一种蛭石纳米片及其制备方法与流程

专利2022-06-29  179


本发明属于无机非金属功能材料和矿物功能材料技术领域,具体来说,涉及一种蛭石纳米片及其制备方法。



背景技术:

蛭石为tot型层状硅酸盐矿物,其tot结构层的厚度小于1nm,结构之间(层间域)含有水化阳离子和水分子。对蛭石进行高温急剧加热,其层间水可受热蒸发为气体,由于气体溢出的压力,使结构层沿解离面(位于蛭石的层间域)二维方向分离,形成膨胀蛭石。膨胀蛭石中的细薄的叠片构成大量间隔层,且层间充满空气,因此其具有很小的堆密度和导热系数,被认为是一种优良的防火、吸音、隔热的轻质环保材料。

我国蛭石年产量已达10万吨,占世界总产量的12.5%,但应用方面仍与欧美发达国家存在较大差距。所生产的蛭石大多焙烧后直接应用于建筑业及农业,对于其他领域的应用仍显薄弱,导致蛭石应用领域狭窄、利用率低,深度加工产品少,科技含量低。诸多学者在蛭石基复合材料制备方面作了大量研究工作,运用先进的复合材料制备技术将传统蛭石材料赋予新的功能特性。但大部分复合材料的制备工艺比较苛刻,仍局限于实验室研究,且在制备过程中由于蛭石并未能实现良好的纳米级的分散,导致蛭石片对复合材料的力学性能提高不显著。因此,对蛭石的剥离分散制备纳米片技术具有十分重要的现实意义,可大大拓宽蛭石资源的应用领域,提高蛭石产品的附加值和利用效率。

当前,蛭石剥离技术主要通过对蛭石原矿进行化学改性及机械剥离处理。制备过程中或采用有机助剂、或设备和工艺复杂、或产率低,而且大多处在实验室阶段,所产生废液难以处理,对环境污染大等。所获得的蛭石片或复合产物仅适用于特定的领域,不利于推广使用,限制了蛭石矿产资源的应用范围。尚未制备出未改性或单一的以蛭石纳米片独立存在的产品,也未有与该蛭石纳米片制备相关的技术方案和方法。



技术实现要素:

本发明的目的在于解决现有技术存在的上述不足中的至少一项。例如,本发明的目的之一在于提供一种蛭石纳米片的制备方法,该方法工艺简单、绿色环保、便于工业化应用。本发明的另一目的在于提供一种蛭石纳米片,该蛭石纳米片在造纸、涂料、油漆和塑料、橡胶等行业中可作为纳米增强材料,也可用作防火阻燃涂层、保温隔热材料、吸附材料、催化材料及密封(密气、密水)材料填料等。

本发明一方面提供了一种蛭石纳米片制备方法。所述制备方法包括以下步骤:将高膨胀率膨胀蛭石和双氧水溶液混合得到膨胀蛭石悬浮液;对所述膨胀蛭石悬浮液进行搅拌剪切得到膨胀蛭石悬浊液;对所述膨胀蛭石悬浊液进行纳米化剥离分散得到粗制蛭石纳米片分散液;对所述粗制蛭石纳米片分散液进行沉降分离得到精制蛭石纳米片分散液和底部沉淀物;对所述精制蛭石纳米片分散液进行固液分离和干燥得到蛭石纳米片。

在本发明一方面的一个示例性实施例中,所述高膨胀率膨胀蛭石可具有蛭石和/或金云母和/或水金云母-蛭石间层矿物的物相。

在本发明一方面的一个示例性实施例中,所述高膨胀率膨胀蛭石可为蠕虫状,长度可为1~5cm,堆积密度可为15~250kg/m3,截面直径可为1~12mm。

在本发明一方面的一个示例性实施例中,所述膨胀蛭石悬浮液的固液质量体积比可以为1:10~1:500。

在本发明一方面的一个示例性实施例中,所述双氧水溶液的质量分数可为5~30%。

在本发明一方面的一个示例性实施例中,所述纳米化剥离分散可为匀质分散和/或超声剥离分散,所述匀质分散的搅拌转速可为3000~8000转/min,搅拌时间可为15~60min,所述超声剥离分散的超声振幅可为60~100%,超声时间可为5~25min。

