本发明涉及一种用于制备氧化锆坯料的方法,该坯料在期望的成形后,可以在非常短的时间内被致密地烧结,以形成具有优异光学性质的牙科修复体。
背景技术:
氧化锆陶瓷经常用于制备完全解剖学的牙科修复体。它们提供高的临床安全性、不含金属,也可用于微创制剂中,并且与其他不含金属的修复体相比,价格上非常有吸引力。修复体通常是用预烧结的坯料铣削或研磨而成的,通过热处理致密烧结,并且最后任选地提供饰面和/或上釉。
用于制备氧化锆坯料的方法及其加工以形成牙科修复体的方法是已知的。
wo2014/209626描述了一种用于制备氧化锆坯料的方法,该坯料在预烧结和通过cad/cam方法加工之后,可以通过在低于1200℃的温度下致密烧结进行加工以形成牙科修复体。修复体的特征在于它们不仅是半透明的而且是乳白色的。为了制备坯料,例如将平均初级粒度不大于20nm的纳米级氧化锆颗粒的悬浮液倾倒入相应的模具中。然而,悬浮液的制备是费力的,因为用作原料的市售悬浮液首先需要漫长的浓缩步骤。通过铸造获得的生坯也需要非常缓慢地干燥以避免形成裂纹,这需要几天时间,特别是在具有更大厚度的坯料的情况下。最后,整个致密地烧结过程也非常耗时,并且需要大于4个小时,因此无法满足患者的快速完成修复体研磨和从坯料中铣削出来的期望。
wo2009/061410和wo2013/181018描述了用于通过悬浮液的流延铸造制备氧化锆坯料的方法。据说这些坯料在干燥、预烧结、例如通过cad/cam方法的加工、和随后的致密烧结后产生半透明的牙科修复体。然而,没有给出该方法及其中使用的悬浮液的具体实例,也没有具体说明用于致密烧结的确切条件,和特别是其持续时间。
ep826642描述了一种用于牙科修复体的陶瓷框架的制备方法。该方法包括将具有氧化铝和氧化锆颗粒内容物的悬浮液进行流延铸造,以形成陶瓷膜;将该膜层叠到牙齿的石膏模型上;施加压力以使膜与模型结合;在500℃下热处理;在1150℃下烧结;用玻璃粉末涂覆烧结体并进一步加热。
kr101416654b1描述了一种使用氧化锆废料,诸如特别是在牙科实验室中积累的氧化锆废料制备zro2块的方法。在脱脂(debinding)和研磨之后,由该废料制备氧化锆水悬浮液,通过流延铸造由该悬浮液制备具有期望形状的物体。这些物体被冷等静压,然后烧结两次。
wo2018/049331描述了用于cad/cam应用的牙科氧化锆坯料,其由于使用不同的zro2颗粒而呈现出性质梯度,尤其是颜色梯度。坯料可以通过将具有不同着色的和不同尺寸的氧化锆颗粒的悬浮液的混合物进行流延铸造而形成,其中要利用颗粒的不同沉降行为。
然而,用于制备氧化锆坯料的常规方法是费力的,并且用它们制备的坯料需要长的加工时间以进行致密烧结,特别是为了获得期望的光学性质,诸如高半透明性。从加热到烧结温度开始到冷却到室温结束的整个致密烧结传统坯料的过程通常需要远远超过4个小时,这显著导致用于加工以形成牙科修复体的令人不满意的长持续时间。
技术实现要素:
因此,本发明的目的是提供一种用于制备氧化锆坯料的方法,该方法避免了常规方法的缺点,并使得可以在短时间内制备坯料,该坯料可以被加工以形成具有非常好的光学性质和机械性质的牙科修复体。
根据本发明,该目的通过提供一种用于制备氧化锆坯料的方法来实现。本发明的主题还在于提供一种由根据本发明的方法可获得的氧化锆坯料、所述氧化锆坯料的用途以及用于制备牙科修复体的方法。
根据本发明的用于制备氧化锆坯料的方法的特征在于:
(a)将氧化锆在液体介质中的悬浮液引入具有孔的模具中,
(b)通过所述孔至少部分地除去所述液体介质,并且
(c)将形成的坯料从模具中除去,
其中,所述悬浮液的氧化锆含量为68至88重量%,优选为70至86重量%,并且特别优选为75至85重量%。
令人惊讶地,已经发现,在相应的成形之后,通过根据本发明的方法可获得的坯料可以在仅非常短的时间内被致密地烧结以形成牙科修复体,该牙科修复体仍然具有非常好的光学性质,特别是高半透明性,并且因此从美学角度来看也满足了对牙科修复体的高要求。因此,有可能由坯料为患者制备牙科修复体,该坯料既期望地被成形,又被致密地烧结,并且在牙医的仅一次就诊时间内与他适配。这种快速地提供牙科修复体也被称为“椅旁(chairside)”治疗,并且其自然地对患者极具吸引力。因此,根据本发明的方法大大优于常规方法,在常规方法中,不得不忍受非常长的烧结时间以获得令人满意的半透明性。
相对于颗粒的体积,以d50值测量,悬浮液中的氧化锆特别具有50至250nm,优选60至250nm,并且特别优选80至250nm的粒度。粒度特别是用根据iso13320:2009的静态激光散射(sls)方法,例如使用来自horiba的la-960颗粒分析仪测定,或者用根据iso22412:2017的动态光散射(dls)方法,例如使用来自colloidmetrix的nano-flex颗粒测量装置测定。
