用于通过3D喷墨打印制备由氧化锆制成的陶瓷成形体的方法和料浆与流程

专利2022-06-29  158

本发明涉及用于通过3d喷墨打印方法制备由氧化锆陶瓷制成的陶瓷成形部件,特别是牙科修复体的方法和料浆(slip)。



背景技术:

所谓的构造性方法正越来越多地用于制备成形体。术语“快速成形”、“生成制造方法”或“增材制造方法”经常用作这些构造性方法的同义词。这些术语组合不同的方法,其中由计算机辅助设计数据(cad数据)制备三维模型或组件(a.gebhardt,visionofrapidprototyping,ber.dgk83(2006)7-12)。典型的增材制造方法的实例是立体光刻、3d打印和喷墨建模。快速成形的原理基于三维组件的分层构造。

在3d喷墨打印方法中,可聚合油墨打印是几种方法之一。另外,在粉末床上打印粘合剂或打印液体蜡也是已知的。在3d喷墨打印方法的情况下,遵循与由日常办公生活已知的标准喷墨打印机相同的原理直接打印3d对象,其中可聚合的建模材料(“油墨”)通过可具有若干个喷嘴的压电打印头以限定的液滴分配,油墨固化,从而形成具有期望的打印的轮廓的层。

在喷墨打印中,可以使用具有油墨入口和连接到油墨入口的多个喷嘴的压电打印头,其中压电元件被分配给每个喷嘴。单个喷嘴的压电元件可以通过控制单元单独致动。通过向压电元件施加控制信号,压电元件以目标方式变形,以便于由于变形以限定的液滴尺寸将离散的油墨液滴通过喷嘴排出。液滴的大小和体积以及来自喷嘴的液滴顺序可以通过施加的电脉冲来控制。由于打印头的几何形状和油墨的流变性,压电元件的工作频率通常范围最高可达约20khz。基底上的液滴总和产生期望的限定的二维结构。

这种打印头的喷嘴通常具有很小的开口,其尺寸范围为10至100μm,由于该原因,排出的液滴因此很小;它们的直径在一级近似下对应于喷嘴的开口,其体积在皮升范围内(10-10至10-12升)。因此,在这种打印方法中可以高分辨率打印非常精细的结构。在3d喷墨打印的情况下,通常使用低粘度、可聚合的,通常是可光聚合的物质作为油墨,其在液滴撞击基底后直接固化。通常,这是通过以下方式完成的:横跨基底移动一个或多个打印头,其打印由多个并列的包含光引发剂的可聚合油墨的液滴组成的二维结构,并随后(或平行)将液滴暴露在光源下,该光源发射具有适当波长的光,以使油墨的可光聚合材料聚合。

通常,用于这种3d喷墨打印方法的油墨含有填充剂。填充剂可以例如是颜料、遮光剂等,其改变了油墨的光学性质。但是,油墨的流动性质也可以被填充剂影响,或流变受填充剂控制。在3d喷墨打印的情况下,为了构造陶瓷成形体,填充剂颗粒是必需的。在这种情况下,填充剂颗粒是实际的构造材料(例如氧化物陶瓷)。围绕它们的液体仅仅是用于使用所述技术将这些颗粒构建成成形体的基质。颗粒不直接影响长宽比(厚度或层深),而是影响成形体的机械、光学、热和电性质。

如果希望由特定材料,例如金属或陶瓷制备3d成形体,则填充剂颗粒不仅是设定成形体特定尺寸或机械性质的辅助材料,而且是油墨的主要成分,并且油墨的液体成分起到一类载体物质的作用。作为一级近似,悬浮液中固体的比例越高,即包含在油墨中作为填充剂的颗粒越多,就越容易实现三维成形体的尺寸和机械性质。通常,粒度在0.1至1μm的范围内,其特别适合实现高的填充剂负载。但是,高比例的固体颗粒可以以两种方式对油墨或随后对液滴排出/打印过程具有负面影响。一方面,随着填充剂负载的增加,油墨的粘度增加,因此油墨的流动性质恶化。另一方面,存在细喷嘴变得被阻塞或部分堵塞的风险,其结果是可以阻止或阻碍液滴的排出。

在ep2233449a1中描述了陶瓷填充的油墨,即所谓的料浆,其适合构建牙科修复体,并且其可以在根据本发明的3d喷墨打印方法中使用。这些油墨可以包含陶瓷颗粒、蜡和至少一种可自由基聚合的单体。有关这些材料的更多细节,参考指定的公开的专利申请。

