稀土氧化物基单片式腔室材料的制作方法

专利2022-06-29  88


本申请是pct国际申请号为pct/us2014/065080、国际申请日为2014年11月11日、进入中国国家阶段的申请号为201480042642.6,题为“稀土氧化物基单片式腔室材料”的发明专利申请的分案申请。本发明的实施例大体而言关于抗等离子体的稀土氧化物基(rare-earthoxidebased)材料,并且尤其是关于由抗等离子体的稀土氧化物基材料形成的固体烧结陶瓷制品。
背景技术
:在半导体工业中,通过众多用于生产尺寸日益缩小的结构的制造工艺来制造器件。一些制造工艺(诸如,等离子体蚀刻和等离子体清洁工艺)使基板暴露于高速的等离子体流中以蚀刻或清洁基板。等离子体可能是高度腐蚀性的,并且可能腐蚀处理腔室以及暴露于等离子体的其他表面。此腐蚀可能产生频繁地污染正在经处理的基板的粒子,从而导致器件缺陷。另外,此腐蚀可能使来自腔室部件的金属原子污染经处理的基板(例如,经处理的晶片)。随着器件几何形状缩小,对缺陷和金属污染的敏感性增加,并且粒子污染物规范和金属污染物规范变得更加严格。因此,随着器件几何形状缩小,可允许的粒子缺陷和金属污染的水平可能降低。为了使由等离子体蚀刻和/或等离子体清洁工艺引入的粒子缺陷和金属污染最小化,已经开发出抗等离子体的腔室材料。此类抗等离子体材料的示例包括由al2o3、aln、sic和y2o3组成的陶瓷。然而,这些陶瓷材料的抗等离子体特性对于一些应用可能是不够的。例如,使用传统的陶瓷制造工艺而制造的抗等离子体的陶瓷盖和/或喷嘴在用于具有90nm或更小的关键尺寸的半导体器件的等离子体蚀刻工艺时可能产生不可接受的粒子缺陷水平。附图说明在所附附图的诸图中以示例方式而非限制方式图示了本发明,在这些附图中,相似的元件符号指示类似的元件。应当注意,在本公开中对“一”或“一个”实施例的不同引用不一定是指相同的实施例,并且此类引用意味着至少一个实施例。图1是具有一个或更多个腔室部件的半导体处理腔室的剖视图,这些腔室部件是使用本文的实施例中所提供的陶瓷材料而产生的固体烧结陶瓷制品。图2图示根据本发明的一个实施例的、用于形成固体烧结陶瓷制品的工艺。图3图示根据本发明的实施例的各种固体烧结陶瓷制品对在2200瓦特的偏置功率下生成的等离子体的抗溅射性。图4图示根据本发明的实施例的各种固体烧结陶瓷制品对使用n2/h2化学品而生成的等离子体的抗侵蚀性。图5图示根据本发明的实施例的各种固体烧结陶瓷制品对使用chf4/cf4化学品而生成的等离子体的抗侵蚀性。图6a是示出根据本发明的实施例的各种固体烧结陶瓷制品对使用n2/h2化学品而生成的等离子体的抗侵蚀性的图表。图6b是示出各种块状烧结陶瓷制品的蚀刻前和蚀刻后粗糙度的图表。具体实施方式本发明的实施例涉及新型烧结陶瓷材料并涉及制造这些新型烧结陶瓷材料的方法。在实施例中,烧结陶瓷材料可具有固溶体,所述固溶体包括:约30摩尔%至约60摩尔%的浓度的y2o3;约20摩尔%至约60摩尔%的浓度的er2o3;以及约0摩尔%至约30摩尔%的浓度的zro2、gd2o3或sio2中的至少一者。在其他实施例中,烧结陶瓷材料可具有包括y2o3、zro2和/或al2o3的混合物的固溶体。新型烧结陶瓷材料可用于产生用于等离子体蚀刻反应器的腔室部件。在等离子体蚀刻反应器中使用利用本文所描述的新型烧结陶瓷材料而产生的腔室部件可使得相比使用利用常规的抗等离子体的陶瓷材料而产生的腔室部件大大地减少晶片上金属污染和/或离子缺陷。具体而言,通过使用本文的实施例中所描述的陶瓷材料可大大地减少钇、铝及锌的金属污染。