本发明涉及一种网络切换方法及装置,特别涉及一种基于冗余网络的gsm-r越区切换方法及装置,属于列车通讯技术领域。
背景技术:
我国地域辽阔,人员众多,铁路运输作为国家的重要基础设施、大众化的交通工具,在中国综合交通运输体系中处于骨干地位。
在gsm-r系统中,在列车沿线会有多个小区提供信号,以覆盖整个列车运行轨道,小区之间覆盖范围会有交叉,目前,列车通过检测接收到的小区信号强度决定确定是否切换。
在两个小区的边界位置,由于阴影等影响,信号强度本就较差,随着现在列车运行速度的逐渐增加,越区切换的允许时间越来越短,多普勒效益也愈加严重,导致现有的切换方法出现较高的中断率。
此外,随着通讯技术的发展,5g技术相对成熟后会逐渐引入到gsm-r系统中,但是5g的小区信号范围会更小,小区数量会更多,列车面临更加频繁的越区切换,现有的切换技术下的中断率会严重影响列车正常的通讯。
因此,亟需研究一种更加有效合理的基于冗余网络的gsm-r越区切换方法及装置。
技术实现要素:
为了克服上述问题,本发明人进行了锐意研究,开发了一种基于冗余网络的gsm-r越区切换方法及装置,该方法在切换过程中构建冗余环形网络,通过构建神经网络,确定越区切换位置。
所述基于冗余网络的gsm-r越区切换方法包括:
s1、建立神经网络;
s2、收集切换样本,训练神经网络,得到切换模型;
s3、利用切换模型确定切换位置;
s4、越区切换时,一条天线与越区前小区保持连接,另一条天线与越区后小区建立连接;
s5、在列车与越区后小区连接稳定后,越区前小区与列车断开连接。
步骤s3包括以下子步骤:
s31、确定越区切换对象;
s32、获得小区的位置,构建冗余环路;
s33、利用切换模型进行输出;
s34、获得越区切换位置。
在步骤s32中,当列车获取越区后小区编号信息后,向已连接小区发出构建冗余环路请求,当已连接小区接收到构建冗余环路请求后,通过网络与越区后小区建立通讯连接。
当列车发出构建冗余环路请求后,在后续传递的信息报文中增加冗余通讯标签。
在步骤4中,列车同时与两个小区通讯,通讯信息在列车端与小区端分别进行冗余打包与冗余解析。
在步骤s5中,通过比对不同小区通讯的冗余通讯标签判定列车与越区后小区连接是否稳定。
另一方面,本发明还提供了一种基于冗余网络的gsm-r越区切换装置,包括列车端子装置和地面端子装置,所述地面端子装置具有地面冗余解析模块。
所述列车端子装置包括信号检测模块、小区位置模块、测速模块、gps模块、模型模块和切换模块。
本发明提供的基于冗余网络的gsm-r越区切换方法及装置能够取得以下有益效果:
1.综合考虑信号强度、列车速度、列车位置、基站位置判断越区切换位置,优化了切换位置的选择;
2.引入神经网络模型实现越区切换,降低了切换中断率;
3.在切换过程中构建冗余网络,切换可靠性高。
附图说明
图1示出根据本发明提供的一种优选实施方式的基于冗余网络的gsm-r越区切换方法流程图;
图2示出根据本发明提供的一种优选实施方式的神经网络结构示意图;
图3示出根据本发明提供的一种优选实施方式的冗余网络结构示意图。
具体实施方式
下面通过附图和优选实施方式对本发明进一步详细说明。通过这些说明,本发明的特点和优点将变得更为清楚明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
目前的基于冗余网络的gsm-r越区切换方法中,单纯的考虑了信号强度rss,根据rss是否达到阈值判断是否切换,判断条件单一,未考虑列车速度、基站位置、列车位置等因素,更未考虑载波与干扰比cir、比特差错率ber,也未考虑切换前后信号是否平稳。本发明提出一种基于神经网络的越区切换方法,通过机器学习,获得模糊控制条件,进而综合各种影响条件,得到最优切换位置,从而进行越区切换。