由ep2529694a1已知一种用于通过三维打印制备陶瓷成形部件的方法,其中至少使用两种具有不同组成的陶瓷料浆。陶瓷料浆的施加是这样进行的:根据位置控制料浆的相对比例,使得它们在层内沿着层平面中的至少一个方向以预定方式变化,其中,料浆的施加模式可以因层而异。以这种方式,可以制备成形体,其材料性质在三个空间方向上变化。

wo2015/056230a1公开了一种用于通过打印包含载液和分散剂的料浆来制备三维物体的方法。设置最后的打印层的温度,使其处于载液的沸点以上且分散剂的沸点以下。以这样的方式,在打印过程中,载液已经蒸发,而至少一部分分散剂保留在打印层中,并将料浆的颗粒保持在一起。

通过分层构造获得的未烧结体称为生坯或生压坯。已知方法的缺点在于,这些生坯必须在它们可以最终被烧结之前,在打印过程之后的附加步骤中脱粘。在脱粘期间,油墨的有机成分通过热分解被大部分除去。由于有机成分的分解,成形体暴露于高应力下,其可以导致微裂纹的形成,损害该成形体的使用性质,或甚至使它们完全无法使用。



技术实现要素:

本发明的目的是克服现有技术的缺点,并提供用于通过3d打印制备由氧化锆陶瓷制成的陶瓷体的料浆和方法,其使单独的脱粘步骤变得多余。

该目的通过包含悬浮在液体介质中的氧化锆的料浆来实现。所述料浆的氧化锆含量为68至88重量%,优选为70至86重量%,特别优选为75至85重量%。所述料浆的特征在于相对于料浆中的固体的量,其含有不超过5重量%,优选不超过3重量%,更优选不超过2重量%,最优选不超过1重量%的有机组分。在下文中,该料浆也称为悬浮液。

根据本发明的目的进一步地通过一种用于制备陶瓷组件的方法来实现,其中:

(i)将料浆分层成形为期望组件的几何形状,其中单个层各自优选在打印后干燥,

(ii)然后任选地干燥如此获得的生压坯,并且

(iii)然后任选地烧结生压坯。

步骤(i)中的生压坯的构造优选通过分层喷墨打印方法实现。在组件的尺寸确定中应考虑到以后的烧结收缩率。根据该方法的优选实施方案,在打印之后将单个层各自干燥。层的干燥优选采用气流和/或通过ir辐射实现。

在步骤(ii)中,优选(进一步)干燥步骤(i)中获得的生压坯,其中在干燥后可能残留一定量的残留水分。干燥的目的是固化先前的液体料浆。

特别地,本发明涉及用于通过具有压电打印头的3d喷墨打印方法来分层构造成形体的方法,该压电打印头具有油墨入口和与其连接的若干个喷嘴,每个喷嘴分配有压电元件,其可以作用在相关联的喷嘴上,以便从其中排出油墨,其中压电打印头的每个压电元件都可以由控制单元单独致动以排出油墨,并由控制单元监控其排出,其中在该方法中,由控制单元控制的压电打印头在构造区域上方移动,由控制单元分别致动压电元件,用以局部选择性地施加填充油墨,从而因此施加具有由控制单元预定的轮廓的层,使施加的层固化并且通过连续施加各自具有预定轮廓的层来构建期望的成形体。

控制单元优选地被配置为在预定数量的打印层之后和/或如果控制单元检测到压电打印头的喷嘴中的油墨的排出减少,则将压电打印头移出构造区域,然后通过以至少20khz的频率激发待清洗的喷嘴的一个或多个压电元件以产生超声波,以粉碎并释放喷嘴中的任何沉积物,使压电打印头的排出减少的一个或多个喷嘴或所有喷嘴经受喷嘴清洁。

本发明还涉及该料浆用于制备陶瓷成形部件的用途。

根据本发明的料浆和根据本发明的方法适合制备由氧化锆陶瓷制成的陶瓷组件,特别适合制备牙科修复体,例如嵌体、高嵌体、饰面、牙冠、牙桥、牙架、植入物、壳体或基牙。

然而,该料浆和该方法也适合制备其他医疗假体,例如髋关节或膝关节假体和整形外科骨替代物。

此外,该料浆和该方法适合制备用于机械制造的复杂陶瓷组件。

悬浮液中的氧化锆以颗粒形式存在,并且相对于所有颗粒的体积,作为d50值测量的粒度优选为50至250nm,更优选为60至250nm,最优选为80至250nm。粒度的确定优选根据iso13320:2009通过静态激光散射(sls)方法实现,例如使用来自horiba的la-960粒度分析仪,或根据iso22412:2017采用动态光散射(dls)方法实现,例如使用来自colloidmetrix的nano-flex颗粒测量设备。d50意指50%的颗粒小于引用值,而50%的颗粒大于引用值。