可由半导体、显示器、光电元件、微机电系统(micro-electro-mechanicalsystems;mems)装置等的制造商来指定经处理的晶片上的这些金属污染物的减少。当在本文中使用术语“大约”和“约”时,旨在意味着所呈现的标称值的精确度在±10%内。参照作为等离子体蚀刻反应器(也称为等离子体蚀刻器)的腔室部件的固体烧结陶瓷制品来描述实施例。例如,陶瓷制品可以是工艺套环、腔室盖、气体分配板、喷淋头、静电夹盘和升举销。然而,本文所描述的固体烧结陶瓷材料也可用于具有暴露于等离子体环境的部件的其他装置,诸如,等离子体清洗器、等离子体推进系统,等等。此外,参照固体烧结陶瓷制品来描述实施例。然而,所讨论实施例还使用于沉积的陶瓷涂层,诸如,等离子体喷涂的陶瓷涂层以及使用离子辅助沉积(iad)技术而施加的陶瓷涂层。因此,应当理解,对固体烧结陶瓷材料的讨论还适用于相同组成的沉积的陶瓷材料。本文中参照当在用于等离子体蚀刻和/或等离子体清洗工艺的工艺腔室中使用时导致减少的粒子缺陷和金属污染的陶瓷制品来描述实施例。然而,应当理解,本文中所讨论的陶瓷制品当在用于其他工艺的工艺腔室、非等离子体蚀刻器、非等离子体清洁器、化学气相沉积(cvd)炉、物理气相沉积(pvd)炉等中使用时也提供减少的粒子缺陷和金属污染,其他工艺诸如,等离子体增强化学气相沉积(pecvd)、等离子体增强物理气相沉积(pepvd)、等离子体增强原子层沉积(peald)等等。图1是具有一个或更多个腔室部件的半导体处理腔室100的剖视图,所述腔室部件100是使用本文的实施例中所提供的陶瓷材料而产生的固体烧结陶瓷制品。处理腔室100可用于提供了腐蚀性等离子体环境的工艺。例如,处理腔室100可以是等离子体蚀刻反应器(也称为等离子体蚀刻器)、等离子体清洗器等的腔室。可由固体烧结抗等离子体的陶瓷材料组成或可包括固体烧结抗等离子体的陶瓷材料的腔室部件的示例包括静电夹盘(esc)150、环(例如,工艺套环或单环)、腔室壁、气体分配板、喷淋头、衬垫、衬垫套组、腔室盖104、喷嘴132,等等。下文参考图2更详细地描述用于形成这些腔室组件中的一个或更多个的固体烧结陶瓷材料。在一个实施例中,处理腔室100包括封围内部容积106的腔室体102和盖130。盖130在其中心处可具有孔,并且可将喷嘴132插入所述孔中。在一些实施例中,使用喷洒头而不是盖130和喷嘴132。腔室体102可由铝、不锈钢或其他合适的材料制成。腔室体102一般包括侧壁108和底部110。盖130、喷嘴132、喷淋头等中的任何一者可包括固体烧结陶瓷材料。外衬垫116可邻接侧壁108而设置以保护腔室体102。外衬垫116可以是由稀土氧化物基材料制成的抗等离子体的层。可在腔室体102中限定排气口126,并且所述排气口126可将内部容积106耦接至泵系统128。泵系统128可包括一个或更多个泵和节流阀,这些泵和节流阀用于排空并调节处理腔室100的内部容积106的压力。可在腔室体102的侧壁108上支撑盖130。盖130可被打开以允许对处理腔室100的内部容积106的接取,并且在关闭时可为处理腔室100提供密封。可将气体面板158耦接至处理腔室100,以便通过喷嘴132将工艺和/或清洁气体提供至内部溶剂106。可用于在处理腔室100中处理基板的处理气体的示例包括含卤素气体(诸如,c2f6、sf6、sicl4、hbr、nf3、cf4、chf3、ch2f3、f、nf3、cl2、ccl4、bcl3和sif4等)以及其他气体(诸如,o2或n2o)。载气的示例包括n2、he、ar以及对于处理气体是惰性的其他气体(例如,非反应的气体)。