氧化锆的初级粒度特别为30至100nm,并且通常还使用如上所述的动态光散射(dls)方法或通过扫描电子显微镜来测定。
氧化锆特别是基于四方氧化锆多晶(tzp)的氧化锆。优选用y2o3、la2o3、ceo2、mgo和/或cao稳定的氧化锆,并且特别是用相对于氧化锆含量为2至14摩尔%,优选2至10摩尔%,并且特别优选2至8摩尔%的这些氧化物稳定的氧化锆。
在根据本发明的方法中使用的氧化锆也可以是着色的。期望的着色特别是通过将一种或多种着色元素添加到氧化锆中来实现。着色元素的添加有时也称为掺杂,并且通常在氧化锆粉末的制备过程中通过共沉淀和随后的煅烧实现。合适的着色元素的实例是fe、mn、cr、ni、co、pr、ce、eu、gd、nd、yb、tb、er和bi。
悬浮液中的氧化锆也可以是具有不同组成的氧化锆粉末的混合物,特别是在最终制备的牙科修复体中导致不同的颜色和/或半透明性。借助于不同着色的氧化锆粉末的混合物,由此可以简单且以针对性的方式设定由坯料制备的用于牙科修复体的期望的颜色。同样,通过使用不同半透明性的氧化锆粉末的混合物,也可以以针对性的方式调节制备的牙科修复体的半透明性。所制备的牙科修复体的半透明性程度可以特别地通过所使用的氧化锆粉末的氧化钇含量来控制。
悬浮液也可以是不同悬浮液的混合物,例如具有不同着色的氧化锆的不同悬浮液的混合物。
在根据本发明的方法中,氧化锆以在液体介质中的悬浮液形式存在。该液体介质特别含有水。
此外优选的是,液体介质含有仅少量的有机组分,并且因此相对于悬浮液中固体的量,其含有量特别是不大于5重量%,优选地不大于3重量%,进一步优选地不大于2重量%,并且特别优选不大于1重量%的有机组分。
在另一个优选的实施方案中,相对于悬浮液中固体的量,液体介质含有量为0.05至5重量%,特别是0.1至3重量%,特别优选0.1至2重量%,并且特别优选0.1至1重量%的有机组分。
特别地,考虑将分散剂、粘结剂、用于调节ph值的试剂、稳定剂和/或消泡剂作为有机组分。
分散剂用于防止悬浮颗粒团聚形成更大的颗粒。相对于悬浮液中固体的量,液体介质中分散剂的量特别是0.01至5重量%,优选0.1至2重量%,并且特别优选0.1至1重量%。
合适的分散剂是水溶性聚合物如聚乙烯醇、聚乙烯亚胺、聚丙烯酰胺、聚环氧乙烷、聚乙二醇、(甲基)丙烯酸的均聚物和共聚物、聚乙烯吡咯烷酮,生物聚合物如淀粉、藻酸盐、明胶,纤维素醚如羧甲基纤维素、乙烯基磺酸和乙烯基膦酸。
优选的分散剂是氨基醇如乙醇胺;二醇如乙二醇和二丙二醇;羧酸如马来酸和柠檬酸,以及羧酸盐;以及这些分散剂的混合物。
进一步优选的是,液体介质含有选自氨基醇、二醇、羧酸和羧酸盐的至少一种化合物。液体介质特别优选含有选自乙醇胺、乙二醇、二丙二醇、柠檬酸和柠檬酸盐的至少一种化合物。
粘结剂促进步骤(c)后存在的坯料中颗粒的凝聚。相对于悬浮液中固体的量,液体介质中的粘结剂的量特别是0.01至5重量%,优选0.01至3重量%,并且特别优选0.01至2重量%。
合适的粘结剂的实例是甲基纤维素、羧甲基纤维素钠、淀粉、糊精、海藻酸钠、海藻酸铵、聚乙二醇、聚乙烯醇缩丁醛、丙烯酸酯聚合物、聚乙烯亚胺、聚乙烯醇和聚乙烯吡咯烷酮。
优选的粘结剂是聚乙烯醇、聚乙酸乙烯酯、聚乙烯吡咯烷酮、聚丙烯酸、丙烯酸酯和丙烯酸的共聚物、聚丙烯酸乙酯、聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚丙烯酸铵、聚甲基丙烯酸铵、聚乙二醇以及乙二醇和丙二醇的固体共聚物。
通过根据本发明的方法可获得的坯料的另一个优点是,尽管粘结剂的量少,但是即使没有先前的预烧结,坯料也具有足够的强度,以便能够通过加工,例如通过研磨和铣削,加工以形成期望的牙科修复体。
酸和碱特别被考虑作为用于调节ph值的试剂和作为稳定剂,酸和碱诸如羧酸,例如2-(2-甲氧基乙氧基)乙酸和2-[2-(2-甲氧基乙氧基)乙氧基]乙酸,无机酸例如盐酸和硝酸,以及氢氧化铵和四甲基氢氧化铵。优选的是,液体介质含有四甲基氢氧化铵。
消泡剂用于防止悬浮液中的气泡。相对于悬浮液中固体的量,通常在液体介质中以0.001至1重量%,优选0.001至0.5重量%,并且特别优选0.001至0.1重量%的量使用消泡剂。合适的消泡剂的实例是石蜡、硅油、烷基聚硅氧烷、高级醇、丙二醇、环氧乙烷-环氧丙烷加合物,特别是烷基聚亚烷基二醇醚。
液体介质的组分执行多种功能是可能的,并且例如除了作为稳定剂之外,既是分散剂又是粘结剂,或者既是分散剂又是用于调节ph值的试剂。
由于有机组分的比例小,因此它们也可以在短时间内从坯料中烧尽。此过程通常也称为脱脂(debinding)。