陶瓷颗粒应远小于用于打印料浆的喷墨打印机的打印头喷嘴的平均直径。为了能够使用喷嘴直径为约100μm或更小的现有喷墨打印机打印,在根据本发明的料浆中优选使用最大粒度小于或等于5μm,特别是小于或等于1μm的陶瓷颗粒。颗粒的尺寸优选为0.01至5μm,特别优选为0.01至2μm,非常特别优选为0.01至1μm,其中在此意指陶瓷颗粒尺寸的绝对上限和下限。

特别地,氧化锆的一次粒度在30至100nm的范围内,并且通常同样采用如上所述的动态光散射(dls)方法或通过扫描电子显微镜方法确定。

特别地,氧化锆是基于四方氧化锆多晶体(tzp)的氧化锆。优选用y2o3、la2o3、ceo2、mgo和/或cao稳定的氧化锆,特别是用相对于氧化锆含量2至14摩尔%,优选2至10摩尔%,更优选2至8摩尔%,最优选3至6摩尔%的这些氧化物稳定的氧化锆。

在根据本发明的方法中使用的氧化锆也可以被染色。优选通过将一种或多种着色元素添加到氧化锆来实现期望的染色。着色元素的添加有时也称为掺杂,并且其通常在氧化锆粉末的制备过程中通过共沉淀和随后的煅烧实现。合适的着色元素的实例是fe、mn、cr、ni、co、pr、ce、eu、gd、nd、yb、tb、er和bi。

悬浮液中的氧化锆还可以是具有不同组成的氧化锆粉末的混合物,特别是在最终制备的牙科修复体中导致不同的着色和/或半透明度。借助于不同着色的氧化锆粉末的混合物,可以因此容易地并且以目标方式设置期望的成形体的期望的颜色。以同样的方式,通过使用具有不同半透明度的氧化锆粉末的混合物,也可以以目标方式设置所制备的成形体的半透明度。可以特别通过所使用的氧化锆粉末的氧化钇含量来控制所制备的成形体的半透明程度。

悬浮液也可以是不同悬浮液与例如不同着色的氧化锆的混合物,其中可以在打印之前或在打印过程中将不同的悬浮液彼此混合。在打印过程期间的混合可以例如通过同时但各自用单独的打印头打印两种或更多种不同的悬浮液来实现。

在根据本发明的方法中,氧化锆作为在液体介质中的悬浮液存在。液体介质可以包含有机和/或无机溶剂。优选的无机溶剂是水。优选的有机溶剂是与水可混溶的溶剂,特别是醇、酮、酯、醚及其混合物。同样可以使用水与一种或多种有机溶剂的混合物。特别地,液体介质含有水,其中非常特别优选仅含有水作为溶剂的那些悬浮液。

根据本发明的料浆的特征在于该料浆仅具有少量的有机组分,即相对于悬浮液中的固体的量,其包含的有机组分的量不超过5重量%,优选不超过3重量%,更优选不超过2重量%,最优选不超过1重量%。

在进一步优选的实施方案中,相对于悬浮液中的固体的量,液体介质包含的有机组分的量为0.05至5重量%,特别是0.1至3重量%,更优选0.1至2重量%,最优选0.1至1重量%。

特别地,考虑将分散剂、粘合剂、用于设置ph的试剂、稳定剂和/或消泡剂作为有机组分。

分散剂用于防止悬浮颗粒聚集形成较大的颗粒。相对于悬浮液中的固体量,料浆中分散剂的量优选为0.01至5重量%,更优选0.1至2重量%,最优选0.1至1重量%。

合适的分散剂是水溶性聚合物,例如聚乙烯醇,聚乙烯亚胺,聚丙烯酰胺,聚环氧乙烷,聚乙二醇,(甲基)丙烯酸的均聚物和共聚物,聚乙烯吡咯烷酮;生物聚合物,例如淀粉、藻酸盐、明胶、纤维素醚(例如羧甲基纤维素);乙烯基磺酸和乙烯基膦酸。

优选的分散剂是氨基醇,例如乙醇胺;二醇,例如乙二醇和二丙二醇;羧酸,例如马来酸和柠檬酸;和羧酸盐,以及这些分散剂的混合物。

进一步优选的是,料浆包含至少一种选自氨基醇、二醇、羧酸和羧酸盐的化合物作为分散剂。料浆特别优选包含至少一种选自乙醇胺、乙二醇、二丙二醇、柠檬酸和柠檬酸盐的化合物。

特别优选的分散剂是聚羧酸、羧酸、聚羧酸盐、羧酸盐和/或胺。非常特别优选柠檬酸、乙酸、马来酸、柠檬酸铵、柠檬酸二铵、柠檬酸三铵、马来酸铵、马来酸二铵和甲酸铵。

非常特别优选的胺是乙醇胺、二乙醇胺和三乙醇胺。

粘合剂促进步骤(i)之后存在的生坯中颗粒的内聚。相对于悬浮液中的固体的量,料浆中的粘合剂的量优选为0.01至5重量%,更优选为0.01至3重量%,最优选为0.01至2重量%。

