一种工作在顺电相高储能反铁电复合陶瓷材料及其制备方法与流程

专利2022-06-29  60


本发明涉及高储能密度反铁电陶瓷材料领域,具体涉及一种工作在顺电相高储能反铁电复合陶瓷材料及其制备方法,所述材料是一种耐高电压和宽温度稳定性的高储能密度反铁电复合陶瓷材料。



背景技术:

电容器是一种简单、便利的电能存储并释放的电子器件。该器件具有高的功率密度(~gw/kg)、长的循环次数(>106)、快的充电和放电速度等特点。另外,也可利用该器件的能量快速释放制备成脉冲电子器件,或用于医疗设备:如心脏除颤器。近年来,电容器在光缆损伤探测、电动汽车、石油天然气勘探等领域也显示出了广阔的应用。同时,电容器小型化、轻型化及多功能方向发展对电容器储能密度及储能效率提出了更高的要求。提高电容器储能特性的关键在于开发出具有高储能密度及高储能效率的电介质材料。

近年来,人们在反铁电陶瓷领域做了大量的开发工作,得到了100多种材料。在无铅化的替代研究中,各种综合性能始终达不到含铅材料的水平;而在以锆酸铅为主体的材料中,人们对各种替代元素进行了反复的研究,发现锆锡钛酸镧铅(plzst)反铁电陶瓷具有较好的储能特性,是国内外公认的优异反铁电陶瓷材料。然而,常规的做法是将工作的温度区域设置在反铁电相,在一定程度上可以得到高于铁电陶瓷的储能密度,但储能效率难以达到90%。我们的研究表明,将居里温度调节到室温以下,让反铁电体工作在顺电相可以获得更大的储能容量和储能效率。由于在顺电相只有极低的能量耗散,不会造成能源浪费和器件局部过热的现象。近期的研究表明,反铁电体在接近相变温度的顺电相具有最大的储能峰和100%的可逆储能,以及较高的温度稳定性。高存储密度的介电材料能够有效实现各种需求,特别是反铁电材料因其电场诱导的极化行为,导致了储能效率的增大。这种具有宽温度稳定性和高储能密度的材料在实际应用中具有重要的价值。



技术实现要素:

本发明的目的是针对现有技术反铁电储能陶瓷材料储能效率低的技术问题,提出一种工作在顺电相高储能反铁电复合陶瓷材料及其制备方法,所述材料是一种耐高电压和宽温度稳定性的高储能密度反铁电复合陶瓷材料。

本发明是这样实现的:利用添加线性介质材料能够降低反铁电材料居里温度及不引入铁电性的原理,将反铁电-顺电相变的居里温度调节到低于室温的温度,可获得:1)尽可能小的剩余极化强度和最大的效率;2)并利用线性介质(如srtio3)的参入,扩大介电峰温区的技术以扩大储能峰的温区范围,保证材料工作的温度稳定性;3)利用提高绝缘性的技术,解决现有技术中反铁电储能陶瓷击穿场强低的技术问题。上述三项均有助于解决反铁电储能陶瓷储能效率低的技术问题。

本发明所述材料的化学通式为:

所述材料居里温度在摄氏零下10-30℃工作温度10-50℃,电场强度180kv/cm,储能密度为4.4~5.4j/cm3,储能效率大于90%。

本发明所述材料的制备方法,包括以下步骤:

1)、按照分子式(pb0.94la0.04)(sn0.4zr0.6)0.8ti0.2o3的摩尔比例称取pb3o4,la2o3,zro2,sno2和tio2,其中,pb3o4过量1wt%;将粉料混合后加适量无水乙醇混合球磨10小时,之后烘干得到预制粉料,在(800℃-880℃)预烧后得到粉料a;

2)、按照分子式及配方[srtio3/catio3]中的摩尔比例10:1~3:1称取srco3,caco3和tio2;将粉料混合后加适量无水乙醇混合球磨6小时,之后烘干得到预制粉料,将其在(1100℃-1250℃)预烧后得到粉料b;

3)、按1:1的摩尔比称取一定量的wo3和mgo2,混合后加去离子水混合球磨10小时,烘干后进行高温烧结,在1400℃-1450℃保温6小时,得到粉料c;

4)将烘干后的a、b和c粉料按配方比例称取相应质量,加适量无水乙醇混合球磨2小时,之后烘干得到主体粉料、;