在本发明一方面的一个示例性实施例中,所述沉降分离可以为自然沉降和/或离心沉降方式,所述自然沉降方式的静置时间可为10~720min,所述离心沉降方式的离心转速可为500~8000转/min,离心沉降的时间可为1~10min。

在本发明一方面的一个示例性实施例中,所述高膨胀率膨胀蛭石制备方法可包括以下步骤:将工业蛭石原矿进行研磨剥片、除杂和分级,获得直径为3~10mm、片厚度为0.3~1.2mm的工业蛭石精片;将氧化剂与工业用水混合制备成5~30wt%的氧化剂溶液,将所述氧化剂溶液与还原性有机酸按体积质量比按l/kg的单位计为15:1~240:1混合得到复合插层剂;将所述工业蛭石精片与复合插层剂按质量体积比按l/kg的单位计为1:1.2~1:2.4混合搅拌直至复合插层剂被完全吸收,在10~30℃条件下静置陈化5~24h,获得复合插层工业蛭石精片;对所述复合插层工业蛭石精片进行加热处理得到高膨胀率膨胀蛭石;其中,所述氧化剂可为过氧化氢或过氧化钙中的一种,所述还原性有机酸可为苹果酸、葡萄糖酸和柠檬酸中的一种,所述加热处理的温度可为200~750℃,加热时间可为1~5min。

本发明的另一方面提供了一种蛭石纳米片,所述蛭石纳米片的厚度可为1~70nm,片径可为0.1~100μm。

在本发明另一方面的一个例性实施例中,所述蛭石纳米片的厚度可为1~30nm,片径可为0.5~5μm。

与现有技术相比,本发明的有益效果包括以下方面中的至少一项:

1、本发明的方法所制备的蛭石纳米片产率高,厚度小,属典型的二维纳米材料;

2、蛭石纳米片为单层或寡层,晶层结构没有遭到破坏,平行叠置体在xrd衍射图上仍具有蛭石和/或金云母(如果存在)及蛭石晶层-金云母晶层间层矿物的衍射特征;

3、本发明的设备选型与控制普适性强,生产过程中绿色环保,化学助剂无污染,便于工业化生产;

4、制备的蛭石纳米片应用领域不局限于传统的某一特定领域,在造纸、涂料、油漆和塑料、橡胶等行业中具有广泛的应用。

附图说明

图1示出了根据本发明的蛭石纳米片制备方法一个示例性实施例的工艺流程图;

图2示出了工业蛭石原矿xrd图;

图3示出了微波法制备的高膨胀率膨胀蛭石xrd图;

图4示出了焙烧法制备的高膨胀率膨胀蛭石xrd图;

图5示出了蛭石纳米片平行叠置体xrd图;

图6示出了工业蛭石原矿实物图;

图7示出了微波法制备的高膨胀率膨胀蛭石实物图;

图8示出了焙烧法制备的高膨胀率膨胀蛭石实物图;

图9示出了膨胀蛭石悬浮液实物图;

图10示出了膨胀蛭石悬浊液实物图;

图11示出了示例一制得蛭石纳米片afm图(一);

图12示出了示例一制得蛭石纳米片afm图(二)。

具体实施方式

在下文中,将结合示例性实施例和附图来详细说明本发明的蛭石纳米片及其制备方法。

图1示出了根据本发明的蛭石纳米片制备方法一个示例性实施例的工艺流程图。图2示出了工业蛭石原矿xrd图。图3示出了微波法制备的高膨胀率膨胀蛭石xrd图。图4示出了焙烧法制备的高膨胀率膨胀蛭石xrd图。图5示出了蛭石纳米片平行叠置体xrd图。图6示出了工业蛭石原矿实物图。图7示出了微波法制备的高膨胀率膨胀蛭石实物图。图8示出了焙烧法高膨胀率膨胀蛭石实物图。图9示出了膨胀蛭石悬浮液实物图。图10示出了膨胀蛭石悬浊液实物图。