合适的粘合剂的实例是甲基纤维素、羧甲基纤维素钠、淀粉、糊精、藻酸钠、藻酸铵、聚乙二醇、聚乙烯醇缩丁醛、丙烯酸酯聚合物、聚乙烯亚胺、聚乙烯醇、聚乙烯吡咯烷酮及其混合物。

优选的粘合剂是聚乙烯醇、聚乙酸乙烯酯、聚乙烯吡咯烷酮、聚丙烯酸、丙烯酸酯和丙烯酸的共聚物、聚丙烯酸乙酯、聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚丙烯酸铵、聚甲基丙烯酸铵、聚乙二醇以及乙二醇和丙二醇的固体共聚物。

特别优选的粘合剂是聚二醇和二醇,非常特别优选二丙二醇和/或聚乙二醇。

通过根据本发明的方法可获得的生压坯的另一个优点是,尽管粘合剂的比例小,但即使没有预先预烧结,其也具有足够的强度,能够被进一步加工。

酸和碱,如羧酸,例如2-(2-甲氧基乙氧基)乙酸和2-[2-(2-甲氧基乙氧基)乙氧基]乙酸,无机酸,例如盐酸和硝酸,以及氢氧化铵和四甲基氢氧化铵,优选作为用于设置ph的试剂和稳定剂。特别优选液体介质包含四甲基氢氧化铵。

用于设置ph的优选的试剂是酸、碱及其盐。非常特别优选的是hno3、hcl、nh4oh、2,2-甲氧基乙氧基柠檬酸、2,2,2-甲氧基乙氧基乙氧基柠檬酸和/或四甲基氢氧化铵。

消泡剂用于防止悬浮液中的气泡。相对于悬浮液中固体的量,其在液体介质中的通常用量为0.00001至1重量%,优选为0.00001至0.5重量%,特别优选为0.001至0.1重量%。合适的消泡剂的实例是石蜡、硅油、烷基聚硅氧烷、高级醇、丙二醇、环氧乙烷-环氧丙烷加合物,特别是烷基聚亚烷基二醇醚。

进一步优选的是,悬浮液具有5mpas至500mpas,优选为5mpas至250mpas,特别优选为5至100mpas的粘度。除非另有说明,粘度是使用直径为50mm,角度为1°的具有锥板系统的旋转粘度计(模块化紧凑流变仪mcr302,来自antonpaargmbh),在范围为0.1-1000s-1的剪切速率和25℃的温度下测量的。

为了制备悬浮液,通常将粉末形式的氧化锆与液体介质紧密混合。也可以使用例如不同着色的氧化锆的混合物。在这种混合期间,通常也将存在的聚集物破碎,并且还可以研磨所用的氧化锆以产生期望的粒度。因此,氧化锆和液体介质的混合可以例如有利地在搅拌珠磨机中进行。

然而,陶瓷一次颗粒的聚集物也可以存在于料浆中,只要它们足够小以能够用期望的喷墨喷嘴打印,即在优选的实施方案中,聚集物整体上满足上述粒度条件。然而,优选的是颗粒以非聚集形式存在,例如全部或主要以一次颗粒形式存在。

根据本发明的料浆在每种情况下相对于料浆的总质量优选地包含:

-60至90重量%的氧化锆颗粒,

-10至40重量%的液体介质,优选水,

-0.002至2.0重量%的分散剂,

-0.001至2.0重量%的粘合剂,和

-0.001至1.0重量%的用于设置ph的试剂。

具有以下组成的料浆是特别优选的(相对于料浆的总质量):

具有以下组成的料浆是更优选的(相对于料浆的总质量):

具有以下组成的料浆是最优选的(相对于料浆的总质量):

在所有情况下,包含上述定义的优选和特别优选的成分的料浆都是优选的。

根据本发明的料浆特别适合用于喷墨打印,但是原则上它们也可以用于其他方法,例如也可以使用不同的增材制造方法,例如通过立体光刻法,或通过热浇铸法(低压注塑)或通过液滴沉积于粉末法(drop-on-powderprocess)(在粉末床上打印),由根据本发明的料浆制备生坯。在液滴沉积于粉末法中,优选将料浆打印在zro2颗粒床上。

优选地,通过在喷墨打印过程中将料浆逐层形成为生坯的几何形状,由根据本发明的料浆制备生坯。在根据本发明的方法中优选使用可商购的高分辨率工业多喷嘴打印头。为了同时打印若干种料浆,优选地,打印机与若干个打印头一起使用,每个打印头均由不同的容器供应,以便可以打印两种或更多不同的料浆。