在盖130下方的处理腔室100的内部容积106中设置基板支撑组件148。基板支撑组件148在处理期间支持基板144。环147(例如,单环)可覆盖静电夹盘150的部分,并且可在处理期间保护被覆盖的部分免于暴露于等离子体中。环147可由本文中所描述的固体烧结陶瓷材料中的任何一种形成。可在基板支撑组件148的外围上形成内衬垫118。内衬垫118可以是抗含卤素气体的材料,诸如,参考外衬垫116所讨论的那些材料。在一个实施例中,基板支撑组件148包括支撑台座152的安装板162,以及静电夹盘150。静电夹盘150进一步包括导热基座164和静电圆盘166,所述静电圆盘166通过粘合剂138粘接至导热基座,在一个实施例中,所述粘合剂138可以是硅酮粘合剂。安装板162耦接至腔室主体102的底部110,并且包括通道以将设施(例如,流体、电力线、传感器引线等)布线至导热基座164和静电圆盘166。导热基座164和/或静电圆盘166可包括一个或更多个任选的嵌入式加热元件176、嵌入式热隔离器174和/或导管168、170以控制基板支撑组件148的侧向温度轮廓。可将导管168、170流体地耦接至流体源172,所述流体源172通过管道168、170使温度调节流体循环。在一个实施例中,可在管道168与170之间设置嵌入式热隔离器174。由加热器电源178调节加热元件176。可利用导管168、170和加热元件176来控制导热基座164的温度,从而加热和/或冷却静电圆盘166以及正在被处理的基板(例如,晶片)144。可使用多个温度传感器190、192来监测静电圆盘166和导热基座164的温度,可使用控制器195来监测所述多个温度传感器190、192。静电圆盘166可进一步包括可形成在所述静电圆盘166的上表面中的多个气体通道,诸如,凹槽、凸块和其他表面特征。可经由静电圆盘166中钻凿的孔而使气体通道流体地耦接至热传递(或背侧)气体(诸如,he)的源。在操作中,可在受控的压力下将背侧气体提供至气体通道中以增强静电圆盘166与基板144之间的热传递。静电圆盘166包括由夹持电源182控制的至少一个夹持电极180。可通过匹配电路188将至少一个夹持电极180(或设置在静电圆盘166或导电基座164中的其他电极)进一步耦接至一个或更多个rf电源184、186,以便维持由处理腔室100内的工艺气体和/或其他气体形成的等离子体。rf电源184、186通常能够产生具有约50khz至约3ghz的频率以及至高达约10000瓦特的功率的rf信号。图2是示出根据本发明的一个实施例的、用于制造固体烧结陶瓷制品的工艺200的流程图。在框255处,选择用于形成陶瓷制品的陶瓷粉末。也选择所选择的陶瓷粉末的量。在一个实施例中,所选择的陶瓷粉末包括y2o3、er2o3以及将与所述y2o3和er2o3形成相(phase)的一种或更多种附加的稀土氧化物。附加的稀土族氧化物也应当是抗侵蚀的,并且具有高密度(低孔隙度)。可使用的附加的稀土氧化物的示例包括zro2和gd2o3。也可使用非稀土氧化物,诸如,al2o3和sio2。在一个实施例中,陶瓷粉末包括约30摩尔%(mol%)至约60摩尔%的浓度的y2o3、约20摩尔%至约60摩尔%的浓度的er2o3以及约0摩尔%至约30摩尔%的浓度的zro2、gd2o3或sio2的至少一者。在一个实施例中,所选择的陶瓷粉末包括:约30-60摩尔%的浓度的y2o3;约20-55摩尔%的浓度的er2o3;以及以下各项中的一者或多者:高达20摩尔%的浓度的zro2、高达20摩尔%的浓度的gd2o3以及高达30摩尔%的浓度的sio2。