在本发明的第一示例性实施例中,如图1中所示,蛭石纳米片制备方法可包括以下步骤:

(1)膨胀蛭石悬浮液的制备

将高膨胀率膨胀蛭石和双氧水溶液混合得到膨胀蛭石悬浮液。具体来讲,将高膨胀率膨胀蛭石原料和双氧水溶液加入混合容器中,搅拌混合后得到膨胀蛭石悬浮液(如图9中所示)。目前,未经改性的工业蛭石原矿膨胀率最高为20倍左右,而本发明中制备的膨胀蛭石的膨胀率为40倍(700w微波加热)或80倍(750℃焙烧加热),因此称其为高膨胀率膨胀蛭石。高膨胀率膨胀蛭石具有层解充分、疏松多孔和易于剥离分散等优点。如图3和图4中所示,高膨胀率膨胀蛭石可具有蛭石和/或金云母和/或水金云母-蛭石间层矿物的物相。此外,高膨胀率膨胀蛭石可为蠕虫状,长度可为1~5cm,例如3cm等,堆积密度可为15~250kg/m3,例如100kg/m3、200kg/m3等,截面直径可为1~12mm,例如2~4mm等。这里,所用的混合容器上设有2个安装均质分散装置和超声剥离分散装置的接口,以便后续进行均质分散和超声剥离时连接相应的设备。双氧水溶液的质量分数可为5~30%,例如,15%、20%等。膨胀蛭石悬浮液的固液质量体积比可为1:10~1:500。具体来讲,制得的膨胀蛭石悬浮液中膨胀蛭石的质量和双氧水溶液的体积的比可为1:10~1:500,例如1:100、1:350等。

(2)膨胀蛭石悬浊液的制备

对所述膨胀蛭石悬浮液进行搅拌剪切得到膨胀蛭石悬浊液。具体来讲,将步骤(1)中制备的膨胀蛭石悬浮液进行低速机械搅拌,利用机械搅拌产生的剪切力与摩擦作用使蠕虫状膨胀蛭石产生剥离与分散,在剥离过程中双氧水溶液可产生比超纯水更多的(空化)气泡,再一次促进了膨胀蛭石颗粒的内部结构层的分离,得到需要的膨胀蛭石悬浊液(如图10中所示)。例如,低速机械搅拌的转速范围可为500~3000转/min,例如1500转/min、2000转/min等,搅拌时间可为20~60min。

(3)粗制蛭石纳米片分散液的制备

对所述膨胀蛭石悬浊液进行纳米化剥离分散得到粗制蛭石纳米片分散液。具体来讲,将步骤(2)中得到的膨胀蛭石悬浊液进行纳米化分散处理,制备粗制蛭石纳米片分散溶液。例如,纳米化分散处理可以采用匀质分散装置对膨胀蛭石悬浊液进行搅拌方式进行,也可以采用超声剥离分散装置对膨胀蛭石悬浊液进行超声剥离方式进行,还可以采用均质分散装置搅拌和超声剥离震荡结合的方式进行。其中,匀质分散装置的搅拌转速为3000~8000转/min,例如5000转/min、7000转/min等,搅拌时间为15~60min,例如,30min、45min等;超声剥离分散装置的超声振幅为60~100%,频率为25khz,例如70%、85%等,超声时间为5~25min。然而,本发明不限于此,只要能够对膨胀蛭石悬浊液进行纳米化分散处理即可。

(4)精制蛭石纳米片分散液的制备

对步骤(3)中得到的粗制蛭石纳米片分散液进行分离提纯,去除底部沉淀后可获得精制蛭石纳米片分散液。这里,分离提纯方式可以采用自然沉降,也可以采用离心沉降方式进行,还可以采用将自然沉降和离心沉降结合的方式进行。其中,自然沉降方式的静置时间为10~720min,离心沉降方式的离心机转速为500~8000转/min,离心沉降的时间为1~10min。这里,底部沉淀物为未充分剥离与分散的膨胀蛭石,也可以将底部沉淀物加入步骤(2)中进行重新剥离与分散,提高蛭石的利用率。

