燥处理;
步骤六,将步骤五得到的半成品放入轨道窑炉中,按照工艺要求的热处理温度曲线完成烧成过程,最终得到匣钵窑具成品。
窑具烧成过程的热处理工艺如附图3所示:
(1)0~150℃,0.5℃/min;目的是缓慢脱除坯体中的水分,防止干燥开裂;
(2)150~600℃,0.25℃/min;目的是缓慢排除坯体中有机物组分,防止气体挥发太过剧烈产生开裂;
(3)600~1200℃,0.5℃/min;目的是完成低熔点组分的初步烧结;
(4)1200℃,保温4小时;目的是实现耐腐蚀层组分的原位化学反应充分;
(5)1200~1400℃,0.25℃/min;目的是让基体层和耐腐蚀层实现均匀烧结;
(6)1400℃,保温6小时;目的是让基体层和耐腐蚀层实现充分的烧结,保证结合强度达到设计要求;
(7)随炉缓慢冷却;基体层和耐腐蚀层因为热膨胀系数不一致容易发生收缩开裂,而慢的降温速度有利于降低内部应力水平。
性能对比测试情况
注:腐蚀性能测试为811系三元正极材料,锂源材料采用氢氧化锂。
可以看到,具有抗腐蚀层的匣钵首次出现掉皮、腐蚀现象是在第25次,相比于无抗腐蚀层的匣钵在第5次就发生掉皮腐蚀,其耐腐蚀性能大大提升;同时,具有抗腐蚀层的匣钵,在抗热震性、常温抗折以及高温抗折方面的性能并没有减弱。
结论:有抗腐蚀层的匣钵明显增强了抗强碱腐蚀性能,大大提高了匣钵烧成氢氧化锂系高镍三元正极材料(811)的能力,为正极材料厂生产高品质的高镍三元正极材料提供了坚实的保障,同时大大节约正极材料的窑具的消耗量,具有极大的市场应用推广价值。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
1.一种锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:窑具的内外层分别采用不同材质;将外层的基底层与内层的抗腐蚀层叠压成型,再进行烧成处理。
2.根据权利要求1所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:所述抗腐蚀层设置在所述基底层的内侧底部,厚度为3-5mm。
3.根据权利要求1所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:所述基底层为堇青石、莫来石和高岭土的混合物。
4.根据权利要求3所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:所述堇青石、莫来石和高岭土的质量分数分别为35%、40%、25%。
5.根据权利要求1所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:所述抗腐蚀层在烧成前的原材料为高铝类耐高温材料、偏碱性耐高温材料和辅助反应材料的混合物;所述辅助反应材料包括氧化锆、二氧化钛、活性氧化铝、轻质氧化镁粉中的任一种或多种的组合。
6.根据权利要求5所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:所述高铝类耐高温材料包括板状刚玉。
7.根据权利要求6所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:所述偏碱性耐高温材料包括铝镁尖晶石。
8.根据权利要求7所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:所述抗腐蚀层的各原材料配比为,板状刚玉粉40wt.%;电熔镁铝尖晶石微粉18wt.%;活性氧化铝粉10wt.%、高岭土10wt.%、氧化锆粉7wt.%、二氧化钛4wt.%、轻质活性氧化镁粉7wt.%、碳酸钡3wt.%。
9.根据权利要求1所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:窑具的制备步骤为,
步骤一,将基底层的原材料按照工艺要求的比例充分混合均匀,并加水困料处理;
步骤二,将抗腐蚀层的原材料按工艺要求的比例称量,再通过湿法球磨的方式均匀混合制成粉料;
步骤三,将步骤二中的粉料干燥处理,随后进行困料;
步骤四,将步骤一和步骤三中制备好的基底层材料、抗腐蚀层材料通过叠压方式一体成型;
步骤五,将步骤四得到的湿胚体进行干燥处理;
步骤六,将步骤五得到的半成品放入窑炉,按照工艺要求的热处理温度曲线完成烧成过程,最终得到窑具成品。
10.根据权利要求1所述的锂电动力电池正极材料用高耐用性窑具的制备方法,其特征在于:窑具烧成过程的热处理工艺为:
(1)0~150℃,0.5℃/min;
(2)150~600℃,0.25℃/min;
(3)600~1200℃,0.5℃/min;
(4)1200℃,保温4小时;
(5)1200~1400℃,0.25℃/min;
(6)1400℃,保温6小时;
(7)随炉缓慢冷却。
技术总结