可使用的一种特定的陶瓷粉末的混合物(称为示例1 )包括约40摩尔%的浓度的y2o3、约5摩尔%的浓度的zro2、约35摩尔%的浓度的er2o3、约5摩尔%的浓度的gd2o3以及约15摩尔%的浓度的sio2。可使用的另一特定的陶瓷粉末的混合物(称为示例2 )包括约45摩尔%的浓度的y2o3、约5摩尔%的浓度的zro2、约35摩尔%的浓度的er2o3、约10摩尔%的浓度的gd2o3以及约5摩尔%的浓度的sio2。可使用的另一特定的陶瓷粉末的混合物(称为示例3 )包括约40摩尔%的浓度的y2o3、约5摩尔%的浓度的zro2、约40摩尔%的浓度的er2o3、约7摩尔%的浓度的gd2o3以及约8摩尔%的浓度的sio2。可使用的另一特定的陶瓷粉末的混合物(称为示例4 )包括约37摩尔%的浓度的y2o3、约8摩尔%的浓度的zro2以及约55摩尔%的浓度的er2o3。可使用的另一特定的陶瓷粉末的混合物(称为示例5 )包括约40摩尔%的浓度的y2o3、约10摩尔%的浓度的zro2、约30摩尔%的浓度的er2o3以及约20摩尔%的浓度的gd2o3。在一个实施例中,所选择的陶瓷粉末包括40-60摩尔%的y2o3、30-50摩尔%的zro2以及10-20摩尔%的al2o3。在另一实施例中,所选择的陶瓷粉末包括40-50摩尔%的y2o3、20-40摩尔%的zro2以及20-40摩尔%的al2o3。在另一实施例中,所选陶瓷粉末包括70-90摩尔%的y2o3、0-20摩尔%的zro2以及10-20摩尔%的al2o3。在另一实施例中,所选择的陶瓷粉末包括60-80摩尔%的y2o3、0-10摩尔%的zro2以及20-40摩尔%的al2o3。在另一实施例中,所选择的陶瓷粉末包括40-60摩尔%的y2o3、0-20摩尔%的zro2以及30-40摩尔%的al2o3。在另一实施例中,所选择的陶瓷粉末包括40-100摩尔%的y2o3、0-60摩尔%的zro2以及0-5摩尔%的al2o3。在一个实施例中,所选择陶瓷粉末包括40-100摩尔%的y2o3、0-60摩尔%的zro2以及0-5摩尔%的al2o3。在第一示例(称为示例1 )中,所选择的陶瓷粉末包括73-74摩尔%的y2o3以及26-27摩尔%的zro2。在第二示例(称为示例2 )中,所选择的陶瓷粉末包括71-72摩尔%的y2o3、26-27摩尔%的zro2以及1-2摩尔%的al2o3。在第三示例(称为示例3 )中,所选择的陶瓷粉末包括64-65摩尔%的y2o3以及35-36摩尔%的zro2。在第四示例(称为示例4 )中,所选择的陶瓷粉末包括63-64摩尔%的y2o3、35-36摩尔%的zro2以及1-2摩尔%的al2o3。在第五示例(称为示例5 )中,所选择的陶瓷粉末包括57-58摩尔%的y2o3、42-43摩尔%的zro2。在第六示例(称为示例6 )中,所选择的陶瓷粉末包括52-53摩尔%的y2o3、47-48摩尔%的zro2。前述烧结固体中的任何一者可包括痕量的其他材料,诸如,zro2、al2o3、sio2、b2o3、er2o3、nd2o3、nb2o5、ceo2、sm2o3、yb2o3或其他氧化物。在框260处,混合所选择的陶瓷粉末。在一个实施例中,将所选择的粉末与水、粘合剂及解凝剂混合以形成浆料。在一个实施例中,通过喷雾干燥使陶瓷粉末组合成粒状粉末。在框265处,由混合的粉末(例如,由通过所选择的陶瓷粉末的混合物形成的浆料)形成生坯体(未烧结的陶瓷制品)。