一种高性能空穴传输材料及其制备与应用的制作方法

专利2022-06-29  65


本发明属于有机小分子光电材料的技术领域,涉及有机小分子空穴传输材料,特别涉及一种低成本、低homo、高玻璃化转变温度空穴传输材料及其制备方法与在光电器件中应用。



背景技术:

有机小分子空穴传输材料在光电器件领域具有重要的作用。有机发光二极管(oleds)在显示以及照明领域具有重要的应用前景。而太阳能电池是研究的热点之一,尤其是钙钛矿太阳能电池,目前光电转换效率已经超过了23%。

目前oleds中常见的有机小分子空穴传输材料有tpd(tg≈58℃)、tapc(tg≈79℃)和npb(tg≈98℃)等,然而这几个材料的共同的问题都是玻璃化转变温度较低,影响了oleds的寿命,不能满足工业上对材料热稳定和成膜性的要求,因此限制了其工业化应用。设计并合成同时具有高玻璃化转变温度和良好空穴迁移率的有机小分子空穴传输材料具有挑战性。

此外,在钙钛矿太阳能电池中,常用的空穴传输材料有ptaa和spiro-ometad,但两个材料的成本比较高,价格均比较昂贵,因此有必要进一步开发低成本高效的钙钛矿空穴传输材料。



技术实现要素:

为了克服现有技术的不足,本发明的目的在于提供一种高性能的空穴传输材料。所述空穴传输材料具有相对低的homo和高玻璃化转变温度。同时所述材料的合成简单,成本低。

本发明的另一目的在于提供上述低成本、低homo、高玻璃化转变温度空穴传输材料的制备方法。

本发明的再一目的在于提供上述低成本、低homo和高玻璃化转变温度空穴传输材料的应用。所述空穴传输材料用于制备光电器件,特别是oled器件和/或太阳能电池。

本发明的目的通过以下技术方案实现:

一种高性能空穴传输材料,其结构式为式i:

其中,ar1与ar2独立地为未取代或取代的咔唑单元、芴单元、二苯并吡喃单元、二苯并噻吩单元;所述取代的取代基为碳原子数分别为1~6的烷基、烷氧基或烷硫基;

所述ar1与ar2基团独自优选为以下化学结构中一种:

其中表示所述ar1或ar2基团上的连接位点,连接位点至少包括-1-、-2-、-3-、-4-、-5-、-6-、-7-、-8-位的其中一个。

所述高性能空穴传输材料(式i化合物)优选为以下结构中一种以上:

所述高性能空穴传输材料的制备方法,包括以下步骤:

(1)保护性氛围中,在催化剂的作用下,6-溴-2-萘酚和苯胺在有机溶剂反应,反应结束后进行提纯处理,得到中间体产物即式ii化合物(6-溴-n-苯基-2-萘胺),所述中间体产物的结构式为式ii:

(2)保护性氛围下,ar的碘取代化合物或ar的溴取代化合物与式ii化合物在有机溶剂和催化体系中进行反应,反应结束后分离提纯,得到中间体产物式iii化合物,其结构式为:

其中ar代表ar1或ar2的其中一种;

(3)在保护性氛围和有机溶剂中,式iii化合物与双联频哪醇硼酸酯在催化体系的作用下进行反应,后经分离提纯,得到式iv化合物,其结构式为:

其中ar代表ar1或ar2的其中一种;

(4)保护性氛围下,式iii化合物和式iv化合物在有机溶剂和催化体系中进行反应,反应结束后进行分离提纯,得到高性能空穴传输材料(式i化合物);式iii化合物中ar代表ar1,那么式iv化合物中ar代表ar2;式iii化合物中ar代表ar2,那么式iv化合物中ar代表ar1;当式i化合物结构对称时,ar1与ar2结构相同。式ii~iv中ar1与ar2与式i化合物定义相同。

步骤(1)中所述催化剂优选为甲磺酸或对甲苯磺酸;步骤(1)中所述保护性氛围优选为氮气氛围或氩气氛围;步骤(1)中所述有机溶剂优选为邻二甲苯、间二甲苯或对二甲苯;步骤(1)所述反应的加热温度为150~210℃;所述反应的时间为3~15h。