为了制备生压坯,可以将支撑材料与陶瓷料浆一起打印。支撑材料是在打印底切、悬垂或空洞时使用的材料,并且在打印后再次从坯体去除。支撑材料的打印优选采用单独的打印头进行。支撑材料优选仅包含在脱粘和烧结过程中完全除去的有机成分。用于制备料浆的粘合剂特别适合用作支撑材料。优选的支撑材料在以下专利中描述:us9,138,981b2、us8,460,451b2、us7,176,253b2、us7,399,796b2和us9,534,103b2。与料浆中存在的有机成分不同,支撑材料可以相对容易地除去,因为它们不会被截留在陶瓷材料中。

通过分层构造获得的未烧结体称为生坯或生压坯。优选将生坯干燥。干燥可以在生坯完成之后分层进行和/或在单独的方法步骤(ii)中进行,优选在气流和/或ir辐射的帮助下进行。优选分层干燥,特别是随后干燥生坯的分层干燥。

干燥优选在10至100℃,优选20至80℃,更优选20至60℃的温度下进行。

干燥进一步优选在20至90%,优选30至90%,更优选40至90%的相对空气湿度下进行。

干燥的持续时间优选为0.1至12h,更优选为0.1至6h,最优选为1至6h。

打印的组件或各个打印层的干燥可以在打印机内部进行,或者在打印的组件的情况下,也可以在打印过程之后在气候室内进行。干燥可以在对流或不对流的每种情况下通过红外辐射和/或微波进行。根据本发明所述的方法的一个特别优选的实施方案,生坯的干燥作为步骤(iii)中烧结的一部分进行。

干燥后获得的生坯的特征在于出人意料的高密度。生坯优选具有3.3至4.0g/cm3,更优选为3.35至3.9g/cm3,最优选为3.4至3.9g/cm3的密度。密度根据iso15901-1:2016通过水银孔率法(mercuryporosimetry)确定。

在进一步优选的实施方案中,生坯具有0.08至0.14cm3/g,特别是0.08至0.12cm3/g,更优选为0.08至0.10cm3/g的孔体积。孔体积根据iso15901-1:2016通过水银孔率法确定。

在另一个优选的实施方案中,生坯具有0.02至0.12μm,特别是0.03至0.10μm,更优选为0.04至0.08μm的相对于颗粒体积作为d50值测量的孔径。孔径根据iso15901-1:2016通过水银孔率法确定。

干燥后,生坯可以任选地在另外的步骤中通过施加染色溶液而被单独染色。染色溶液优选借助于喷雾装置,优选机器人控制的喷雾装置施加。采用这种单独着色,可以以限定的方式局部设置半透明度和/或颜色。这里的半透明度由优选含有钇、镧、钆或yb离子及其混合物的溶液设置。颜色由包含fe、mn、cr、co、ni、ce、pr、tb、bi、er离子及其混合物的溶液设置。

由于其有机组分含量低,因此可以在打印以及任选的随后的干燥后直接烧结生坯。不需要单独的热处理来去除有机成分(脱粘)。

如果要在烧结过程中进行生坯的干燥,则为此目的优选将打印的生坯放置在具有可调炉罩的烧结炉中的合适载体上。采用敞开的炉罩和在室温下,将生坯放置在炉中,然后将位于炉罩中的加热元件加热,优选加热到30至400℃的温度,然后缓慢降低炉罩。一旦炉罩把炉子封闭,就进行烧结。特别是当生压坯具有小于5重量%的残余水分时,考虑在烧结过程中干燥生压坯。

根据本发明的生坯的特征在于,它们在致密烧结期间仅经历低线性收缩。由此使得具有期望的精确尺寸的牙科修复体的制备更容易,并且其配合精度改善。

优选地,根据本发明的生坯具有小于18%,更优选小于17%,最优选小于16%的线性收缩率。线性收缩率s由下式得出,并且为了确定该线性收缩率,通过netzschdil402supreme膨胀计在20℃至1550℃的温度范围内在尺寸为长度=25mm±1mm、宽度=5mm±0.5mm和高度=4mm±0.5mm的试件上以2k/min的加热速率进行测量。

线性收缩率:

由线性收缩率s,可以根据以下公式计算体积收缩率svol:

体积收缩率:

优选在步骤(iii)中在1200至1600℃,更优选1300至1550℃,最优选1350至1500℃的烧结温度下对根据本发明的生坯进行致密烧结。致密烧结导致陶瓷成形体的形成,该陶瓷成形体优选具有高于5.9g/cm3,更优选高于6.00g/cm3,最优选高于6.02g/cm3的密度。由于该高密度,所获得的成形体还具有优异的机械性质。