进一步优选的是,悬浮液的粘度为5mpas至500mpas,优选5mpas至400mpas,并且特别优选5至300mpas。使用具有直径为50mm且角度为1°的锥板系统的旋转粘度计(来自antonpaargmbh的mcr302modularcompactrheometer)在0.1至1000s-1的剪切速率和25℃的温度下测量粘度。
为了制备悬浮液,通常将氧化锆以粉末形式与液体介质充分混合。这里也可以使用例如不同着色的氧化锆的混合物。在这种混合过程中,任何存在的团聚物通常也被粉碎,并且也可以对所使用的氧化锆进行研磨以制备期望的粒度。因此,氧化锆和液体介质的混合可以有利地例如在搅拌珠磨机中进行。
然后在根据本发明的方法的步骤(a)中将悬浮液引入具有孔的模具中。引入通常通过浇注来实现。孔是开口,在步骤(b)中,液体介质可通过该开口至少部分地从悬浮液中被除去,结果是氧化锆颗粒可沉积在模具中并最终可以形成坯料。因此,模具的几何形状对应于期望的坯料的几何形状。因此,模具也可以例如已经具有与坯料形成一体的夹持装置如夹持销,这使得其随后的连接,例如通过胶粘的连接,多余。
因此,在根据本发明的方法的优选实施方案中,步骤(c)中形成的坯料具有夹持装置。
通常,基本上所有的液体介质都通过孔被除去。然而,也有可能将未通过孔除去的残留液体被倒出或吸出模具。当已经沉积足够厚的氧化锆颗粒层时通常是这种情况。
为了制备具有不同颜色和/或半透明性的区域的坯料,可以将具有不同组成的氧化锆粉末的悬浮液依次引入模具中,并且可以沉积在每种情况下具有期望厚度的不同氧化锆颗粒层。
因此,在根据本发明的方法的优选实施方案中,在步骤(a)中,将具有不同组成,特别是具有不同颜色和/或半透明性的氧化锆粉末的悬浮液依次引入模具中。在此,通常采取使具有不同组成的悬浮液不相互混合的措施。这可以例如通过以下方式实现:从悬浮液沉积的层首先被干燥并因此固化,然后将另一种具有不同组成的悬浮液引入模具中。
模具例如可以是通常用于流延铸造或压力铸造方法的模具之一。这些特别是具有由石膏制成的壁的模具,由于石膏孔的毛细作用,水可以通过该壁从悬浮液中被除去。然而,也可以使用由塑料、陶瓷或金属制成的模具,这些模具已经具有孔或者其中提供有孔,例如通过给它们提供过滤元件如薄膜过滤器、纸过滤器和烧结过滤器。
所使用的模具特别是由几个部分组成,以便于简单地除去由模具形成的坯料。在特别优选的实施方案中,模具具有连接,通过该连接,例如借助于压缩空气,可以将压力作用到引入的悬浮液和/或可以将负压施加到孔。两种措施都用于加速从模具中除去液体介质,从而缩短了该过程。在其帮助下,氧化锆坯料的非常快速且因此经济的制备是可能的,这尤其在工业规模制造的情况下是特别有利的。
通过根据本发明的方法形成的坯料可以具有任何期望的形状。在此,特别地选择一种形状,该形状允许在通常的牙科研磨和铣削装置中简单地加工坯料。坯料优选呈现为块,具有界面的块,例如作为植入物界面的孔、盘或齿状预成型件。在此优选的是,坯料还具有夹持装置,例如夹持销,其与坯料形成一体。因此,使得以前通常随后的通过胶粘来连接夹持器是多余的。夹持装置用于将坯料固定在诸如cam机器的加工装置中。
在步骤(c)中从模具中除去后,通常将形成的坯料干燥。干燥特别是在20至60℃,优选20至50℃,并且特别优选20至40℃的温度下实现。干燥的持续时间特别是0.1至24h,优选0.5至12h,并且特别优选1至6h。干燥可以例如在气候控制柜中或通过微波干燥实现。
在完成步骤(c)和任选地随后的干燥之后获得的坯料以所谓的生坯状态存在,并且因此其也被称为生坯压坯(greencompact)。令人惊讶地,在这种状态下,坯料具有非常高的密度,并且优选地其密度为3.3至4.0g/cm3,特别是3.35至3.9g/cm3,并且优选地为3.4至3.9g/cm3。根据iso15901-1:2016,通过水银孔隙率法测定密度。
在另一个优选的实施方案中,以生坯状态存在的该坯料的孔体积为0.08至0.14cm3/g,特别是0.08至0.12cm3/g,特别优选为0.08至0.10cm3/g。根据iso15901-1:2016,通过水银孔隙率法测定孔体积。
在另一个优选的实施方案中,以生坯状态存在的该坯料的孔径为0.02至0.12μm,特别是0.03至0.10μm,并且特别优选0.04至0.08μm,以相对于颗粒的体积的d50值测量。根据iso15901-1:2016,通过水银孔隙率法测定孔径。
坯料已经可以在这种生坯状态下加工,任选地在事先除去有机组分之后,以赋予其期望的牙科修复体的形状。
有机组分的除去也被称为脱脂,并且特别是通过在约600℃的温度下热处理来实现。通常选择如下加热速率:从室温开始到约600℃,0.125k/min至10k/min,优选0.250k/min至5k/min,特别优选0.5k/min至2k/min。
