不确定性下多层次密度融合的余热发电锅炉温度控制方法与流程

专利2022-06-29  61


本发明涉及余热发电领域,具体涉及一种不确定性下多层次密度融合的余热发电锅炉温度控制方法。
背景技术
:智能制造的核心就是通过构建智能生产系统实现生产过程智能化,虽然水泥工业与余热发电系统已经在计算机技术、控制技术等的推动作用下实现了快速发展,但是在中央控制室大多仍依靠操作员的技术和经验,因此,摆脱对人工操作的依赖,实现智能化控制成为亟待解决的问题。余热发电系统中最重要的就是把控好温度的变化趋势,温度过高时不利于锅炉的长久运行,温度过低时会影响发电量,锅炉温度的变化会受到众多因素的影响,因此很难实现对温度的精准控制,过于依赖与操作员的技术。交互式进化计算由人来评价解的优劣性,每次迭代完成都为操作员提供可靠的调节方法,一定程度上降低了对操作员的依赖性。常见的交互式进化算法算法有交互式遗传算法、交互式蚁群算法和交互式免疫算法。文章[张静卓.交互式进化设计方法及其在手表造型设计中的应用研究[d].2017.]基于感性化设计思想,将交互式遗传算法和神经网络进行结合应用在手表造型设计中;[窦润亮等.面向客户个性化需求的交互式遗传算法[j].管理科学学报,2016,19(1):24-34.]针对交互式遗传算法(iga)中的评价噪声问题,提出犹豫度的概念,建立犹豫度调整机制,并使用删除策略和修改策略来处理形成初始种群以及交叉、变异过程中产生的约束不满足个体;[朱佳栋等.面向产品配置设计的改进交互式遗传算法[j].中国机械工程,2018,29(20):2474-2478.]通过对变异个体和遗传操作的改进设计,对其进行了优化,并应用到多功能液压千斤顶的配置设计中;文章[黄永青等.交互式蚂蚁算法[j].控制与决策,2012(04):131-134 139.]提出一种将人对问题解的数量评价值作为目标函数值的交互式蚂蚁算法。由于人工免疫算法通常都是随机产生初始抗体,使得算法以低质量的解决方案作为开端,而且在进行亲和力的计算时,往往直接将待求函数作为亲和度函数,此方案不适用于余热发电系统温度控制中。以上这些因素阻碍了人工免疫算法在余热发电领域中的进一步应用。技术实现要素:为了解决现有技术问题,本发明提供一种不确定性下多层次密度融合的余热发电锅炉温度控制方法。本发明对免疫算法的初始抗体产生、亲和力计算以及最优解判定这三个过程进行改进,该算法能有效减少迭代次数,节约时间成本,有效解决了锅炉温度难以准备控制等问题。为解决上述技术问题,本发明所采取的技术方案是:一种不确定性下多层次密度融合的余热发电锅炉温度控制方法,包括下述步骤:s1.对影响锅炉温度的因素进行收集并分析,筛选出具有代表性的特征参数,根据所选特征参数定义温度控制特征参数体系,并将所得数据进行预处理;s2.由操作员在交互界面填写锅炉温度状态调查表,将获取的温度信息进行二进制编码作为抗原,并根据所选的温度调整优先级构造锅炉调整权重矩阵;s3.用基于密度的平衡迭代规约聚类算法对初始抗体进行优化,选出聚类后与抗原的平均距离最近的一个类,从该类中产生初始抗体;s4.根据基于汉明距离得到的匹配矩阵和锅炉调整权重矩阵,利用基于温度调整优先级的亲和力计算方法求出抗原与抗体之间的亲和力,并将亲和力排序;并按排序结果更新记忆细胞集;s5判断记忆细胞中是否有满意解,如果有则算法结束,如果没有则根据最优解的输出规则输出解集;判断该最优集中是否有满意解,如果有则算法结束,如果没有则更新抗体种群,重新进行满意解判断过程。进一步的,所述步骤s2中,锅炉温度状态调查表为:由于余热发电系统有3个锅炉,所以锅炉温度状态调查表一共有3个模块,每个模块都包括该锅炉现在的阀门开度及对应的温度情况,其中温度情况有正常,偏低,非常低,偏高,非常高这五种情况,对应调整优先级的权重分别是0、1、2、3、4;根据每个锅炉温度的调整优先级得到锅炉调整权重矩阵w如下:w=[w(1),...,w(i),...,w(n)]其中,w(i)={0,1,2,3,4},n为特征参数体系中的参数个数。进一步的,所述步骤s3中,利用基于密度的平衡迭代规约聚类算法对初始抗体优化,该方法首先对数据进行降维、求解密度聚类中的密度阈值并利用求出的密度阈值来初始化平衡迭代规约聚类的参数。