尤其有利的是,具有从室温加热、保持在最高烧结温度下和冷却的整个致密烧结过程仅占据非常短的时间段,并且在其完成之后,仍然获得具有所寻求的高半透明度和非常好的机械性质的成形体,尤其是牙科修复体。因此,根据本发明的方法优于常规方法,该常规方法需要很长的时间段以通过烧结制备具有相当的半透明度的牙科修复体。因此,根据本发明的方法将非常短的过程持续时间的优点与所制备的牙科修复体的非常好的光学和机械性质的优点组合。

在根据本发明的方法的一个优选实施方案中,用于将生坯从室温加热至烧结温度以进行致密烧结、保持在烧结温度下和冷却至最终温度的时间段不超过6小时,优选不超过4小时,更优选不超过2小时。“最终温度”在这里意指可以用手拾取样品的温度,并且其特别是15至80℃,优选25至60℃,并且更优选约50℃。“室温”优选意指15至30℃,更优选20至25℃,最优选约25℃的温度。

加热速率优选大于10k/min,更优选大于20k/min,最优选大于30k/min。保持时间优选小于120min,更优选小于60min,最优选小于30min。从烧结温度到最终温度的冷却速率优选大于50k/min,更优选大于100k/min,最优选大于150k/min。

加热速率的优选范围是10k/min至500k/min,更优选20k/min至300k/min,最优选30k/min至200k/min。

保持时间优选为1分钟至60分钟,更优选为1分钟至30分钟,最优选为1分钟至10分钟。

冷却速率的优选范围是10k/min至500k/min,更优选20k/min至300k/min,最优选30k/min至200k/min。

通过根据本发明的成形的生坯在致密烧结过程中经历的低线性收缩,使得具有期望的精确尺寸的牙科修复体的制备更容易,并且其配合精度改善。不言而喻,在打印过程期间要相应地考虑到烧结过程中的收缩,即按比例放大地打印成形体,使得它们在烧结后具有期望的尺寸。

在一个优选的实施方案中,

(a)将生坯加热到温度t1,

(b)任选地进一步加热到温度t2,并在温度t2下保持和烧结,和

(c)冷却至温度t3,

其中温度t1比温度t2低0至500k,优选10至250k,更优选25至200k,最优选50至100k,并且步骤(a)在比步骤(b)更低的压力下进行。在此进一步优选的是,步骤(a)中的压力低于200毫巴,优选低于100毫巴,更优选低于50毫巴,并且优选在0.1至200毫巴,更优选1至150毫巴,最优选50至100毫巴的范围内。同样优选的是,步骤(b)在大于500毫巴的压力下,并且优选在环境压力下,并且优选在含氧气氛如空气、富氧空气或氧中进行。在一个优选的实施方案中,含氧气氛,优选空气、富氧空气或氧连续流过在步骤(b)期间用于加热的加热室。

在致密烧结之后获得的成形体还可以任选地设置饰面、抛光和/或上釉。

使用根据本发明的方法制备的牙科修复体特别是牙桥、嵌体、高嵌体、牙冠、饰面、植入物、壳体或基牙。

具体实施方式

下面参照实施例更详细地解释本发明。

实施例

实施例1

具有76重量%氧化锆的悬浮液

将3.15g的含有柠檬酸或柠檬酸盐的分散剂(dolapixce64,来自zschimmer&schwarz)和1.5g四甲基氢氧化铵依次溶解在194.4g的蒸馏水中。该溶液的ph为10-10.5。

将该溶液置于microcer搅拌珠磨机(来自netzsch)的储罐中,其研磨室和转子由氧化锆制成。研磨室装有60ml直径为0.2-0.3mm的氧化锆研磨珠(来自tosoh)。在转子的转速为1500rpm的情况下,使用蠕动泵(管内径8mm)将溶液连续泵送通过研磨室。然后将630g用3mol%的y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-245,一次粒度:40nm)连续地并在搅拌下添加到储罐中的溶液中。一旦完成氧化锆粉末的添加,就将获得的混合物泵送通过研磨室,然后以约40l/h的速度连续45分钟返回储罐。将以此方式制备的悬浮液转移到塑料烧杯中,并通过磁力搅拌器非常缓慢地搅拌,以除去截留的气泡。另外,加入一滴烷基聚亚烷基二醇醚作为消泡剂(contraspum,来自zschimmer&schwarz)。