但是,优选的是,处于生坯状态的坯料也被预烧结。通过预烧结,增加了坯料的强度和硬度。预烧结特别是在600至1100℃,优选在700至1050℃,并且特别优选在800至1000℃的温度下进行特别是5min至24h,优选10min至12h,并且特别优选30min至6h的持续时间。
优选的是,预烧结的坯料的密度为3.4至4.0g/cm3,特别是3.5至4.0g/cm3,并且特别优选3.6至3.9g/cm3。
根据另一个优选的实施方案,预烧结的坯料的孔体积为0.08至0.14cm3/g,特别是0.08至0.12cm3/g,并且优选为0.09至0.11cm3/g。根据iso15901-1:2016,通过水银孔隙率法测定孔体积。
在另一个优选的实施方案中,预烧结的坯料的最大孔径小于0.15μm,优选小于0.12μm,并且特别优选小于0.08μm。根据iso15901-1:2016,通过水银孔隙率法测定最大孔径。
本发明还涉及通过根据本发明的方法可获得的氧化锆坯料。与常规的坯料相比,该坯料显然具有特殊的结构,因为在期望的成形之后,它可以在非常短的时间内被致密地烧结,以形成具有非常好的光学性质如半透明性的牙科修复体。
本发明还涉及一种预烧结的氧化锆坯料,并且其密度为3.4至4.0g/cm3,特别是3.5至4.0g/cm3,并且优选为3.6至3.9g/cm3,和/或孔体积为0.08至0.14cm3/g,特别是0.08至0.12cm3/g,并且优选0.09至0.11cm3/g,和/或最大孔径小于0.15μm,特别是小于0.12μm,并且优选小于0.08μm。
根据本发明的坯料可有利地用于由它们制造牙科修复体。在成形以形成期望的牙科修复体之后,它们可以在仅非常短的时间内被致密地烧结以形成具有优异的光学性质和高强度的牙科修复体,这使得可以非常快速地为患者提供牙科修复体。
此外,根据本发明的坯料的特征在于,它们在致密烧结期间经历仅低的线性收缩率。由此使得精确地具有期望的尺寸的牙科修复体的制备变得更容易,并且提高了其适配的准确性。
优选的是,根据本发明的坯料的线性收缩率小于18%,特别是小于17%,并且特别优选小于16%。线性收缩率s由以下公式得出,并且为了确定线性收缩率,通过netzschdil402supreme膨胀计在20℃至1550℃的温度范围以2k/min的加热速率对尺寸长度=25mm±1mm、宽度=5mm±0.5mm以及高度=4mm±0.5mm的测试件进行测量。
根据线性收缩率s,可以根据以下公式计算体积收缩率s体积:
因此,本发明还涉及根据本发明的坯料用于制备牙科修复体的用途。下面结合根据本发明的用于制备牙科修复体的方法的说明来解释这种用途的优选实施方案。
根据本发明的用于制备牙科修复体的方法的特征在于,赋予根据本发明的坯料牙科修复体的形状,并且坯料在1200至1600℃,特别是1300至1550℃,并且优选1350至1500℃的烧结温度下被致密地烧结。
坯料的成形特别地通过加工实现,例如通过计算机控制的研磨和铣削装置如牙科领域中通常的装置实现。
在成形之后,着色溶液也可以任选地施加到坯料,以便在最终获得的牙科修复体中获得期望的颜色。
随后的致密烧结导致坯料成形以形成密度特别大于5.9g/cm3、优选大于6.00g/cm3、并且特别优选大于6.02g/cm3的牙科修复体。
同样鉴于这种高密度,所获得的牙科修复体具有优异的机械性质。
一个特别的优点是,从室温加热、保持在最高烧结温度和冷却的整个致密烧结过程需要仅非常短的时间,并且在其完成之后,仍然获得具有所寻求的高半透明性和非常好的机械性质的牙科修复体。因此,根据本发明的方法优于常规方法,该常规方法需要非常长的时间以通过烧结制备具有相当的半透明性的牙科修复体。因此,根据本发明的方法结合了非常短的处理持续时间的优点和所制备的牙科修复体的非常好的光学性质和机械性质的优点。
在根据本发明的方法的一个优选实施方案中,将成形坯料从室温加热到用于致密烧结的烧结温度、保持在烧结温度并冷却到最终温度的时段不大于120min,特别是不大于60min,优选不大于40min,并且特别优选不大于30min。“最终温度”在这里是指可以用手拾取样品的温度,并且特别是15至80℃,优选25至60℃并且特别优选约50℃。“室温”是指特别是15至30℃,优选20至25℃,并且特别优选约25℃的温度。
加热速率特别是大于50k/min,优选大于100k/min,并且特别优选大于200k/min。保持时间特别是小于30min,优选小于20min,并且特别优选小于10min。从烧结温度到最终温度的冷却速率特别是大于50k/min,优选大于100k/min,并且特别优选大于150k/min。
通过根据本发明的成形坯料在致密烧结过程中经历的低的线性收缩率,使得精确地具有期望的尺寸的牙科修复体的制备变得更容易,并且其适配的准确性得以提高。