(5)得到蛭石纳米片

对所述粗制蛭石纳米片分散液进行沉降分离得到精制蛭石纳米片分散液和底部沉淀物。具体来讲,将步骤(4)中得到的精制蛭石纳米片分散液进行固液分离得到液体和固体沉淀物,并对获得的固定沉淀物进行干燥处理得到需要的蛭石纳米片产品。例如,精制蛭石纳米片分散液的分离可以采用压滤、抽滤等方式进行,分离出的固体沉淀物可以采用自然风干、在加热装置中烘干或冷冻干燥中的一种或多种方式干燥得到蛭石纳米片。然而本发明不限于此,分离和干燥也可以采用其他方式。对得到的蛭石纳米片形成平行叠置体并进行xrd测试,如图4中所示,蛭石纳米片平行叠置体的xrd衍射图谱中仍具有蛭石晶层的特征,说明获得的蛭石纳米片为单层或寡层结构。

在本示例性实施例中,高膨胀率膨胀蛭石的制备方法可包括以下步骤:

将蛭石原矿进行研磨剥片、除杂和分级,获得直径(即工业蛭石精片的等效直径)为3~10mm、片厚度为0.3~1.2mm的工业蛭石精片。如图6中所示,工业蛭石原矿为片状,呈弱玻璃光泽至玻璃光泽,部分颗粒具有油脂光泽。对蛭石原矿进行物相分析,如图2中所示,蛭石原矿为由蛭石、水金云母、金云母相组成的混合相矿物。其中,蛭石原料的筛分粒级分别为3~5mm、5~8mm、8~10mm,研磨破碎设备可选用颚式破碎机、圆锥破碎机、对辊破碎机等,除杂设备可选用风选机、色选机等,筛分设备可选用各类高频振动筛。然而,本发明不限于此,只要能够获得目标直径的蛭石精片即可。

将氧化剂与水混合制备成5~30wt%的氧化剂溶液,并将制得的氧化剂溶液与还原性有机酸按体积质量比按l/kg的单位计为15:1~240:1加入到耐酸反应容器中混匀,获得复合插层剂。其中,水可以为工业用水,复合插层剂中氧化剂为过氧化氢或过氧化钙中的一种,还原性有机酸包括苹果酸、葡萄糖酸和柠檬酸中的一种。然而,本发明不限于此,其它性能相同或相近的氧化剂和还原剂也可以。

将获得的蛭石精片与复合插层剂按质量体积比按l/kg的单位计为1:1.2~1:2.4加入耐酸反应容器中并搅拌,直至蛭石精片将复合插层剂完全吸收无剩余溶液后,在10~30℃条件下静置陈化5~24h,使插层剂充分插入到蛭石晶层和部分金云母晶层层间域中,获得复合插层蛭石精片。

将得到的复合插层蛭石精片进行加热处理,得到蠕虫状的高膨胀率膨胀蛭石(如图7和图8中所示)。这里,加热处理的温度为200~750℃,加热时间为1~5min,加热方式可以采用微波加热或电加热等。例如,加热设备可选用立窑、回转窑、管式窑或其他工业微波炉。然而,本发明不限于此,只要能够对复合插层蛭石精片进行加热即可。

具体来讲,取工业蛭石原矿进行研磨剥片、除杂和分级,获得直径为3mm的工业蛭石精片。将过氧化氢与工业用水混合制备成质量分数为15%的双氧水溶液,并与苹果酸按体积质量比15:1(l/kg)加入到耐酸反应容器中混匀,获得复合插层剂。将工业蛭石精片与复合插层剂按质量体积比1:2.4(kg/l)加入耐酸反应容器中进行搅拌,直至复合插层剂被工业蛭石精片完全吸收后,在20℃条件下静置陈化24h,使插层剂充分插入到蛭石晶层和部分金云母晶层层间域中,获得复合插层工业蛭石精片。复合插层工业蛭石精片进行电加热处理,加热温度为750℃,加热时间3min,获得高膨胀率膨胀蛭石产品。例如,在表1中给出了不同条件下制备的高膨胀率蛭石的膨胀率。从表1中可以看到,高膨胀率蛭石的膨胀率与其加热方式有关,当采用焙烧法加热处理,加热温度为750℃时,制得的高膨胀率膨胀蛭石的膨胀率为80倍;当采用微波加热处理,微波功率为700w时,制得的高膨胀蛭石膨胀率为45倍。