步骤如下:1-1)对数据样本进行预处理,并用核主成分分析法对处理过的数据进行降维,得到降维后的数据集x;1-2)计算数据集x中每个样本点xi的密度,并求出密度可达距离r和密度阈值minpts;1-3)根据r和minpts初始化平衡迭代规约聚类算法的参数;1-4)从数据集x中读入新样本,若数据集已无新样本,则算法结束;若还有新样本,则转入步骤1-5;1-5)从根节点开始搜寻,自上而下选取距离最近的子节点,到达叶子节点以后,判断最近的cf节点中是否能够吸收该数据:如果新数据样本加入后该节点的这个cf节点对应的超球体半径满足小于阈值t,则更新路径上所有的cf三元组,插入结束,转入步骤1-4;否则转入步骤1-6;1-6)如果当前叶子节点的cf节点个数小于阈值minpts,创建一个新的cf节点,放入新样本,将新的cf节点放入这个叶子节点,更新路径上所有的cf三元组,插入结束,转入步骤1-4;否则转入步骤1-7;1-7)将当前叶子节点划分为两个新叶子节点,选择旧叶子节点中所有cf元组里超球体距离最远的两个cf元组,分别作为两个新叶子节点的第一个cf节点;将其他元组和新样本元组按照距离远近原则放入对应的叶子节点;检查分裂,直到根节点,若需要则按相同的分裂方法进行分裂。进一步的,所述步骤s4中,基于温度调整优先级的亲和力计算方法包括下述步骤:在对锅炉阀门开度及温度进行二进制编码时,如果当前温度变化是稳定的,则根据操作员的选择赋予该温度属性对应的编码值,如果当前温度变化不稳定,则在该温度变化范围内对其进行随机赋值。我们将从锅炉温度状态调查表获取的锅炉温度信息作为抗原a,对于任意一个抗体b,有:v=[v(1),...v(i),...,v(n)]v(i)=len(i)-d(a(i),b(i))其中,n为特征参数体系的参数个数,len(i)表示温度控制特征参数体系中第i个参数的编码长度,d(a(i),b(i))表示抗原a的第i个特征参数的编码值与抗体b的第i个特征参数的编码值之间的汉明距离,v(i)则表示第i个特征参数的匹配度,构成了匹配矩阵v;因此可得抗原a和抗体b之间的亲和力为:aff=w·vt。其中,w为锅炉调整权重矩阵,v为匹配矩阵,aff为亲和力的值。进一步的,所述步骤s5中最优解的输出规则,具体步骤为:1-1)初始化记忆细胞和最优解集解的输出个数。设抗体数量为m个,记忆细胞和最优解集的输出个数分别为n1和n2;1-2)输出当代亲和力最高的m个优秀抗体,计算剩余抗体的伪亲和力值:其中,pi为第i个个体的伪亲和力值,i=1,…,m-m。1-3)基于计算得出的伪亲和力值,采取轮盘赌选择法选取出其余的n2-m个最优解。采用上述技术方案所产生的有益效果在于:针对存在的温度难以精确控制,以及阀门调整过于依靠操作员经验等问题,本发明对人工免疫算法中的初始抗体产生、亲和力计算、以及最优解判定这三个过程进行改进。本发明将改进后的算法称为基于层次密度融合改进的交互式免疫算法(animprovedinteractiveimmunealgorithmbasedonhierarchicaldensityfusion,简称hdfi),该算法有效提高了算法的收敛速度,节约了时间成本。本发明与传统人工免疫算法相比:(1)对初始抗体进行优化,使算法以一个良好的抗体种群作为开端,加快了算法的收敛速度;(2)采用基于温度调整优先级的亲和力计算方法,使算法得到的结果可以更准确的响应温度调节需求;(3)将改进的最优解输出规则应用于最优解的选取中,使得最优解既保持了优良性又具有多样性。将本发明提出的方法应用于余热发电锅炉温度控制中,通过试验分析,验证了提出的hdfi的平均进化代数比tiaia的平均进化代数平均减少了10.333%,平均评价个体数减少了10.465%,运行时间缩短了15.563%。有效减少了算法的迭代次数,缩短了运行时间。附图说明图1是本发明基于层次密度融合改进的交互式免疫算法流程图;图2是本发明基于密度的平衡迭代规约聚类算法流程图;图3是本发明锅炉温度状态调查表中的模块结构图;图4是四个数据集不同簇类别数的效果对比图;图5是聚类时间比较图;图6是编码长度示意图;图7是温度控制系统交互界面;图8是hdfi和tiaia进化代数对比图。具体实施方式下面结合附图和具体实施方式对本发明作进一步详细的说明。