在一个优选的实施方案中,坯料
(a)经受第一热处理,
(b)经受第二热处理,以及
(c)被冷却,
其中,步骤(a)中的热处理在比步骤(b)中的热处理更低的压力下进行。在步骤(a)中,优选将坯料加热至1100至1600℃,特别是1200至1500℃,优选1250至1450℃,并且进一步优选1300至1400℃,并且最优选约1350℃的温度。进一步优选的是,步骤(a)中的热处理在小于200毫巴,优选小于100毫巴,并且特别优选小于50毫巴的压力下实现,并且特别是在0.1至200毫巴,优选1至150毫巴,并且特别优选50至100毫巴的压力下实现。在步骤(b)中,优选将坯料(b1)任选地进一步加热以及(b2)在优选为恒定的1100至1700℃,特别是1300至1600并且优选在1350至1550℃,并且特别优选在约1500℃的温度下保持和烧结。还优选的是,步骤(b)中的热处理在大于500毫巴的压力下,并且特别是在环境压力下实现,并且特别是在含氧气氛如空气、富氧空气或氧气中实现。特别优选的是,含氧气氛,优选空气、富氧空气或氧气,不连续地或优选连续地,特别是以0.1至50l/min,优选1至20l/min,并且特别优选4至8l/min的流速流过步骤(b)过程中用于加热的加热腔室。在一个特别优选的实施方案中,在步骤(a)中,将坯料加热至比步骤(b)中坯料保持的温度或温度范围低0至500k,特别是10至250k,优选50至200k,并且特别优选100至150k的温度。
致密烧结后获得的牙科修复体还可以任选地提供有饰面、被抛光和/或被上釉。
使用根据本发明的方法制备的牙科修复体特别是牙桥、嵌体、高嵌体、牙冠、饰面、植入物、刻面或基牙。
具体实施方式
下面参照实施例更详细地解释本发明。
实施例
实施例1-具有76重量%的氧化锆的悬浮液
将3.15g的含有柠檬酸或柠檬酸盐的分散剂(来自zschimmer&schwarz的dolapixce64)和1.5g的四甲基氢氧化铵依次溶解在194.4g的蒸馏水中。该溶液的ph值为10-10.5。
将该溶液置于microcer搅拌珠磨机(来自netzsch)的储罐中,其研磨室和转子由氧化锆制成。研磨室装有60ml直径为0.2-0.3mm的氧化锆研磨珠(来自tosoh)。使用蠕动泵(管内径8mm)以1500rpm的转子转速将溶液连续泵送通过研磨室。然后,在搅拌下并且连续地将630g用3mol%的y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-245,初级粒度:40nm)添加至储罐中的溶液。一旦完成氧化锆粉末的添加,将获得的混合物以约40l/h的速度持续45min泵送通过研磨室并连续地返回到储罐中。将以此方式制备的悬浮液转移到塑料量杯中,并通过磁力搅拌器非常缓慢地搅拌,以除去截留的气泡。另外,加入一滴烷基聚亚烷基二醇醚作为消泡剂(来自zschimmer&schwarz的contraspum)。
获得的悬浮液的氧化锆含量为76重量%。悬浮液的粘度η为7.25mpas(在500s-1的剪切速率和25℃的温度下)。
(a)测试件的准备
制备了测试件,对其测定了不同的性质。为了制备测试件,将得到的悬浮液倒入盘形的模具中,该模具由多孔石膏制成的板组成,其上固定有塑料环。通过多孔石膏的毛细作用,从悬浮液中除去水,并形成整体的生坯体。将生坯体留在模具中,并在空气中干燥24h。干燥完成后,测试件已将其自身从模具中释放出来。
各个测试件具有以下性质:
-线性收缩率:15.43%(测试件:长度=25mm±1mm,宽度=5mm±0.5mm,以及高度=4mm±0.5mm)
-密度:3.678g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm,以及高度=10mm±1mm)
(b)用于“椅旁”应用的块的制备
使用压力铸造模具来制备“椅旁”应用的块。该压力铸造模具由以下组成:顶部,其具有用于压缩空气(正压为0.1至100巴)的连接件;中部,其对应于期望的块的形状;以及底部,其具有膜过滤器、纸过滤器和烧结过滤器,并在基座上具有用于施加真空的连接件。膜过滤器的孔径为200nm。
将悬浮液倒入压力铸造模具中。然后,通过顶部提供压力为6巴的压缩空气,并通过底部施加约0.05巴的真空。4h后,结束压缩空气的添加和真空的施加。拆卸压力铸造模具,并将获得的块在空气中在20℃下干燥24h。
将以此方式制备的块在950℃下预烧结2h。加热速率为0.250k/min。然后将块在24h内冷却至室温。在2.5kg的载荷下,根据iso14705:2008和eniso6507-1:2005,通过维氏法测量块的硬度。硬度为992.95n/mm2。
通过cad/cam机器(选自ivoclarvivadentag的