此外,随着通讯技术的发展,5g技术会逐步应用于gsm-r系统中,而基于5g技术的小区信号覆盖范围小于现有的小区,如此将导致越区切换更加频繁,对切换前后信息传递要求更高,本发明提出的越区切换方法中,通过双天线的方式,在切换过程中构建冗余环形网络,保证数据传输稳定,无掉包、时延现象。
一方面,本发明提供了一种基于冗余网络的gsm-r越区切换方法,如图1所示,该方法包括:
s1、建立神经网络;
s2、收集切换样本,训练神经网络,得到切换模型;
s3、构建冗余环路,利用切换模型确定切换位置;
s4、越区切换时,一条天线与越区前小区保持连接,另一条天线与越区后小区建立连接;
s5、在列车与越区后小区连接稳定后,越区前小区与列车断开连接。
在步骤s1中,所述建立神经网络,优选地,为建立bp神经网络。
所述bp神经网络,是一种按误差逆传播算法训练的多层前馈网络,bp网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。bp神经网络模型拓扑结构包括输入层、隐含层和输出层。
在一个优选的实施方式中,步骤s1包括以下子步骤:
s11、确定神经网络模型中不同层节点。
在本发明中所述神经网络模型的输入层的输入s为影响越区切换位置的参数,如图2所示,包括列车越区切换前后接收到的小区的信号强度rssx与rssx 1、小区基站收发信机位置btspx与btspx 1、列车速度msv和列车位置msp。
进一步地,所述rssx、btspx、rssx 1、btspx 1、msv和msp为在列车接收到的小区信号中具有两个信号强度大于-63dbm~-67dbm时的瞬时数据,优选大于-65dbm。
发明人发现,当信号强度小于-67dbm时,信号强度与列车到小区之间距离较远,信号强度波动较大,干扰因素多,其作为越区切换的判断条件时判断结果偏差较大,当信号强度大于-63dbm时,列车可能已接近最优切换位置,导致不能及时切换。
在一个优选地实施方式中,所述输入s还包括小区信号的载波与干扰比cirx与cirx 1和小区信号的比特差错率berx与berx 1。
更优选地,当列车接收到除其已连接小区外其它小区信号,且其它小区信号强度大于-65dbm时,记录msp和msv的值,并记录在0.5秒时间内的rssx、cirx、berx、rssx 1、cirx 1、berx 1均值作为输入。
其中,x表示越区前的小区,x 1表示越区后的小区,则输入层的节点个数n=10。
根据本发明,所述小区基站收发信机位置btspx与btspx 1、列车的位置msp采用二维坐标表示,优选采用经纬度坐标表示,所述经纬度坐标精确到小数点后5位即可。
在本发明中,采用1个隐含层的bp神经网络,发明人经过多次试验,确定隐含层的节点个数m为10~16个,优选为12个,使得模型的系统误差较小。
根据本发明,所述神经网络模型的输出层为输出最优切换区域,当列车在此最优切换区域进行越区切换,切换效果最好,如何确定输出层的表现形式是本发明的难点所在。
输出层的输出形式既要考虑到列车实际运行轨迹,又要考虑列车运行速度以及制作样本时的采样难度。若单纯的以地理坐标范围表示最优切换范围,则由于未考虑列车实际运行轨迹,导致列车无法到达输出地点,无法完成切换;若以列车同时检测到多个小区信号到进行切换的时间差来表现最优切换区域,则列车速度、列车轨道等都造成干扰,导致模型准确度下降。
在本发明中,采用列车与不同小区距离的比值的形式表达输出层。列车与不同小区距离的比值既规避了列车轨道的干扰,又考虑了信号强度与距离的关系,同时,在样本制作时,其能够准确被采样。
进一步地,所述列车与不同小区距离的比值为列车到切换后小区基站收发信机距离与列车到切换前小区基站收发信机距离的比值。
s12、建立神经网络模型。
在本发明中,神经网络的输入层到隐含层的传递采用log-sigmoid函数,
不同输入层节点对不同隐含层的输出值为:
kij=ωijsi
其中,i表示不同的输入层节点,j表示不同的隐含层节点,ωij表示输出层到隐含层的权重,si表示输入层节点的输入,则隐含层的输出lj为:
其中,aij是输入层到隐含层的偏置,
隐含层到输出层的传递采用线性函数,输出层的输出o优选为:
其中,εj是隐含层到输出层的权重,bj是隐含层到输出层的偏置。
在步骤s2中,所述收集切换样本,是指根据实际运行效果收集步骤s1中涉及的输入层和输出层的参数,
具体地,包括:
s21、收集列车的越区切换前状态数组、切换时列车位置和切换效果。
所述越区切换前状态数组包括越区前后两个小区信号的rssx、cirx、berx、rssx 1、cirx 1、berx 1,以及这两个小区基站收发信机位置btspx、btspx 1,列车位置msp和列车速度msv,
其中x表示切换前的小区,x 1表示切换后的小区。
具体地,当列车接收到除其已连接小区外其它小区信号,且其它小区信号强度大于-65dbm时,记录msp和msv的值,和记录在0.5秒时间内的rssx、cirx、berx、rssx 1、cirx 1、berx 1均值。
所述切换效果可以用切换前后列车接收的信号的载干比与信号电平表示,当切换前和切换后接收到的信号的载干比都大于12db,且切换前和切换后接收到的信号的电平都大于-61dbm,表示切换效果好,其余情况记为切换效果差。
s22、获取列车在越区切换时,其到不同小区距离的比值。
收集铁路沿线各小区基站收发信机的位置btspx,根据btspx与切换时列车位置msp,即可计算出列车切换时距离不同小区距离的比值α,将α增加至越区切换数组中。
具体地,所述btspx可以表示为btspx(blx,bbx),切换时列车位置可以表示为mspq(mlx,mbx),则
其中blx表示btspx的经度坐标,bbx表示btspx的纬度坐标;mlx表示mspq的经度坐标,mbx表示mspq的纬度坐标,x表示越区切换前的小区,x 1表示越区切换后的小区。
s23、获得切换样本。
在本发明中,只保留切换效果好的越区切换前状态数组,切换效果差的越区切换前状态数组抛弃。
优选地,保留切换前后接收到的信号的载干比和电平偏差最小的200~1000组越区切换前状态数组作为切换样本。
s24、训练神经网络,获得切换模型。
将所述切换样本代入步骤s1建立的神经网络中,对神经网络进行训练,
具体地,将切换样本中的msp、msv、btspx、rssx、cirx、berx、btspx 1、rssx 1、cirx 1、berx 1作为输入层的输入si,α作为输出层的期望输出。
在训练过程中,对输出层到隐含层的权重ωij、输入层到隐含层的偏置aij、隐含层到输出层的权重εj,隐含层到输出层的偏置bj不断更新,
进一步地,所述不断地更新,通过如下算式进行:
其中,ω′ij为更新后的输出层到隐含层的权重,ε′j为更新后的隐含层到输出层的权重,a′ij为更新后的输入层到隐含层的偏置,b′j为更新后的隐含层到输出层的偏置,δ为学习速率,e=α-o。
经过不断训练更新,即可得到切换模型。
在步骤s3中,所述构建冗余环路,利用切换模型确定切换位置,包括以下子步骤:
s31、确定越区切换对象。
当列车接收到除其已连接小区外其它小区信号,且其它小区信号强度大于-65dbm时,记录msp和msv的值,和记录在0.5秒时间内的rssx、cirx、berx、rssx 1、cirx 1、berx 1均值,并记录此时列车的位置msp和速度msv,其中x为越区前的小区信号,x 1为越区后的小区信号,
所述列车的位置msp由gps模块获取,列车的速度msv由测速模块获取,信号强度、载波与干扰比、比特差错率由信号检测模块获取。
s32、获得小区的位置,构建冗余环路。
在信号检测的过程中,可获得信号中包含的小区编号信息。列车根据信号中包含的小区编号信息获得小区基站收发信机位置btspx。
优选地,在列车上存储有小区编码与小区基站收发信机位置对应表,通过查表,即可得到小区基站收发信机具体位置。
进一步地,当列车获取越区后小区编号信息后,向已连接小区发出构建冗余环路请求,所述冗余环路请求中包含越区后小区编号。