5)、将步骤4)的混合料再加入少量去离子水并充分搅拌混合形成湿粉以增加粘度,压成直径为12毫米、厚度为3到4毫米的园型坯片,再将其捣碎并研磨成细粉,并将细粉压成直径为12毫米、厚度为1.5到2毫米的园型坯片,在坯片上埋原料粉和zro2粉,置于马弗炉中于1250℃-1300℃烧结2-3小时,烧结结束后自然冷却,出炉得到一次烧结陶瓷片;

6)、将一次烧结陶瓷片在1050℃退火10分钟得到样品;

7)、将步骤6)得到的陶瓷片样品磨平,在其上下表面涂覆银浆,540℃煅烧10分钟后冷却,即得到复合高储能反铁电陶瓷材料。

本发明的制备方法中,首先分别采用固溶法制备反铁电预烧粉体(800℃-880℃)和线性介质材料(1100℃-1250℃),完成反铁电材料与线性介质的分别合成。第三步采用复合方法,以反铁电预烧粉体为母体,以线性介质材料为第二相进行复合(1200℃-1250℃),实现反铁电介质与线性介质的共存,通过较大比例的线性介质实现顺电相的工作温区,获得了储能密度和储能效率具有显著提高的复合材料。

附图说明

图1为本发明实施例1的样品a)在1khz频率下较宽的温度内测量样品的介电常数;b)室温环境下测试电场升高及下降的电极化曲线后通过计算得到的储能密度曲线。

图2为本发明实施例2的样品a)在1khz频率下较宽的温度内测量样品的介电常数;b)室温环境下测试电场升高及下降的电极化曲线后通过计算得到的储能密度曲线。

图3为本发明实施例3的样品a)在1khz频率下较宽的温度内测量样品的介电常数;b)室温环境下测试电场升高及下降的电极化曲线后通过计算得到的储能密度曲线。

具体实施方式

具体实施例1:

(1)高储能密度反铁电材料的制备:

步骤一:按照分子式(pb0.94la0.04)(sn0.4zr0.6)0.8ti0.2o3的摩尔比配料。原料的种类和纯度为pbo(99.9%)(过量1wt%),la2o3(99.9%),zro2(99.5%),sno2(99.6%),tio2(99.6%)。采用湿式球磨法:无水乙醇为球磨介质,将粉料混合后加适量无水乙醇混合球磨10小时,之后烘干得到预制粉料,将其在烧结速率为5℃/每分钟升至880℃后保温3小时。烘干得到粉料a。

步骤二:按照分子式及配方srtio3:catio3为9:1,称取srco3,caco3和tio2采用湿式球磨法:无水乙醇为球磨介质.1000℃以下烧结速率为5℃/每分钟,1000℃以上烧结速率为2-3℃/每分钟,升至1150℃保温2小时。烘干得到粉料b。

步骤三:按1:1的摩尔比称取一定量的wo3和mgo2,混合后加去离子水混合球磨10小时,烘干后进行高温烧结,在1400℃-1450℃保温6小时,得到粉料c;

步骤四:将a、b和c粉料按0.88:0.11:0.01配方称量,加适量无水乙醇混合球磨2小时,之后烘干得到待烧粉料;

步骤五:将待烧粉料加少量去离子水并充分搅拌混合形成湿粉,压成直径为12毫米、厚度为3到4毫米的园型坯片,再将其捣碎并研磨成细粉,并将细粉压成直径为12毫米、厚度为1.5到2毫米的园型坯片,在坯片上埋原料粉和zro2粉,置于马弗炉中升温到1250℃保温2.5小时,之后自然冷却,得到一次烧结陶瓷片;

步骤六:将一次烧结陶瓷片在1050℃退火10分钟得到样品;

步骤七:将烧结好的陶瓷表面打磨光滑,用酒精洗涤干净,上下表面均匀涂覆银浆,于540℃烧银10min,自然冷却至室温,即得到本发明的陶瓷产品。

检测数据所述材料居里温度251k(-22℃)工作温度0-50℃,电场强度180kv/cm,储能密度为5.42j/cm3,储能效率接近100%。

介电常数和储能密度曲线见图1.