本发明以余热发电为载体,以hdfi算法作为主要的算法框架,其流程图如图1所示,包括下述步骤:s1.对影响锅炉温度的因素进行收集并分析,筛选出具有代表性的特征参数,根据所选特征参数定义温度控制特征参数体系,并将所得数据进行预处理;本发明的试验验证构建了温度控制特征参数体系,包含11个特征参数:aqc进口阀、aqc旁通阀、aqc左侧进口温度、aqc右侧进口温度、sp进口阀、sp旁通阀、sp左侧进口温度、sp右侧进口温度、ash进口阀、ash冷风阀、ash进口温度。s2.由操作员在交互界面填写锅炉温度状态调查表,将获取的温度信息进行二进制编码作为抗原,并根据所选的温度调整优先级构造锅炉调整权重矩阵。由于余热发电系统有3个锅炉,所以锅炉温度状态调查表一共有3个模块,每个模块都包括该锅炉现在的阀门开度及对应的温度情况,其中温度情况有正常,偏低,非常低,偏高,非常高这五种情况,对应调整优先级的权重分别是0、1、2、3、4;根据每个锅炉温度的调整优先级得到锅炉调整权重矩阵w如下:w=[w(1),...,w(i),...,w(n)]其中,w(i)={0,1,2,3,4},n为特征参数体系中的参数个数。s3.用基于密度的平衡迭代规约聚类算法对初始抗体进行优化,选出聚类后与抗原的平均距离最近的一个类,从该类中产生初始抗体。在传统的平衡迭代规约聚类算法(birch)的基础上进行改进,本发明提出基于密度的平衡迭代规约聚类算法(densitybasedbalancediterativereductionclusteringalgorithm,dbir)来对初始抗体进行优化。dbir算法的流程图如图2所示,该算法包括三个部分:(1)利用核主成分分析法对数据进行降维处理,(2)求解密度聚类算法的密度阈值minpts,(3)利用minpts初始化平衡迭代规约聚类算法的参数。(1)利用核主成分分析法对数据进行降维处理由于锅炉温度涉及到的控制参数很多,而birch算法在处理高维数据时的聚类效果不是很好,所以先对数据进行降维。具体实现步骤如下:1-1)将所获得的n个指标的一批数据写成一个m×n维数据矩阵,并将矩阵标准化,其中m表示每一指标有m个样品;1-2)先选定高斯径向核函数中的参数,再计算出核矩阵k,kij=φt(xi)·φ(xj),其中φ为引入的非线性映射函数,是隐性的,0≤i,j≤max(m,n)-1;1-3)计算核矩阵k的特征值λ1,...,λn及对应的特征向量v1,...,vn;1-4)将特征值λ1,...,λn按降序排序得λ1'>...>λn',并对特征向量v1,...,vn进行相应调整得v1',...,vn';1-5)单位化特征向量v1',...,vn',得到α1,...,αn;1-6)计算特征值λ1'>...>λn'的累积贡献率b1,...,bn,根据给定的提取效率p,如果bt≥p,其中1≤t≤n,则提取t个主分量α1,...,αt;1-7)计算核矩阵k在提取出的特征向量上的投影y=k·α,其中α=(α1,...,αt),所得的投影即为数据经核主成分分析法降维后所得数据。(2)求解密度阈值minpts本发明在数据样本点密度和密度可达距离计算的基础上,用密度可达距离求出传统的密度聚类算中的密度阈值minpts,用minpts来对birch的参数进行优化。具体概念如下:1-1)数据点的密度:数据点的密度函数定义为该点与数据集中所有点相关影响程度的总和,相关影响程度采用高斯影响函数进行计算。假设数据集p共n个样本,pi点的密度density(pi)计算公式如下所示:其中表示点pi到点pj的欧式距离,σ类似于标准偏差的密度调整参数,为样本中各点之间距离的平均值。1-2)密度可达距离r,用于确定数据点p的圆形区域,标记为其数据点属于同一个簇。密度可达距离r的计算公式为:其中,coefr(0<coefr<1)为密度可达距离的原始调整系数,本算法将coefr取值为0.5。1-3)密度阈值minpts:给定的密度可达距离r中包含的最少样本点数,初始的minpts定义为在给定的密度可达距离r内密度可达的样本点数。(3)基于密度阈值改进的birch聚类算法一般的birch算法是通过集成层次聚类和其他聚类算法来对大量数值数据进行聚类,其中层次聚类用于初始的微聚类阶段,而其他方法如迭代划分在最后的宏聚类阶段。