当已连接小区接收到构建冗余环路请求后,通过网络与越区后小区建立通讯连接,以做好冗余解析准备。
进一步地,所述冗余解析是指对比两个小区与列车的通讯信息,将先得到的信息传递,后得到的信息丢弃。
在一个优选的实施方式中,当列车发出构建冗余环路请求后,在后续传递的信息报文中增加冗余通讯标签,以方便冗余解析。
优选地,所述冗余通讯标签内容包括报文序列标识、列车天线id或小区id、标签大小。
s33、利用切换模型进行输出。
将步骤s31中获得的rssx、cirx、berx、rssx 1、cirx 1、berx 1、msp、msv以及步骤s32中获得的btspx、btspx 1代入到切换模型模型中,输出α。
s34、获得越区切换位置。
列车在运行过程中根据列车实时位置及btspx、btspx 1计算列车距离不同小区距离的比值,当计算比值与α相同时,即为越区切换位置。
根据本发明,在列车上设置有两条天线,分别记为天线a和天线b。
在步骤s4中,当列车到达越区切换位置前,一条天线(假设为天线a)与越区前小区保持连接,另一条天线(假设为天线b)无连接;
当列车到达越区切换位置,天线b与越区后小区建立连接,天线a与越区前小区仍然保持连接,使得列车能够同时与两个小区通讯,如图3所示。
两个小区同时与列车通讯,使得列车在越区切换时与列车控制中心的通讯不会中断,降低了切换过程中通讯信号的不稳定带来的隐患,提高了列车通讯的安全性。
进一步地,通讯信息在列车端与小区端分别进行冗余打包与冗余解析。
具体地,列车发出的信息报文在列车端复制为相同的两份,并在每份信息报文中加入冗余通讯标签,两份冗余通讯标签中的报文序列标识和标签大小相同,列车天线id分别为天线a和天线b的id,完成列车端冗余打包过程。两份信息报文分别通过天线a和天线b传送到越区前小区与越区后小区,两个小区分别收到列车的天线a和天线b传递的信息,提取信息中的冗余通讯标签,与冗余解析模块维护列表中的信息比对,若冗余通讯标签内的报文序列标识已存储在维护列表中,则代表信息报文已接收过;若标签内的报文序列标识未存储在维护列表中,则代表信息报文未接收过,将标签内的报文序列标识信息添加到维护列表,并将信息报文传递给列车控制中心,完成小区端冗余解析过程。
列车控制中心发出的信息报文在小区端复制为相同的两份,并在每份信息报文中加入冗余通讯标签,两份冗余通讯标签中的报文序列标识和标签大小相同,小区id不同,完成小区端的冗余打包过程。两份信息报文分别通过越区前小区与越区后小区传送到天线a和天线b,天线a和天线b收到传递的信息,提取信息中的冗余通讯标签,与冗余解析模块维护列表中的信息比对,若冗余通讯标签内的报文序列标识已存储在维护列表中,则代表信息报文已接收过;若标签内的报文序列标识未存储在维护列表中,则代表信息报文未接收过,将标签内的报文序列标识信息添加到维护列表,并将信息报文传递给列车控制中心,完成列车端冗余解析过程。
在步骤s5中,所述列车与越区后小区连接稳定,是通过比对不同小区通讯的冗余通讯标签判定,当冗余解析模块连续多次收到同一报文序列标识或先收到的信息为通过越区后的小区传递的,则表示列车与越区后小区的连接已稳定,此时控制越区前小区与列车断开连接。
另一方面,本发明还提供了一种基于冗余网络的gsm-r越区切换装置,包括列车端子装置和地面端子装置。
所述列车端子装置包括信号检测模块、小区位置模块、测速模块、gps模块、模型模块和切换模块。
所述信号检测模块,能够检测列车接收到的小区信号强度、信号载波与干扰比、以及信号的比特差错率。
进一步地,所述信号检测模块能够识别小区信号中包含的小区编号信息,并将小区编号信息传递给小区位置模块。
所述小区位置模块中存储有小区编码与小区基站收发信机位置对应表,其能够接收信号检测模块传递的小区编号,并根据小区编号查表,向模型模块输出小区基站收发信机位置。