实施例2-具有83重量%的氧化锆的悬浮液
为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成测试件(a)和用于“椅旁”应用的块(b),重复实施例1,变化在于加入含有164.5g蒸馏水、4.05g含有柠檬酸或柠檬酸盐的分散剂(来自zschimmer&schwarz的dolapixce64)和1.5g四甲基氢氧化铵的溶液,以及加入810g用5mol%的y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-430,初级粒度:90nm),并在900℃下进行2h的预烧结,其中加热速率同样为0.250k/min。
悬浮液的粘度η为7.0mpas(在1000s-1的剪切速率和25℃的温度下)。
根据(a)获得的各个测试件具有以下性质:
-线性收缩率:14.43%(测试件:长度=25mm±1mm,宽度=5mm±0.5mm以及高度=4mm±0.5mm)
-密度:3.791g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm以及高度=10mm±1mm)
根据(b)获得的预烧结块的硬度是在2.5kg的载荷下根据iso14705:2008和eniso6507-1:2005通过维氏法测量。硬度为496.91n/mm2。
通过cad/cam机器(选自ivoclarvivadentag的
实施例3-具有80重量%的氧化锆的悬浮液
为了制备具有80重量%的氧化锆的悬浮液并对其进行加工以形成测试件(a),重复实施例1,变化在于加入含有179.5g蒸馏水、3.6g含有柠檬酸或柠檬酸盐的分散剂(来自zschimmer&schwarz的dolapixce64)和1.5g四甲基氢氧化铵的溶液,以及加入720g用4.25mol%y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-551,初级粒度:90nm)。
悬浮液的粘度η为14.6mpas(在500s-1的剪切速率和25℃的温度下)。
根据(a)获得的测试件具有以下性质:
-线性收缩率:14.59%
-密度:3.780g/cm3。
将根据(a)获得的测试件在1000℃下预烧结2h。加热速率为0.250k/min。然后在24h内将测试件冷却至室温。预烧结的测试件的线性收缩率为13.88%。
实施例4-具有76重量%的氧化锆的悬浮液
为了制备具有76重量%的氧化锆的悬浮液并对其进行加工以形成用于“椅旁”应用的块(b),重复实施例1,变化在于向溶液中加入630g用3mol%的y2o3部分稳定的氧化锆粉末(来自treibacherindustrieag的auerdent3y-5aa2,初级粒度:40nm),并且预烧结在820℃进行持续2h,其中加热速率同样为0.250k/min。
在2.5kg的载荷下,根据iso14705:2008和eniso6507-1:2005通过维氏法测量根据(b)获得的预烧结块的硬度。硬度为440.38n/mm2。
此外,将盘从预烧结的块上锯下,并且根据以下温度计划,在仅34min内在烧结炉(来自ivoclarvivadentag的programatcs4)中致密地烧结:
致密烧结的盘具有89.16的对比度cr。使用分光光度计(minoltacm-3700d),根据bs5612(英国标准)确定对比度。它是材料不透明度的度量,其中对比度100对应于完全不透明的材料,对比度0对应于完全半透明的材料。
测量值89.16显示了根据本发明制备的样品的高的半透明性,并且在常规制备的坯料的情况下,它只能使用大于2小时的非常长的烧结时间来实现。
实施例5-具有83重量%的氧化锆的悬浮液
为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成测试件(a),重复实施例1,变化在于加入含有164.5g蒸馏水,3.15g含有柠檬酸或柠檬酸盐的分散剂(来自zschimmer&schwarz的dolapixce64)和1.5g四甲基氢氧化铵的溶液,以及加入810g用3mol%y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-245,初级粒度:40nm)。
根据(a)获得的测试件在500℃下脱脂,并且然后具有以下性质:
-孔体积:0.11391cm3/g
-孔半径:0.0190μm
-密度:3.5617g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm以及高度=10mm±1mm)
然后将脱脂的测试件在1050℃下预烧结2h。然后得到的预烧结坯料具有以下性质:
-孔体积:0.09931cm3/g