birch算法用到了聚类特征(clusteringfeature,简称cf)和聚类特征树(clusteringfeaturetree,简称cftree)的概念,用于概括聚类描述。对于cftree,一般有几个重要参数:每个内部节点的最大cf数b、每个叶子节点的最大cf数l、叶节点中每个cf的最大样本半径阈值t,也就是说,在这个cf中的所有样本点一定要在半径小于t的一个超球体内。利用密度阈值minpts优化birch的参数b和l,基本步骤如下:1-1)对数据样本进行预处理,并用核主成分分析法对处理过的数据进行降维,得到降维后的数据集x;1-2)计算数据集x中每个样本点xi的密度,并求出密度可达距离r和密度阈值minpts;1-3)根据r和minpts初始化birch的参数;1-4)从数据集x中读入新样本,若数据集已无新样本,则算法结束;若还有新样本,则转入步骤1-5;1-5)从根节点开始搜寻,自上而下选取距离最近的子节点,到达叶子节点以后,判断最近的cf节点中是否能够吸收该数据:如果新数据样本加入后该节点的这个cf节点对应的超球体半径满足小于阈值t,则更新路径上所有的cf三元组,插入结束,转入步骤1-4;否则转入步骤1-6;1-6)如果当前叶子节点的cf节点个数小于阈值minpts,创建一个新的cf节点,放入新样本,将新的cf节点放入这个叶子节点,更新路径上所有的cf三元组,插入结束,转入步骤1-4;否则转入步骤1-7;1-7)将当前叶子节点划分为两个新叶子节点,选择旧叶子节点中所有cf元组里超球体距离最远的两个cf元组,分别作为两个新叶子节点的第一个cf节点;将其他元组和新样本元组按照距离远近原则放入对应的叶子节点;检查分裂,直到根节点,若需要则按相同的分裂方法进行分裂。s4.根据基于汉明距离得到的匹配矩阵和锅炉调整权重矩阵,利用基于温度调整优先级的亲和力计算方法求出抗原与抗体之间的亲和力,并将亲和力排序;并按排序结果更新记忆细胞集。如图3所示,本发明中基于温度调整优先级的亲和力计算方法包括下述步骤:在对锅炉阀门开度及温度进行二进制编码时,如果当前温度变化是稳定的,则根据操作员的选择赋予该温度属性对应的编码值,如果当前温度变化不稳定,则在该温度变化范围内对其进行随机赋值。我们将从锅炉温度状态调查表获取的锅炉温度信息作为抗原a,对于任意一个抗体b,有:v=[v(1),...v(i),...,v(n)]v(i)=len(i)-d(a(i),b(i))其中,n为特征参数体系的参数个数,len(i)表示温度控制特征参数体系中第i个参数的编码长度,d(a(i),b(i))表示抗原a的第i个特征参数的编码值与抗体b的第i个特征参数的编码值之间的汉明距离,v(i)则表示第i个特征参数的匹配度,构成了匹配矩阵v;因此可得抗原a和抗体b之间的亲和力为:aff=w·vt。其中,w为锅炉调整权重矩阵,v为匹配矩阵,aff为亲和力的值。s5.判断记忆细胞中是否有满意解,若有则算法结束,若没有则根据最优解输出规则输出解集;判断该最优集中是否有满意解,若有则算法结束,如果没有则更新抗体种群,重新进行满意解判断过程。其中最优解的输出规则具体步骤为:1-1)初始化记忆细胞和最优解集解的输出个数。设抗体数量为m个,记忆细胞和最优解集的输出个数分别为n1和n2;1-2)输出当代亲和力最高的m个优秀抗体,计算剩余抗体的伪亲和力值:其中,pi为第i个个体的伪亲和力值,i=1,…,m-m。1-3)基于计算得出的伪亲和力值,采取轮盘赌选择法选取出其余的n2-m个最优解。基于上述步骤,本发明有效实现了初始抗体的优化,即利用dbir算法来优化人工免疫算法的初始抗体;同时提出了基于温度调整优先级的亲和力计算方法;然后用改进的最优解选取规则来输出解集,保证了最优解的优良性和多样性。本发明不确定性下多层次密度融合的余热发电锅炉温度控制方法的试验验证:1、数据描述在本发明的方法应用在余热发电系统的锅炉温度控制中,实验数据来源于某发电厂,分别有4组数据集,每组包含1000个样本点,以此来对比分析不同数据集下hdfi算法的性能。由于样本点中aqc冷风阀和ash旁通阀的开度始终保持不变,所以不将作为特征参数考虑,于是每个数据样本点包含了11个特征参数,特征参数的详细描述见表1。