得到的悬浮液具有76重量%的氧化锆含量。悬浮液的粘度η为7.25mpas(在500s-1的剪切速率和25℃的温度下)。

实施例2

通过3d喷墨打印制备试件

在喷嘴处直接具有流体循环的喷墨打印头(ricohmh5421f)用于打印过程。打印头在供应端以恒定的正压(30-120毫巴)运行,在返回端以恒定的负压(-40到-150毫巴)运行。使用来自实施例1的料浆打印具有以下尺寸的试件:长度=25mm±1mm,宽度=5mm±0.5mm,高度=4mm±0.5mm。线性收缩率为15.43%。为了测量密度,准备了具有以下尺寸的试件:长度=5mm±1mm,宽度=5mm±1mm,高度=10mm±1mm。试件在500℃下脱粘,然后具有3.678g/cm3的密度。然后根据以下温度计划在烧结炉(来自ivoclarvivadentag的programatcs4)中对试件进行致密烧结:

实施例3

具有83重量%氧化锆的悬浮液

为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成试件(a)和用于“诊疗椅边”应用的块料(b),重复实施例1,不同之处在于溶液中含有164.5g蒸馏水,4.05g含有柠檬酸或柠檬酸盐的分散剂(dolapixce64,来自zschimmer&schwarz),和1.5g四甲基氢氧化铵,加入810g用5mol%的y2o3部分稳定的氧化锆粉末(tosohcorporation的tz-px-430,一次粒度:90nm),以及在900℃下进行预烧结2h,其中加热速率同样为0.250k/min。

悬浮液的粘度η为7.0mpas(在1000s-1的剪切速率和25℃的温度下)。

实施例4

通过3d喷墨打印制备试件

以实施例2中所述的方式,用来自实施例3的料浆制备试件。线性收缩率为14.43%。将试件(长度=5mm±1mm,宽度=5mm±1mm,高度=10mm±1mm)在500℃下脱粘,然后具有3.791g/cm3的密度。然后根据实施例2中描述的温度计划在烧结炉(来自ivoclarvivadentag的programatcs4)中将试件致密烧结。

实施例5

具有80重量%氧化锆的悬浮液

为了制备具有80重量%的氧化锆的悬浮液并对其进行加工以形成试件(a),重复实施例1,不同之处在于溶液含有179.5g蒸馏水,3.6g含有柠檬酸或柠檬酸盐的分散剂(dolapixce64,来自zschimmer&schwarz),和1.5g四甲基氢氧化铵,以及加入720g用4.25mol%的y2o3部分稳定的氧化锆粉末(tosohcorporation的tz-px-551,一次粒度:90nm)。

悬浮液的粘度η为14.6mpas(在500s-1的剪切速率和25℃的温度下)。

实施例6

通过3d喷墨打印制备试件

以实施例2中所述的方式,用来自实施例5的料浆制备试件。线性收缩率为14.59%。试件在500℃下脱粘,然后具有3.780g/cm3的密度。

实施例7

具有83重量%氧化锆的悬浮液

为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成试件(a),重复实施例1,不同之处在于溶液含有164.5g蒸馏水,3.15g包含柠檬酸或柠檬酸盐的分散剂(dolapixce64,来自dschpix&schwarz),和1.5g四甲基氢氧化铵,以及加入810g用3mol%的y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-245,一次粒度:40nm)。

实施例8

通过3d喷墨打印制备试件

以实施例2中所述的方式,用来自实施例7的料浆制备试件。将试件在500℃下脱粘,然后具有以下性质:

-孔体积:0.1139cm3/g

-孔半径:0.0190μm

-密度:3.562g/cm3

实施例9

具有83重量%氧化锆的悬浮液

为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成试件(a),重复实施例1,不同之处在于溶液含有164.5g蒸馏水,3.15g包含柠檬酸或柠檬酸盐的分散剂(dolapixce64,来自zschimmer&schwarz),和2.0g四甲基氢氧化铵,以及加入810g用4.25mol%的y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-551,一次粒度:90nm)。

实施例10

通过3d喷墨打印制备试件

以实施例2中所述的方式,用来自实施例9的料浆制备试件。将试件在500℃下脱粘,然后具有以下性质:

-孔体积:0.1109cm3/g

-孔半径:0.0248μm

-密度:3.547g/cm3

实施例11

具有83重量%氧化锆的悬浮液

为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成试件(a),重复实施例1,不同之处在于溶液含有164.5g蒸馏水,3.15g包含柠檬酸或柠檬酸盐的分散剂(dolapixce64,zschimmer&schwarz),和2.0g四甲基氢氧化铵,以及加入810g用5.0mol%的y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-430,一次粒度:90nm)。

实施例12

通过3d喷墨打印制备试件

以实施例2中所述的方式,用来自实施例11的料浆制备试件。将试件在500℃下脱粘,然后具有以下性质:

-孔体积:0.1056cm3/g

-孔半径:0.0253μm

-密度:3.783g/cm3


技术特征:

1.一种用于喷墨打印方法的料浆,其包含悬浮在液体介质中的氧化锆,其中所述料浆的氧化锆含量为68至88重量%,优选为70至86重量%,特别优选为75至85重量%,其特征在于,相对于所述料浆的总质量,其包含不超过5重量%,优选不超过3重量%,更优选不超过2重量%,特别优选不超过1重量%的有机组分。

2.根据权利要求1所述的料浆,其中所述料浆中的氧化锆具有作为d50值测量的且相对于颗粒的体积的50至250nm,特别是60至250nm,优选80至250nm的粒度。

3.根据权利要求1或2所述的料浆,其中所述料浆中的氧化锆具有30至100nm的一次粒度。

4.根据权利要求1至3之一所述的料浆,其中所述氧化锆用y2o3、la2o3、ceo2、mgo和/或cao稳定,并且优选用相对于氧化锆含量2至14摩尔%,更优选2至10摩尔%,特别优选2至8摩尔%的这些氧化物稳定。

5.根据权利要求1至4之一所述的料浆,其中所述液体介质包含水。

6.根据权利要求1至5之一所述的料浆,相对于所述料浆的总质量,其包含的有机组分的量为0.05至5重量%,特别是0.1至3重量%,优选为0.1至2重量%,并且特别优选为0.1至1重量%。

7.根据权利要求1至6之一所述的料浆,其中所述液体介质包含至少一种选自氨基醇、二醇、羧酸和羧酸盐的化合物,并且优选包含至少一种选自乙醇胺、乙二醇、二丙二醇、柠檬酸和柠檬酸盐的化合物。

8.根据权利要求1至7之一所述的料浆,其在0.1至1000s-1的剪切速率和25℃的温度下测量的粘度为5至1000mpas,特别是5至500mpas,优选为5至250mpas。

9.根据权利要求1至8之一所述的料浆,其包含具有不同组成并且特别是具有不同着色和/或半透明度的氧化锆粉末的混合物。

10.根据前述权利要求之一所述的料浆用于制备陶瓷成形部件的用途。

11.根据权利要求10的用途,其中所述陶瓷成形部件是牙科修复体,例如嵌体、高嵌体、饰面、牙冠、牙桥、牙架、植入物、壳体或基牙。

12.一种用于制备陶瓷组件的方法,其中:

(i)将根据权利要求1至9之一所述的料浆分层成形为期望的组件的几何形状,其中单个层各自优选在打印后干燥,

(ii)然后任选地干燥如此获得的生压坯,并且

(iii)然后烧结生压坯,

其中步骤(i)中的生压坯的分层构造优选通过分层喷墨打印方法实现。

13.根据权利要求12所述的方法,其中在步骤(ii)中将步骤(i)中形成的生坯在10至100℃,优选20至80℃,特别优选20至60℃的温度下干燥。

14.根据权利要求12或13所述的方法,其中所述生坯的密度为3.3至4.0g/cm3,特别是3.35至3.9g/cm3,并且优选为3.4至3.9g/cm3

和/或

孔体积为0.08至0.14cm3/g,特别是0.08至0.12cm3/g,优选0.08至0.10cm3/g

和/或

相对于颗粒的体积作为d50值测量的孔径为0.02至0.12μm,特别是0.03至0.10μm,优选0.04至0.08μm。

15.根据权利要求12至14之一所述的方法,其中所述生坯在1200至1600℃,特别是1300至1550℃,并且优选为1350至1500℃的烧结温度下被致密烧结。

16.根据权利要求15所述的方法,其中将生坯从室温加热到烧结温度,保持在烧结温度下以及冷却到最终温度的时间段不超过6小时,优选不超过4小时,并且特别优选不超过2小时。

17.根据权利要求15或16所述的方法,其中

(a)将生坯加热到温度t1,

(b)任选地进一步加热到温度t2,并在所述温度t2下保持并烧结,和

(c)冷却至温度t3,

其中所述温度t1比所述温度t2低0至500k,特别是10至250k,优选25至200k,特别优选50至100k,并且步骤(a)在比步骤(b)更低的压力下实现。

18.根据权利要求12至16之一所述的方法,其中所述陶瓷组件是牙科修复体,优选为嵌体、高嵌体、饰面、牙冠、牙桥、牙架、植入物、壳体或基牙。

技术总结
用于通过3D喷墨打印方法制备由氧化锆制成的陶瓷成形体的方法和料浆。所述料浆包含悬浮在液体介质中的氧化锆,其中所述料浆具有68至88重量%的氧化锆含量,并且包含不超过5重量%的有机组分。所述陶瓷组件的制备方法包括分层成形,随后由所述料浆烧结期望的组件。

技术研发人员:J·伦纳;C·里茨伯格
受保护的技术使用者:义获嘉伟瓦登特公司
技术研发日:2019.11.28
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-53557.html

最新回复(0)