所述测速模块,用于测量列车的运行速度。
所述gps模块,用于测量列车的位置。
在一个优选的实施方式中,所述测速模块和gps模块需要的数据可以从车载安全计算机中获取。
所述模型模块,存储有按照步骤s2中方法得到切换模型,其与信号检测模块、小区位置模块、测速模块、gps模块和控制切换模块相连,
进一步地,所述模型模块,能够控制信号检测模块按照步骤s31的方法获取rssx、cirx、berx、rssx 1、cirx 1、berx 1,还能够接收小区位置模块、测速模块、gps模块的信息,按照步骤s33、s34的方法确定是否切换,并控制切换模块进行越区切换。
所述切换模块能够执行切换动作,在本发明中,所述切换模块具有两个信号天线,以与越区前和越区后的小区分别连接。
进一步地,所述切换模块还具有车载冗余解析子模块,以进行冗余打包和冗余解析,其能够按照步骤s32和步骤s34的方法发送构建冗余环路请求与冗余打包、冗余解析,进一步地,所述车载冗余解析子模块在未构建冗余环路时只进行信息的传递。
根据本发明,所述地面端子装置具有地面冗余解析模块,其设置在小区与列车控制中心之间,能够按照步骤s34的方法进行冗余打包和冗余解析。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前”、“后”等指示的方位或位置关系为基于本发明工作状态下的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上结合优选实施方式和范例性实例对本发明进行了详细说明。不过需要声明的是,这些具体实施方式仅是对本发明的阐述性解释,并不对本发明的保护范围构成任何限制。在不超出本发明精神和保护范围的情况下,可以对本发明技术内容及其实施方式进行各种改进、等价替换或修饰,这些均落入本发明的保护范围内。本发明的保护范围以所附权利要求为准。
1.一种基于冗余网络的gsm-r越区切换方法,该方法在切换过程中构建冗余环形网络。
2.根据权利要求1所述基于冗余网络的gsm-r越区切换方法,其特征在于,
通过构建神经网络,确定越区切换位置。
3.根据权利要求1所述基于冗余网络的gsm-r越区切换方法,其特征在于,该方法包括:
s1、建立神经网络;
s2、收集切换样本,训练神经网络,得到切换模型;
s3、利用切换模型确定切换位置;
s4、越区切换时,一条天线与越区前小区保持连接,另一条天线与越区后小区建立连接;
s5、在列车与越区后小区连接稳定后,越区前小区与列车断开连接。
4.根据权利要求3所述基于冗余网络的gsm-r越区切换方法,其特征在于,步骤s3包括以下子步骤:
s31、确定越区切换对象;
s32、获得小区的位置,构建冗余环路;
s33、利用切换模型进行输出;
s34、获得越区切换位置。
5.根据权利要求4所述基于冗余网络的gsm-r越区切换方法,其特征在于,在步骤s32中,当列车获取越区后小区编号信息后,向已连接小区发出构建冗余环路请求,当已连接小区接收到构建冗余环路请求后,通过网络与越区后小区建立通讯连接。
6.根据权利要求5所述基于冗余网络的gsm-r越区切换方法,其特征在于,当列车发出构建冗余环路请求后,在后续传递的信息报文中增加冗余通讯标签。
7.根据权利要求3所述基于冗余网络的gsm-r越区切换方法,其特征在于,在步骤4中,列车同时与两个小区通讯,通讯信息在列车端与小区端分别进行冗余打包与冗余解析。
8.根据权利要求3所述基于冗余网络的gsm-r越区切换方法,其特征在于,在步骤s5中,通过比对不同小区通讯的冗余通讯标签判定列车与越区后小区连接是否稳定。
9.一种基于冗余网络的gsm-r越区切换装置,包括列车端子装置和地面端子装置,所述地面端子装置具有地面冗余解析模块。
10.根据权利要求9所述的基于冗余网络的gsm-r越区切换装置,其特征在于,所述列车端子装置包括信号检测模块、小区位置模块、测速模块、gps模块、模型模块和切换模块。
技术总结