表1温度控制特征参数体系2、基于密度的平衡迭代规约聚类算法1)确定簇的个数由于在birch聚类中簇的个数是可选的,但是簇的个数会影响到聚类结果的好坏,所以我们使用轮廓系数(silhouettecoefficient)来对簇的个数进行选择。用平均轮廓系数的值和轮廓系数为负数的样本点数量作为选取簇的个数的评价指标,当平均轮廓系数值越高而值为负数的样本数量越低的时候聚类效果最优,在四个不同数据集中的试验结果如图4所示,综合考虑平均轮廓系数值与负值样本数量,将四个数据集上的簇的个数选取为:3、4、5、3。2)聚类结果分析将本发明提出的dbir算法与k-means算法、birch算法的运行时间进行对比,结果如图5所示,从图中可以看出k-means算法的运行时间明显长于dbir算法和birch算法,而dbir算法的运行时间略微低于birch算法。但是dbir算法有效的降低了参数的优劣对结果造成的影响,以及克服了birch算法对高维数据聚类效果差的问题。综上所述,dbir算法的综合性能是最优的。3、基于层次密度融合改进的交互式免疫算法1)编码规则本发明采用二进制编码,图6是温度控制特征参数的编码长度,共有11个特征参数,分别用p1-p11表示。2)参数设置初始化抗体数量m=30,记忆细胞的数量n1=3,保留解的数量n2=3,m=2。3)交互界面这一部分以aqc锅炉为例对交互界面进行了展示,如图7所示,从图7我们可以看出除了aqc的进口阀、旁通阀、左右侧温度,还显示了aqc的冷风阀参数。当操作员看到满意的左右侧温度时点击“best”按钮结束迭代,如果最大进化迭代次数之后还没有满意温度则系统结束。同时在界面的右侧会有上一次迭代的最优解作为参考。若操作员想退出系统,则点击“exit”按钮。4)对比实验首先,我们将本发明提出的hdfi算法与传统交互式人工免疫算法(tiaia)独立运行20次后的结果进行对比,如图8所示,从图中我们可以看出hdfi算法的迭代次数基本稳定的低于tiaia算法,而且tiaia算法的波动幅度明显高于hdfi算法,因此可以证明hdfi算法可以在一定程度上提高算法的稳定性。其次,我们从平均进化代数、平均评价个体数和运行时间这三个性能指标对hdfi和tiaia算法进行对比,结果如表2所示。表3展示了各项性能提升的百分比,从表3可以得出hdfi的平均进化代数比tiaia的平均进化代数平均减少了10.333%,平均评价个体数减少了10.465%,运行时间缩短了15.563%。说明hdfi算法可以有效提升算法的收敛速度,降低时间成本。表2hdfi和tiaia性能对比表3性能提升百分比数据集1数据集2数据集3数据集4平均提升程度平均进化代数12.18%11.20%9.75%8.20%10.333%平均评价个体数1262%11.07%9.88%8.29%10.465%运行时间17.79%20.32%14.46%9.68%15.563%5、结论为了在余热发电系统中锅炉的温度难以精准控制,以及阀门的调节过度依赖于操作员的经验等问题,本发明用改进的birch聚类优化初始抗体,并且将基于温度调整优先级的亲和力计算方法和改进的最优解输出规则应用于交互式人工免疫算法。该模型使算法以一个良好的抗体种群作为开端,加快了算法的收敛速度,同时将温度调节的优先级融入到算法中,使得最优解能更准确对温度的调节需求进行相应,并且还保持了解的优良性和多样性,降低了迭代次数。将提出的方法分别应用于余热发电锅炉的温度控制中,通过试验分析,验证了hdfi的平均进化代数比tiaia的平均进化代数平均减少了10.333%,平均评价个体数减少了10.465%,运行时间缩短了15.563%。有效减少了算法的进化代数,缩短了运行时间。主要优势如下:(1)提出了基于密度聚类改进的层次聚类算法来优化人工免疫算法的初始抗体,该方法使得算法以一个良好的抗体种群作为开端,加快了算法的收敛速度,降低了运行时间;(2)采用基于温度调整优先级的亲和力计算方法,使算法得到的结果可以更准确的响应温度调节需求;(3)将改进的最优解输出规则应用于最优解的选取中,使得算法可以在更大的解决区域内搜索最优解,保持了解的优良性和多样性。当前第1页1 2 3 
技术特征:

1.一种不确定性下多层次密度融合的余热发电锅炉温度控制方法,其特征在于:包括下述步骤:

s1.对影响锅炉温度的因素进行收集并分析,筛选出具有代表性的特征参数,根据所选特征参数定义温度控制特征参数体系,并将所得数据进行预处理;

s2.由操作员在交互界面填写锅炉温度状态调查表,将获取的温度信息进行二进制编码作为抗原,并根据所选的温度调整优先级构造锅炉调整权重矩阵;

s3.用基于密度的平衡迭代规约聚类算法对初始抗体进行优化,选出聚类后与抗原的平均距离最近的一个类,从该类中产生初始抗体;

s4.根据基于汉明距离得到的匹配矩阵和锅炉调整权重矩阵,利用基于温度调整优先级的亲和力计算方法求出抗原与抗体之间的亲和力,并将亲和力排序;并按排序结果更新记忆细胞集;

s5判断记忆细胞中是否有满意解,如果有则算法结束,如果没有则根据最优解的输出规则输出解集;判断该最优集中是否有满意解,如果有则算法结束,如果没有则更新抗体种群,重新进行满意解判断过程。

2.根据权利要求1所述的不确定性下多层次密度融合的余热发电锅炉温度控制方法,其特征在于:所述步骤s2中,锅炉温度状态调查表为:

锅炉温度状态调查表一共有3个模块,每个模块均包括所述锅炉现在的阀门开度及对应的温度情况,所述温度情况有正常,偏低,非常低,偏高,非常高五种情况,对应调整优先级的权重分别是0、1、2、3、4;根据每个锅炉温度的调整优先级得到锅炉调整权重矩阵w如下:

w=[w(1),...,w(i),...,w(n)]

其中,w(i)={0,1,2,3,4},n为特征参数体系中的参数个数。

3.根据权利要求1所述的不确定性下多层次密度融合的余热发电锅炉温度控制方法,其特征在于:所述步骤s3中,基于密度的平衡迭代规约聚类算法对初始抗体优化,首先对数据进行降维、求解密度聚类中的密度阈值并利用求出的密度阈值来初始化平衡迭代规约聚类的参数,步骤如下:

1-1)对数据样本进行预处理,并用核主成分分析法对处理过的数据进行降维,得到降维后的数据集x;

1-2)计算数据集x中每个样本点xi的密度,并求出密度可达距离r和密度阈值minpts;

1-3)根据r和minpts初始化平衡迭代规约聚类算法的参数;

1-4)从数据集x中读入新样本,若数据集已无新样本,则算法结束;若还有新样本,则转入步骤1-5;

1-5)从根节点开始搜寻,自上而下选取距离最近的子节点,到达叶子节点以后,判断最近的cf节点中是否能够吸收该数据:如果新数据样本加入后该节点的这个cf节点对应的超球体半径满足小于阈值t,则更新路径上所有的cf三元组,插入结束,转入步骤1-4;否则转入步骤1-6;

1-6)如果当前叶子节点的cf节点个数小于阈值minpts,创建一个新的cf节点,放入新样本,将新的cf节点放入这个叶子节点,更新路径上所有的cf三元组,插入结束,转入步骤1-4;否则转入步骤1-7;

1-7)将当前叶子节点划分为两个新叶子节点,选择旧叶子节点中所有cf元组里超球体距离最远的两个cf元组,分别作为两个新叶子节点的第一个cf节点;将其他元组和新样本元组按照距离远近原则放入对应的叶子节点;检查分裂,直到根节点,若需要则按相同的分裂方法进行分裂。

4.根据权利要求1所述的不确定性下多层次密度融合的余热发电锅炉温度控制方法,其特征在于:所述步骤s4中,基于温度调整优先级的亲和力计算方法包括下述步骤:

在对锅炉阀门开度及温度进行二进制编码时,如果当前温度变化是稳定的,则根据操作员的选择赋予该温度属性对应的编码值,如果当前温度变化不稳定,则在该温度变化范围内对其进行随机赋值,将从锅炉温度状态调查表获取的锅炉温度信息作为抗原a,对于任意一个抗体b,有:

v=[v(1),...v(i),...,v(n)]

v(i)=len(i)-d(a(i),b(i))

其中,n为特征参数体系的参数个数,len(i)表示温度控制特征参数体系中第i个参数的编码长度,d(a(i),b(i))表示抗原a的第i个特征参数的编码值与抗体b的第i个特征参数的编码值之间的汉明距离,v(i)则表示第i个特征参数的匹配度,构成了匹配矩阵v;

因此可得抗原a和抗体b之间的亲和力为:

aff=w·vt

其中,w为锅炉调整权重矩阵,v为匹配矩阵,aff为亲和力的值。

5.根据权利要求1所述的不确定性下多层次密度融合的余热发电锅炉温度控制方法,其特征在于:所述步骤s5中最优解的输出规则,具体步骤为:

1-1)初始化记忆细胞和最优解集解的输出个数,设抗体数量为m个,记忆细胞和最优解集的输出个数分别为n1和n2;

1-2)输出当代亲和力最高的m个优秀抗体,计算剩余抗体的伪亲和力值:

其中,pi为第i个个体的伪亲和力值,i=1,…,m-m;

1-3)基于计算得出的伪亲和力值,采取轮盘赌选择法选取出其余的n2-m个最优解。

技术总结
本发明公开了一种不确定性下多层次密度融合的余热发电锅炉温度控制方法,包括下述步骤:S1.定义余热发电锅炉温度控制特征参数体系,并对数据预处理;S2.获取锅炉状态调查表,构造锅炉调整权重矩阵;S3.用基于密度的平衡迭代规约聚类算法对初始抗体进行优化;S4.求出每个抗原与抗体之间的亲和力,更新记忆细胞;S5.依次判断记忆细胞和最优解集中是否有满意解。本发明针对余热发电锅炉发电过程中存在的温度难以精确控制,以及阀门调整过于依靠操作员经验等问题,改进了传统的免疫算法中的初始抗体产生、亲和力计算、以及最优解选取这三个过程,有效提高了算法的收敛速度,并且对锅炉的温度实现了准确快速的控制。

技术研发人员:季海鹏;刘晶;智琦琦;闫文杰;刘新铎;李泊龙
受保护的技术使用者:河北工业大学
技术研发日:2020.01.06
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-53084.html

最新回复(0)