可使用包括但不限于以下各项的技术来形成生坯体:铸浆成型(slipcasting)、流延成型(tapecasting)、冷等压压制、单向机械压制、喷射模塑以及挤出。例如,在一个实施例中,浆料可经喷雾干燥,被放置在模具中,并且经压制以形成生坯体。在框270处,烧结生坯体。烧结生坯的步骤可包括:将生坯体加热至一高温,所述高温低于生坯体中稀土氧化物组分中的任何一种的熔点。例如,如果生坯体包括y2o3、er2o3、zro2、gd2o3或sio2,则可将生坯加热至低于y2o3、er2o3、zro2、gd2o3和sio2的熔点的任一点。在一个实施例中,在烧结步骤之前,将生坯体加热至低温以燃耗在生坯体的形成中使用的粘合剂。可在1500-2100℃下烧结生坯达3-30小时(hr)的时间。烧结工艺产生固体烧结陶瓷制品,所述固体烧结陶瓷制品包括由各种处于单相中的陶瓷材料组分构成的至少一种固溶体。例如,在一个实施例中,固体烧结陶瓷制品包括固溶体,所述固溶体包括:约30摩尔%至约60摩尔%的浓度的y2o3;约20摩尔%至约50摩尔%的浓度的er2o3;以及约0摩尔%至约30摩尔%的浓度的zro2、gd2o3或sio2中的至少一者。在各种实施例中,固体烧结陶瓷制品可用于等离子体蚀刻反应器的不同的腔室组件。取决于正在被制造的特定的腔室部件,生坯体可具有不同的形状。例如,如果最终的腔室部件将是工艺套环,则生坯体可以是环形的。如果腔室部件将是静电夹盘的静电圆盘,则生坯可以是碟形的。取决于将制造的腔室部件,生坯体还可具有其他形状。烧结工艺通常使陶瓷制品的尺寸改变不受控的量。至少部分地由于此尺寸变化,在完成烧结工艺之后,通常在框275处对陶瓷制品进行机械加工。机器加工步骤可包括:表面研磨和/或抛光陶瓷制品,在陶瓷制品中钻孔,切割陶瓷制品和/或对陶瓷制品塑形,研磨陶瓷制品,抛光陶瓷制品(例如,使用化学机械平坦化(cmp),火焰抛光或其他抛光技术),粗糙化陶瓷制品(例如,通过珠粒喷击),在陶瓷制品上形成凸块,等等。可将陶瓷制品机械加工成适合于特定应用的配置。在机械加工之前,陶瓷制品可具有适合于特定目的(例如,将用作等离子体蚀刻器中的盖)的粗略的形状和尺寸。然而,可执行机械加工以精确低控制陶瓷制品的尺寸、形状、尺度、孔尺寸,等等。取决于待制造的特定的腔室部件,可另外执行附加的处理操作。在一个实施例中,附加的处理操作包括:将固体烧结陶瓷制品粘接至金属体(框280)。在既对固体烧结陶瓷制品进行机械加工又将所述固体烧结陶瓷体粘接至金属体的一些实例中,可先执行机械加工,接着执行粘接。在其他实例中,可先将固体烧结陶瓷制品粘接至金属体,并且随后可对固体烧结陶瓷制品进行机械加工。在其他实施例中,在粘接之前与之后都执行一些机械加工。另外,在一些实施例中,可将固体烧结陶瓷制品粘接至另一陶瓷制品。在第一示例中,陶瓷制品将用于喷淋头。在此类实施例中,可将许多孔钻入到陶瓷制品中,并且可将陶瓷制品粘接至铝气体分配板。在第二示例中,陶瓷制品用于静电夹盘。在此类实施例中,将氦针孔钻入到(例如,通过激光钻凿)陶瓷制品中,并且可通过硅酮粘合剂来将陶瓷制品粘接至铝底板。在另一示例中,陶瓷制品是陶瓷盖。由于陶瓷盖具有大的表面积,因此由新型烧结陶瓷材料形成的陶瓷盖可具有高结构强度以防止在处理期间(例如,当将真空施加至等离子体蚀刻反应器的工艺腔室时)的破裂或弯曲。在其他示例中,形成喷嘴、工艺套环或其他腔室部件。图3是示出根据本发明的实施例的各种固体烧结陶瓷制品对2200瓦特的偏置功率下生成的等离子体的抗溅射性的图表。此图表示出由73.13摩尔%的y2o3和26.87摩尔%的zro2组成的第一示例固体烧结陶瓷制品(示例1 )的0.10与0.15纳米/射频小时(nm/rfhr)之间的溅射侵蚀速率。