具体实施例2

步骤一:用实施例1中步骤一相同的方法制得粉料a。

步骤二:用实施例1中步骤二相同的方法制得粉料b,其中,srtio3:catio3为8.5:1.5。

步骤三:用实施例1中步骤三相同的方法制得粉料c。

步骤四:将步骤一、二、三所得到的粉体按0.88:0.105:0.015的配方称量、混合,加适量无水乙醇混合球磨2小时,粉碎和烘干。

步骤五、步骤六、步骤七:同例1。

检测数据所述材料居里温度260k(-13℃)工作温度10-45℃,电场强度180kv/cm,储能密度为4.85j/cm3,储能效率接近100%。

介电常数和储能密度曲线见图2

实施例3

步骤一:用实施例1中步骤一相同的方法制得粉料a。

步骤二:用实施例1中步骤二相同的方法制得粉料b,其中,srtio3:catio3为8:2。

步骤三:用实施例1中步骤三相同的方法制得粉料c。

步骤四:将步骤一、二、三所得到的粉体按0.88:0.10:0.02的配方称量、混合,加适量无水乙醇混合球磨2小时,粉碎和烘干。。

步骤五、步骤六、步骤七:同例1。

检测数据所述材料居里温度271k(-2℃)工作温度15-40℃,电场强度180kv/cm,储能密度为4.40j/cm3,储能效率接近100%。

介电常数和储能密度曲线见图3。


技术特征:

1.一种工作在顺电相高储能反铁电复合陶瓷材料其特征在于,所述材料的化学通式为:0.88[(pb0.94la0.04)(sn0.4zr0.6)0.8ti0.2o3] (0.10~0.11)[srtio3/catio3] (0.01~0.02)[mgo/wo3]

所述材料居里温度在摄氏-10~-30℃,顺电相工作温度10~50℃,电场强度180kv/cm,储能密度为4.4~5.4j/cm3,储能效率为90~100%。

2.一种工作在顺电相高储能反铁电复合陶瓷材料的制备方法,其特征在于,包括以下步骤:

1)、按照分子式(pb0.94la0.04)(sn0.4zr0.6)0.8ti0.2o3的摩尔比例称取pb3o4,la2o3,zro2,sno2和tio2,其中,pb3o4过量1wt%;将粉料混合后加适量无水乙醇混合球磨10小时,之后烘干得到预制粉料,在(800℃-880℃)预烧后得到a粉料;

2)、按照分子式及配方[srtio3/catio3]中的摩尔比例10:1~3:1称取srco3,caco3和tio2.;将粉料混合后加适量无水乙醇混合球磨6小时,之后烘干得到预制粉料,将其在(1100℃-1250℃)预烧后得到b粉料;

3)、按1:1的摩尔比称取一定量的wo3和mgo2,混合后加去离子水混合球磨10小时,烘干后进行高温预烧,在1400℃-1450℃保温2小时,得到粉料c;

4)、将烘干后的a、b和c粉料按配方称取相应质量,加适量无水乙醇混合球磨6小时,之后烘干得到主体粉料。

5)、将步骤4)的混合料再加入少量去离子水并充分搅拌混合形成湿粉以增加粘度,压成直径为12毫米、厚度为3到4毫米的园型坯片,再将其捣碎并研磨成细粉,并将细粉压成直径为12毫米、厚度为1.5到2毫米的园型坯片,坯片上覆盖薄层主体粉料及zro2粉料,用于补偿pb的挥发和阻止pb在烧结过程中扩散出炉外,置于马弗炉中在1250℃-1300℃烧结2-3小时,烧结结束后自然冷却,出炉得到一次烧结陶瓷片;

6)、将一次烧结陶瓷片在1050℃退火10分钟得到样品;

7)、将步骤6)得到的陶瓷片样品磨平,在其上下表面涂覆银浆,540℃煅烧10分钟后冷却,即得到复合的高储能反铁电陶瓷材料。

技术总结
本发明公开了一种工作在顺电相高储能反铁电复合陶瓷材料及其制备方法,其成分:由反铁电介质A0.88[(Pb0.94La0.04)(Sn0.4Zr0.6)0.8Ti0.2O3],线性介质B(0.08~0.10)[SrTiO3/CaTiO3]和绝缘介质C(0.02~0.04)[MgO/WO3]三部分组成。分别用固溶法制备A、B、C粉体,再按配比混合制备本发明材料,经压片、烧结、磨平、涂覆银浆后,形成本发明的复合高储能反铁电陶瓷材料。本发明的材料居里温度在摄氏‑10~‑30℃,顺电相工作温度10~50℃,电场强度可达180kV/cm,储能密度为4.4~5.4J/cm3,储能效率大于90%。可实现室温环境下高储能的应用。本发明制备工艺简单、性能稳定、温度稳定性好,能量利用率高,适合工业推广。

技术研发人员:曹万强
受保护的技术使用者:湖北大学
技术研发日:2019.08.30
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-53564.html

最新回复(0)