步骤(1)中所述催化剂、6-溴-2-萘酚和苯胺的摩尔比为(0.15~0.5)∶1∶(1.5~5),优选为0.2∶1∶3。

步骤(1)中所述提纯处理是指反应后体系降温至40~80℃,加入乙酸钾或乙酸钠和乙醇进行搅拌,然后减压蒸馏除去液体溶剂后,加入温水搅拌,抽滤,取滤饼,加入乙醇进行洗涤回流,降温后抽滤,得到固体产物,烘干。

步骤(2)所述有机溶剂为无水四氢呋喃、无水dmf和无水甲苯中的一种以上;步骤(2)所述催化体系包括催化剂,所述催化剂为cui/反式1,2-环己二胺、cui/1,10-菲咯啉中的其中一个组合(cui与反式1,2-环己二胺的摩尔比优选为1∶5、cui与1,10-菲咯啉的摩尔比优选为1∶2);步骤(2)所述催化体系包括碱性化合物,所述碱性化合物为叔丁醇钠、叔丁醇钾、氢氧化钾和氢氧化钠中的一种以上;步骤(2)所述反应为加热回流反应,所述加热回流反应为70~130℃下反应8~20h;

步骤(2)中催化剂、碱性化合物、ar的碘取代化合物或ar的溴取代化合物与式ii化合物的摩尔比为(0.005~0.4)∶(2~6)∶(1.1~2)∶1,优选为(0.01~0.3)∶(3~4)∶(1.2~1.4)∶1。

步骤(2)中所述分离提纯是指将粗产物减压蒸馏除掉溶剂后,加入二氯甲烷和去离子水进行萃取,分液,取有机层干燥后、减压浓缩除掉二氯甲烷,然后经柱层析分离并蒸馏除掉洗脱剂后得到固体产物;所述的柱层析展开剂为石油醚∶二氯甲烷(v∶v)=(1∶0)~(3∶1)

步骤(3)所述保护性氛围为氮气氛围或氩气氛围;步骤(3)所述有机溶剂为无水四氢呋喃或无水dmf中的一种以上;步骤(3)所述催化体系包括催化剂,所述催化剂为pd(pph3)2cl2;步骤(3)所述催化体系包括碱性化合物,所述碱性化合物为乙酸钾或乙酸钠中的一种以上;步骤(3)所述反应为80~130℃反应7~15h;

步骤(3)所述式iii化合物、双联频哪醇硼酸酯、催化剂和碱性化合物的摩尔比为1∶(1.1~1.5)∶(0.01~0.03)∶(2~4),优选为1∶1.2∶0.01∶3。

步骤(3)中所述的分离提纯是指将反应悬浊液减压蒸发除掉反应溶剂后加入二氯甲烷和水萃取,分液后将有机层进行干燥并减压浓缩去除有机溶剂,然后经柱层析进行分离并浓缩,得到固体产物,所述柱层析的展开剂为石油醚与二氯甲烷,体积比为(4∶1)~(1∶1)。

步骤(4)所述保护性氛围为氮气或氩气氛围的其中一种;步骤(4)所述有机溶剂为四氢呋喃或甲苯中的一种以上;步骤(4)所述催化体系包括催化剂和相转移剂,所述催化剂为四三苯基膦钯,相转移剂为乙醇;步骤(4)所述催化体系包括碱性化合物,所述的碱性化合物以水溶液的形式加入,所述碱性化合物的水溶液的浓度为2mol/l;步骤(4)所述反应是指在80~130℃下反应5~15h;步骤(4)所述式iii化合物和式iv化合物的摩尔比为(1~1.5)∶1;所述四三苯基膦钯、碱性化合物和式iv化合物的摩尔比为(0.01-0.03)∶(2~6)∶1。