此图表示出由63.56摩尔%的y2o3、35.03摩尔%的zro2以及1.41摩尔%的al2o3组成的第四示例固体烧结陶瓷制品(示例4 )的0.15与0.20nm/rfhr之间的溅射侵蚀速率。此图表示出由71.96摩尔%的y2o3、26.44摩尔%的zro2以及1.60摩尔%的al2o3组成的第二示例固体烧结陶瓷制品(示例2 )的0.15与0.20nm/rfhr之间的溅射侵蚀速率。此图表示出由64.46摩尔%的y2o3和35.54摩尔%的zro2组成的第三示例固体烧结陶瓷制品(示例3 )的0.20与0.25nm/rfhr之间的溅射侵蚀速率。此图表示出由52.12摩尔%的y2o3和47.88摩尔%的zro2组成的第六示例固体烧结陶瓷制品(示例6 )的0.25与0.30nm/rfhr之间的溅射侵蚀速率。此图表示出由57.64摩尔%的y2o3和42.36摩尔%的zro2组成的第五示例固体烧结陶瓷制品(示例5 )的0.30与0.35nm/rfhr之间的溅射侵蚀速率。此图表另外示出由er2o3、y2o3、gd2o3、er3al5o12(eag)、99.8%的al2o3、92%的al2o3分别构成的固体烧结陶瓷以及包括63摩尔%的y2o3、14摩尔%的al2o3以及23摩尔%的zro2的对照复合陶瓷的抗溅射侵蚀速率,以用于比较。图4是示出根据本发明的实施例的各种固体烧结陶瓷制品对使用n2/h2化学品而生成的等离子体的抗侵蚀性的附加的图表。词图表示出由73.13摩尔%的y2o3和26.87摩尔%的zro2组成的第一示例固体烧结陶瓷制品的大约10nm/rfhr的侵蚀速率。此图表示出由64.46摩尔%的y2o3和35.54摩尔%的zro2组成的第三示例固体烧结陶瓷制品的略大于10nm/rfhr的侵蚀速率。此图表示出由63.56摩尔%的y2o3、35.03摩尔%的zro2以及1.41摩尔%的al2o3组成的第四示例固体烧结陶瓷制品的略大于10nm/rfhr的侵蚀速率。此图表示出由71.96摩尔%的y2o3、26.44摩尔%的zro2以及1.60摩尔%的al2o3组成的第二示例固体烧结陶瓷制品的低于15nm/rfhr的侵蚀速率。此图表另外示出分别由y2o3、石英和hpm构成的固体烧结陶瓷的侵蚀速率以用于比较。图5是示出根据本发明的实施例的各种固体烧结陶瓷制品对使用chf4/cf4化学品所产生的等离子体的抗侵蚀性的又一图表。此图表图示参考图3所定义的第一示例固体烧结陶瓷制品(示例1 )、第二示例固体烧结陶瓷制品(示例2 )、第六示例固体烧结陶瓷制品(示例6 )以及第三示例固体烧结陶瓷制品(示例3 )的略大于0.05nm/rfhr的侵蚀速率。此图表另外图示参考图3所定义的第五示例固体烧结陶瓷制品(示例5 )以及第四示例固体烧结陶瓷制品(示例4 )的略低于0.75nm/rfhr的侵蚀速率。此图表另外示出分别由er2o3、y2o3、gd2o3、eag、99.8%的al2o3、92%的al2o3构成的固体烧结陶瓷以及对照复合陶瓷的侵蚀速率,以用于比较。图6a是示出根据本发明的实施例的各种固体烧结陶瓷制品对使用n2/h2化学品而生成的等离子体的抗侵蚀性的图表。此图表图示氧化钇、示例4 陶瓷制品以及示例5 陶瓷制品的低于15nm/rfhr的侵蚀速率。此图表还示出硅的略低于20nm/rfhr的侵蚀速率以及对照复合陶瓷的高于20nm/rfhr的侵蚀速率。示例4 陶瓷包括约37摩尔%的浓度的y2o3、约8摩尔%的浓度的zro2以及约55摩尔%的浓度的er2o3。