表1高膨胀率膨胀蛭石制备工艺参数

图11示出了示例一制得蛭石纳米片afm图(一)。图12示出了示例一制得蛭石纳米片afm图(二)。

在本发明的第二示例性实施例中,蛭石纳米片的厚度可为1~70nm,片径(即蛭石纳米片的等效直径)可为0.1~100μm。具体来讲,采用第一示例性实施例中的制备方法制得蛭石纳米片,采用afm(原子力显微镜)对蛭石纳米片的粒径范围和厚度范围进行表征。表2和表3中给出了本示例性实施例中蛭石纳米片的制备工艺条件以及对应的片径范围和厚度范围。图11和图12中给出了表2中编号1工艺条件制备的蛭石纳米片的afm图,由图11和图12可知,该蛭石纳米片的片径为0.3~1μm,厚度为45~60nm。这里,表2中和表3中其它编号工艺条件制备的蛭石纳米片的afm没有给出,只给出了相应的厚度和片径范围的结果。需要说明的是,图12中z1表示最高点的绝对高度,z2表示最低点的绝对高度,δz表示最高点与最低点的高度差,distance表示afm测试时探针扫过的距离(distance可简称为距离),为相位角。如表3中所示,本示例性实施例中蛭石纳米片的厚度位于1~70nm范围,片径位于0.1~100μm范围。

表2蛭石纳米片的制备工艺条件以及对应的片径范围和厚度范围

表3蛭石纳米片的制备工艺条件以及对应的片径范围和厚度范围

在本发明的第三示例性实施例中,蛭石纳米片的厚度为1~30nm,片径为0.5~5μm。具体来讲,通过控制制备条件使得蛭石纳米片的厚度处于1~30nm范围,片径处于0.5~5μm范围,将制得的蛭石纳米片作为基体制备光催化复合材料,能够达到对有机染料较强的去除性能。表4中给出了厚度为1~30nm,片径为0.5~5μm的蛭石纳米片的制备条件,其中,所使用的高膨胀率膨胀蛭石为蠕虫状,长度可为2~4cm,堆积密度可为20~90kg/m3,截面直径可为3~5mm。

表4厚度为1~30nm,片径为0.5~5μm的蛭石纳米片的制备条件

综上所述,本发明的有益效果包括以下方面中的一种或多种:

1、本发明方法所制备的蛭石纳米片产率高,厚度小,属典型的二维纳米材料;

2、蛭石纳米片为单层或寡层,晶层结构没有遭到破坏,平行叠置体在xrd衍射图上仍具有蛭石和/或金云母(如果存在)及蛭石晶层-金云母晶层间层矿物的衍射特征;

3、本发明设备选型与控制普适性强,生产过程中绿色环保,化学助剂无污染,便于工业化生产;

4、本发明技术方案制备的蛭石纳米片分散均匀,片径在0.1~100μm,片厚度在1~70nm。

5、本发明技术方案制备的厚度为1~30nm、片径为0.5~5μm范围的蛭石纳米片作为基体制备光催化复合材料,能够达到对有机染料较强的去除性能。

6、所制备的蛭石纳米片应用领域不局限于传统的某一特定领域,在造纸、涂料、油漆和塑料、橡胶等行业中可作为纳米增强材料,也可用作防火阻燃涂层、保温隔热材料、吸附材料、催化材料及密封(密气、密水)材料填料等。

尽管上面已经结合示例性示实施例及附图描述了本发明的蛭石纳米片及其制备方法,但是本领域普通技术人员应该清楚,在不脱离权利要求的精神和范围的情况下,可以对上述实施例进行各种修改。


技术特征:

1.一种蛭石纳米片制备方法,其特征在于,所述制备方法包括以下步骤:

将高膨胀率膨胀蛭石和双氧水溶液混合得到膨胀蛭石悬浮液;

对所述膨胀蛭石悬浮液进行搅拌剪切得到膨胀蛭石悬浊液;