-孔半径:0.0242μm
-密度:3.8866g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm以及高度=10mm±1mm)
同样将脱脂的测试件在1000℃下预烧结2h。根据以下温度计划,在仅20min内在烧结炉(来自dentsplysirona的cerecspeedfire)中对获得的预烧结坯料致密地烧结:
实施例6-具有83重量%的氧化锆的悬浮液 真空
为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成测试件(a),重复实施例1,变化在于加入含有164.5g蒸馏水、4.05g含有柠檬酸或柠檬酸盐的分散剂(来自zschimmer&schwarz的dolapixce64)和1.5g四甲基氢氧化铵的溶液,以及加入810g用3mol%y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-245,初级粒度:40nm)。
将根据(a)获得的测试件脱脂并预烧结,其中将它们以0.25k/min的速率加热至1000℃的温度并在该温度下保持2h。
根据以下温度计划,将获得的预烧结坯料在带有mosi2加热元件的烧结炉中最多仅36min内致密地烧结,其中前两个步骤是在压力约50-100毫巴在真空下进行,并且在送入空气之后,进一步的步骤在环境气氛下进行并连续用空气冲洗。
为了研究光学性质,将致密地烧结的测试件平面平行(20μm金刚石盘)研磨至厚度为2mm±0.02mm,直径为18mm±0.5mm,然后抛光(sic纸,粒度1000)。
致密地烧结的盘的对比度cr为仅78.95%。因此,它们显示出非常高的半透明性以及在致密烧结过程中使用真空以及随后的气氛交换的有利影响。
实施例7-具有83重量%的氧化锆的悬浮液
为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成测试件(a),重复实施例1,变化在于加入含有164.5g蒸馏水、3.15g含有柠檬酸或柠檬酸盐的分散剂(来自zschimmer&schwarz的dolapixce64)和2.0g四甲基氢氧化铵的溶液,以及加入810g用4.25mol%y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-551,初级粒度:90nm)。
根据(a)获得的测试件在500℃下脱脂,并且然后具有以下性质:
-孔体积:0.11087cm3/g
-孔半径:0.0248μm
-密度:3.5474g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm以及高度=10mm±1mm)
然后将脱脂的测试件在1050℃下预烧结2h。然后得到的预烧结坯料具有以下性质:
-孔体积:0.10282cm3/g
-孔半径:0.0315μm
-密度:3.6838g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm以及高度=10mm±1mm)
实施例8-具有83重量%的氧化锆的悬浮液
为了制备具有83重量%的氧化锆的悬浮液并对其进行加工以形成测试件(a),重复实施例1,变化在于加入含有164.5g蒸馏水、3.15g含有柠檬酸或柠檬酸盐的分散剂(来自zschimmer&schwarz的dolapixce64)和2.0g四甲基氢氧化铵的溶液,以及加入810g用5.0mol%y2o3部分稳定的氧化锆粉末(来自tosohcorporation的tz-px-430,初级粒度:90nm)。
根据(a)获得的测试件在500℃下脱脂,并且然后具有以下性质:
-孔体积:0.10559cm3/g
-孔半径:0.0253μm
-密度:3.7831g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm以及高度=10mm±1mm)
然后将脱脂的测试件在1050℃下预烧结2h。然后得到的预烧结坯料具有以下性质:
-孔体积:0.10311cm3/g
-平均孔径:0.0318μm
-密度:3.9083g/cm3(测试件:长度=5mm±1mm,宽度=5mm±1mm以及高度=10mm±1mm)。
1.用于制备氧化锆坯料的方法,其中
(a)将氧化锆在液体介质中的悬浮液引入具有孔的模具中,
(b)通过所述孔至少部分地除去所述液体介质,并且
(c)将形成的坯料从模具中除去,
其中,所述悬浮液的氧化锆含量为68至88重量%,特别是70至86重量%,并且优选为75至85重量%。
2.根据权利要求1的方法,其中,以d50值测量的并且相对于颗粒的体积,所述悬浮液中的氧化锆的粒度为50至250nm,特别是60至250nm,并且优选为80至250nm。