示例5 陶瓷包括约40摩尔%的浓度的y2o3、约10摩尔%的浓度的zro2、约30摩尔%的浓度的er2o3以及约20摩尔%的浓度的gd2o3。图6b是示出固体烧结(块状)氧化钇、示例4 、示例5 、硅以及对照复合陶瓷的蚀刻前与蚀刻后的粗糙度的图表。如图所示,示例4 固体烧结陶瓷及示例5 固体烧结陶瓷显示出最小的侵蚀速率,并且示例4 显示出最小的粗糙度变化。材料≧.2μm≧.3μm≧.5μm≧1μm≧2μm复合陶瓷盖2487574173053772145示例1 2170665311926719165表1:导体盖的液体粒子计数(lpc),单位:粒子/平方厘米(p/cm2)表1示出由对照复合陶瓷制成的导体盖以及由第一示例陶瓷材料(示例1 )制成的导体盖的清洁后所量测的粒子缺陷。第一示例性陶瓷材料由73.13摩尔%的浓度的y2o3和26.87摩尔%的浓度的zro2组成。可通过执行液体粒子计数(lpc)来测量粒子污染。表中的每一列表示至少特定尺寸的粒子的数量。材料cacrcufemgmn复合陶瓷<70<20<1040<50<5示例1 <70<20<1026<50<5表2a:金属污染,单位:1010原子/cm2材料niknatizn复合陶瓷<10<50<50<20<20示例1 <10<50<50<20<20表2b:金属污染,单位:1010原子/cm2表2a和表2b示出使用对照复合陶瓷制成的固体烧结陶瓷盖以及使用第一示例陶瓷材料制成的固体烧结陶瓷盖来处理的晶片上的金属污染。可通过电感耦合等离子体质谱分析(inductivelycoupledplasmamassspectroscopy;icpms)来测量金属污染。表中的每一列表示不同的金属污染物。本文的实施例中所描述的固体烧结陶瓷制品的不同配方取决于那些固体烧结陶瓷制品的组分而具有不同的晶片上金属污染水平。因此,基于制造商的不同的晶片上金属污染规范,可选择不同的配方来制造对应腔室部件。表3:示例固体烧结陶瓷制品的机械特性表3示出与对照复合陶瓷制品和y2o3固体烧结陶瓷制品的机械特性相比较的、并参照图2所定义的第一示例(示例1 )固体烧结陶瓷制品以及附加的示例固体烧结陶瓷制品示例1 、示例2 、示例3 以及示例4 的机械特性。前文的描述阐明了诸如特定的系统、组件、方法等的示例之类的众多特定的细节,以便提供对本发明的若干实施例的良好理解。然而,对本领域技术人员将显而易见的是,可在不具有这些特定细节的情况下来实施本发明的至少一些实施例。在其他实例中,未详细地描述或以简单的框图格式呈现公知的组件或方法,以免不必要地使本发明含糊。因此,所阐明的特定细节仅是示例性的。特定的实现方式可与这些示例性细节有所不同,并且仍视为在本发明的范围内。贯穿本说明书对“一个实施例”或“实施例”的引用意味着结合所述实施例所描述的特定的特征、结构或特性被包括在至少一个实施例中。因此,贯穿在本说明书在多处出现的短语“在一个实施例中”或“在实施例中”不一定全部是指相同的实施例。另外,术语“或”旨在表示包括性的“或”而非排他性的“或”。尽管以特定的次序示出并描述了本文中的方法的操作,但可改变每一种方法的操作次序,使得可逆序地执行某些操作,或者使得可至少部分地与其他操作一起同时执行某些操作。在另一实施例中,指令或不同的操作的子操作可以是间歇性和/或交替性方式的。应当理解,以上描述旨在是说明性而非限制性的。在本领域技术人员阅读并理解以上描述之后,许多其他实施例对他们将是显而易见的。因此,应当参照所附权利要求书以及此类权利要求要求授权的等效方案的完整范围来确定本发明的范围。当前第1页1 2 3 
技术特征:

1.一种制造固体烧结陶瓷制品的方法,所述固体烧结陶瓷制品包含陶瓷主体,所述方法包括:

产生多种陶瓷粉末的混合物,所述多种陶瓷粉末的混合物包括约40摩尔%至小于99摩尔%的y2o3;0摩尔%以上至小于59摩尔%的zro2;以及约1摩尔%至小于5摩尔%的al2o3;以及

烧结所述多种陶瓷粉末以形成所述陶瓷主体。

2.如权利要求1所述的方法,其特征在于,所述多种陶瓷粉末包括63摩尔%至72摩尔%的y2o3。

3.如权利要求1所述的方法,其特征在于,所述多种陶瓷粉末包括26摩尔%至36摩尔%的zro2。

4.如权利要求1所述的方法,其特征在于,所述多种陶瓷粉末包括63摩尔%至72摩尔%的y2o3;26摩尔%至36摩尔%的zro2;以及1摩尔%至2摩尔%的al2o3。

5.如权利要求4所述的方法,其特征在于,所述多种陶瓷粉末包括71摩尔%至72摩尔%的y2o3;26摩尔%至27摩尔%的zro2;以及1摩尔%至2摩尔%的al2o3。

6.如权利要求5所述的方法,其特征在于,所述多种陶瓷粉末包括71.96摩尔%的y2o3;26.44摩尔%的zro2;以及1.60摩尔%的al2o3。

7.如权利要求4所述的方法,其特征在于,所述多种陶瓷粉末包括63摩尔%至64摩尔%的y2o3;35摩尔%至36摩尔%的zro2;以及1摩尔%至2摩尔%的al2o3。

8.如权利要求7所述的方法,其特征在于,所述多种陶瓷粉末包括63.56摩尔%的y2o3;35.03摩尔%的zro2;以及1.41摩尔%的al2o3。

9.如权利要求1所述的方法,其特征在于,所述多种陶瓷粉末进一步包括痕量的sio2、b2o3、er2o3、nd2o3、nb2o5、ceo2、sm2o3或yb2o3中的至少一种。

10.如权利要求1所述的方法,其特征在于,所述固体烧结陶瓷制品包含用于等离子体蚀刻反应器的腔室部件,所述腔室部件选自由以下各项组成的组:静电夹盘、盖、喷嘴、气体分配板、喷淋头、静电夹盘部件以及处理套环。

11.一种制造被涂覆的制品的方法,所述方法包括:

在制品的主体的至少一个表面上形成抗等离子体的陶瓷涂层以形成所述被涂覆的制品,所述抗等离子体的陶瓷涂层包括至少一种固溶体,所述至少一种固溶体包括:

约40摩尔%至小于99摩尔%的y2o3;0摩尔%以上至小于59摩尔%的zro2;以及约1摩尔%至小于5摩尔%的al2o3。

12.如权利要求11所述的方法,其特征在于,形成所述抗等离子体的陶瓷涂层包括将陶瓷粉末等离子体喷涂到所述制品的所述主体的所述至少一个表面上。

13.如权利要求11所述的方法,其特征在于,形成所述抗等离子体的陶瓷涂层包括执行离子辅助沉积。

14.如权利要求11所述的方法,其特征在于,所述抗等离子体的陶瓷涂层包括63摩尔%至72摩尔%的y2o3;26摩尔%至36摩尔%的zro2;以及1摩尔%至2摩尔%的al2o3。

15.如权利要求14所述的方法,其特征在于,所述抗等离子体的陶瓷涂层包括71摩尔%至72摩尔%的y2o3;26摩尔%至27摩尔%的zro2;以及1摩尔%至2摩尔%的al2o3。

16.如权利要求14所述的方法,其特征在于,所述抗等离子体的陶瓷涂层包括63摩尔%至64摩尔%的y2o3;35摩尔%至36摩尔%的zro2;以及1摩尔%至2摩尔%的al2o3。

17.如权利要求11所述的方法,其特征在于,所述抗等离子体的陶瓷涂层包括63摩尔%至72摩尔%的y2o3。

18.如权利要求11所述的方法,其特征在于,所述抗等离子体的陶瓷涂层包括26摩尔%至36摩尔%的zro2。

19.如权利要求11所述的方法,其特征在于,所述抗等离子体的陶瓷涂层包括1摩尔%至2摩尔%的al2o3。

20.如权利要求11所述的方法,其特征在于,所述抗等离子体的陶瓷涂层包括痕量的sio2、b2o3、er2o3、nd2o3、nb2o5、ceo2、sm2o3或yb2o3中的至少一种。

21.如权利要求11所述的方法,其特征在于,所述制品包括用于等离子体蚀刻反应器的腔室部件,其中所述腔室部件选自由以下各项组成的组:静电夹盘、盖、喷嘴、气体分配板、喷淋头、静电夹盘部件以及处理套环。

技术总结
本申请公开了稀土氧化物基单片式腔室材料。一种固体烧结陶瓷制品可包括固溶体,所述固溶体包含:约30摩尔%至约60摩尔%的浓度的Y2O3;约20摩尔%至约60摩尔%的浓度的Er2O3;以及约0摩尔%至约30摩尔%的浓度的ZrO2、Gd2O3或SiO2的至少一者。或者,所述固体烧结陶瓷制品可包括固溶体,所述固溶体包含40‑100摩尔%的Y2O3、0‑50摩尔%的ZrO2以及0‑40摩尔%的Al2O3。

技术研发人员:J·Y·孙;B·P·卡农戈
受保护的技术使用者:应用材料公司
技术研发日:2014.11.11
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-53518.html

最新回复(0)