对所述膨胀蛭石悬浊液进行纳米化剥离分散得到粗制蛭石纳米片分散液;

对所述粗制蛭石纳米片分散液进行沉降分离得到精制蛭石纳米片分散液和底部沉淀物;

对所述精制蛭石纳米片分散液进行固液分离和干燥得到蛭石纳米片。

2.根据权利要求1所述的蛭石纳米片制备方法,其特征在于,所述高膨胀率膨胀蛭石具有蛭石和/或金云母和/或水金云母-蛭石间层矿物的物相。

3.根据权利要求1所述的蛭石纳米片制备方法,其特征在于,所述高膨胀率膨胀蛭石为蠕虫状,长度为1~5cm,堆积密度为15~250kg/m3,截面直径为1~12mm。

4.根据权利要求1所述的蛭石纳米片制备方法,其特征在于,所述双氧水溶液的质量分数为5~30%。

5.根据权利要求1所述的蛭石纳米片制备方法,其特征在于,所述膨胀蛭石悬浮液的固液质量体积比为1:10~1:500。

6.根据权利要求1所述的蛭石纳米片制备方法,其特征在于,所述纳米化剥离分散为匀质分散和/或超声剥离分散,所述匀质分散的搅拌转速为3000~8000转/min,搅拌时间为15~60min,所述超声剥离分散的超声振幅为60~100%,超声时间为5~25min。

7.根据权利要求1所述的蛭石纳米片制备方法,其特征在于,所述沉降分离为自然沉降和/或离心沉降方式,所述自然沉降方式的静置时间为10~720min,所述离心沉降方式的离心转速为500~8000转/min,离心沉降的时间为1~10min。

8.根据权利要求1所述的蛭石纳米片制备方法,其特征在于,所述高膨胀率膨胀蛭石制备方法包括以下步骤:

将工业蛭石原矿进行研磨剥片、除杂和分级,获得直径为3~10mm、片厚度为0.3~1.2mm的工业蛭石精片;

将氧化剂与工业用水混合制备成5~30wt%的氧化剂溶液,将所述氧化剂溶液与还原性有机酸按体积质量比按l/kg的单位计为15:1~240:1混合得到复合插层剂;

将所述工业蛭石精片与复合插层剂按质量体积比按l/kg的单位计为1:1.2~1:2.4混合搅拌直至复合插层剂被完全吸收,在10~30℃条件下静置陈化5~24h,获得复合插层工业蛭石精片;

对所述复合插层工业蛭石精片进行加热处理得到高膨胀率膨胀蛭石;

其中,所述氧化剂为过氧化氢或过氧化钙中的一种,所述还原性有机酸为苹果酸、葡萄糖酸和柠檬酸中的一种,所述加热处理的温度为200~750℃,加热时间为1~5min。

9.一种蛭石纳米片,其特征在于,所述蛭石纳米片的厚度为1~70nm,片径为0.1~100μm。

10.根据权利要求9所述的蛭石纳米片,其特征在于,所述蛭石纳米片的厚度为1~30nm,片径为0.5~5μm。

技术总结
本发明提供了一种蛭石纳米片及其制备方法。所述制备方法包括以下步骤:将高膨胀率膨胀蛭石和双氧水溶液混合得到膨胀蛭石悬浮液;对所述膨胀蛭石悬浮液进行搅拌剪切得到膨胀蛭石悬浊液;对所述膨胀蛭石悬浊液进行纳米化剥离分散得到粗制蛭石纳米片分散液;对所述粗制蛭石纳米片分散液进行沉降分离得到精制蛭石纳米片分散液和底部沉淀物;对所述精制蛭石纳米片分散液进行固液分离和干燥得到蛭石纳米片。本发明的蛭石纳米片制备方法具有设备选型与控制普适性强,生产过程中绿色环保,化学助剂无污染,便于工业化生产等优点。

技术研发人员:孙红娟;安云飞;解颜岩;彭同江;罗利明;安云霞
受保护的技术使用者:西南科技大学
技术研发日:2020.01.17
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-53363.html

最新回复(0)