3.根据权利要求1或2的方法,其中,所述悬浮液中的氧化锆的初级粒度为30至100nm。
4.根据权利要求1至3中任一项的方法,其中,所述氧化锆用y2o3、la2o3、ceo2、mgo和/或cao稳定,并且特别是用相对于氧化锆含量为2至14摩尔%,优选2至10摩尔%,并且特别优选2至8摩尔%的这些氧化物稳定。
5.根据权利要求1至4中任一项的方法,其中,所述液体介质包含水。
6.根据权利要求1至5中任一项的方法,其中,相对于悬浮液中固体的量,所述液体介质包含量为不大于5重量%,特别是不大于3重量%,优选不大于2重量%,并且特别优选不大于1重量%的有机组分,或相对于悬浮液中固体的量,所述液体介质包含量为0.05至5重量%,特别是0.1至3重量%,优选0.1至2重量%,并且特别优选0.1至1重量%的有机组分。
7.根据权利要求1至6中任一项的方法,其中,所述液体介质包含选自氨基醇、二醇、羧酸和羧酸盐的至少一种化合物,并且优选选自乙醇胺、乙二醇、二丙二醇、柠檬酸和柠檬酸盐的至少一种化合物。
8.根据权利要求1至7中任一项的方法,其中,所述悬浮液的粘度在0.1至1000s-1的剪切速率和25℃的温度下测量为5至500mpas,特别是5至400mpas,并且优选5至300mpas。
9.根据权利要求1至8中任一项的方法,其中,所述悬浮液包含具有不同组成并且特别是具有不同颜色和/或半透明性的氧化锆粉末的混合物。
10.根据权利要求1至9中任一项的方法,其中,在步骤(a)中,将具有不同组成并且特别是具有不同颜色和/或半透明性的氧化锆粉末的悬浮液依次引入模具中。
11.根据权利要求1至10中任一项的方法,其中,所述坯料是块、具有界面的块、盘或齿状预成型件。
12.根据权利要求1至11中任一项的方法,其中,在步骤(c)中形成的坯料具有夹持装置,所述夹持装置特别是与所述坯料形成一体。
13.根据权利要求1至12中任一项的方法,其中,在步骤(c)中形成的坯料被干燥,并且特别是在20至60℃,优选20至50℃,并且特别优选20至40℃的温度下被干燥。
14.根据权利要求1至13中任一项的方法,其中,所述坯料的密度为3.3至4.0g/cm3,特别是3.35至3.9g/cm3,并且优选地为3.4至3.9g/cm3,
和/或
孔体积为0.08至0.14cm3/g,特别是0.08至0.12cm3/g,并且优选为0.08至0.10cm3/g,
和/或
以相对于颗粒的体积的d50值测量,孔径为0.02至0.12μm,特别是0.03至0.10μm,并且优选为0.04至0.08μm。
15.根据权利要求1至14中任一项的方法,其中,所述坯料被预烧结,并且特别是在600至1100℃,优选700至1050℃,并且特别优选800至1000℃的温度下被预烧结。
16.根据权利要求15的方法,其中,所述预烧结坯料的密度为3.4至4.0g/cm3,特别是3.5至4.0g/cm3,并且优选为3.6至3.9g/cm3,
和/或
孔体积为0.08至0.14cm3/g,特别是0.08至0.12cm3/g,并且优选为0.09至0.11cm3/g,
和/或
最大孔径小于0.15μm,特别是小于0.12μm并且优选小于0.08μm。
17.通过根据权利要求1至16中任一项的方法可获得的氧化锆坯料。
18.氧化锆坯料,其被预烧结并且其密度为3.4至4.0g/cm3,特别是3.5至4.0g/cm3,优选为3.6至3.9g/cm3,
和/或
孔体积为0.08至0.14cm3/g,特别是0.08至0.12cm3/g,并且优选为0.09至0.11cm3/g,
和/或
最大孔径小于0.15μm,特别是小于0.12μm并且优选小于0.08μm。
19.根据权利要求17或18的氧化锆坯料,其线性收缩率小于18%,特别是小于17%,并且优选小于16%。
20.根据权利要求17至19中任一项所述的坯料用于制备牙科修复体的用途。
21.一种用于制备牙科修复体的方法,其中,根据权利要求17至19中任一项所述的坯料被赋予所述牙科修复体的形状,并且坯料在1200至1600℃,特别是1300至1550℃,并且优选1350至1500℃的烧结温度下致密地烧结。
22.根据权利要求21的方法,其中,将坯料从室温加热至烧结温度、保持在烧结温度并冷却至最终温度的时段不大于120min,特别是不大于60min,优选不大于40min,并且特别优选不大于30min。
23.根据权利要求21或22的方法,其中,所述坯料
(a)经受第一热处理,
(b)经受第二热处理,以及
(c)被冷却,
其中步骤(a)中的热处理在比步骤(b)中的热处理更低的压力下进行。
24.根据权利要求21至23中任一项的方法,其中,所述牙科修复体是牙桥、嵌体、高嵌体、牙冠、植入物、饰面、刻面或基牙。
技术总结