步骤(4)所述分离提纯包括萃取、柱层析分离、加热回流洗涤并抽滤;所述的萃取是指将反应结束的粗产物进行减压旋转蒸发除去反应溶剂,然后加入二氯甲烷和水进行充分搅拌后分液,将有机层经硫酸镁干燥后旋转蒸发除掉二氯甲烷等有机溶剂,得到粗固体产物;所述的柱层析分离的展开剂为石油醚与二氯甲烷的混合溶剂,体积比为(5∶1)~(2∶1);所述的加热回流洗涤的洗涤剂为乙醇。

所述高性能空穴传输材料在光电器件中的应用,尤其是在低工作电压、长寿命的oled器件和高性能的太阳能电池中的应用。

本发明的原理如下:

本发明采用了富电子的芳胺结构,使得该类有机小分子材料具有好的空穴传输特性,从而作为空穴传输材料应用于光电器件中;同时引入了具有一定刚性与良好空穴迁移率的端基取代单元(如芴单元、咔唑单元、二苯并呋喃单元、二苯并噻吩单元等),由于刚性的增强,使得该类有机小分子材料的玻璃化转变温度提高,有利于提高oled器件的稳定性;芴单元等取代端基还可有效的调节化合物的homo能级,使得化合物的homo能级加深,从而降低oled器件的工作电压以及提高太阳能电池的性能;此外,桥基中采用的联二萘基也有效增强化合物的刚性,有助于提高材料的玻璃化转变温度,从而使得材料的热稳定性和薄膜形貌稳定性提高,同时联二萘基有利于化合物分子间的ii~ii堆积,有利于载流子传输。本发明采用的原料便宜、合成方法简单,可以实现高产率,从而实现低成本。

与现有技术相比,本发明具有以下优点和有益效果:

(1)本发明的空穴传输材料采用联萘基作为桥基、以芴基等单元作为端基大幅度增强了化合物的刚性,从而有效提高了材料的玻璃化转变温度,使得薄膜形貌稳定性增强,能满足oleds工业化应用对材料的玻璃化转变温度的要求;

(2)本发明的空穴传输材料采用的富电子的芳胺结构和芴基等给电性端基,有利于提高材料的空穴迁移率;

(3)本发明的空穴传输材料引入的芴基等端基可在一定程度上降低化合物的homo能级,有利于提高光电器件的性能;

(4)本发明的空穴传输材料良好的空穴传输性能与适当低的homo能级,应用于oled器件有望降低器件的工作电压以及提高器件的寿命,应用于太阳能电池有利于提高器件的性能。

(5)本发明的空穴传输材料合成简单,成本低,有利于大规模生产。

附图说明

图1为实施例1制备的高玻璃化转变温度空穴传输材料a-1的核磁共振氢谱;

图2为实施例1制备的高玻璃化转变温度空穴传输材料a-1的核磁共振碳谱;

图3为实施例1制备的高玻璃化转变温度空穴传输材料a-1的紫外可见吸收与荧光发射光谱;

图4为实施例1制备的高玻璃化转变温度空穴传输材料a-1的dsc曲线;

图5为实施例2制备的高玻璃化转变温度空穴传输材料a-2的核磁共振氢谱;

图6为实施例2制备的高玻璃化转变温度空穴传输材料a-2的紫外可见吸收与荧光发射光谱;

图7为实施例2制备的高玻璃化转变温度空穴传输材料a-2的dsc曲线。

具体实施方式

下面结合实施例和附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。

实施例1

本实施例的有机小分子空穴传输材料的结构式具体如下:

本实施例的高玻璃化转变温度的空穴传输材料a-1的制备方法,包括以下步骤:

步骤1:6-溴-n-苯基-2-萘胺(化合物ii)的制备,反应方程式:

将对甲苯磺酸(1.7g,9mmol)、苯胺(12.6g,0.135mol)和6-溴-2-萘酚(10.0g,0.045mol)溶于10ml的对二甲苯中,氮气氛围下加热到190℃反应7h,然后将温度降到70℃,加入适量乙酸钠(使反应体系程碱性即可)和100ml乙醇继续搅拌10min,然后将反应液进行减压蒸馏除去溶剂后加入温水进行搅拌,而后进行抽滤,再将滤饼用乙醇进行回流洗涤,然后经过冰浴后进行抽滤,得到白色固体产物,产率约90%(12g);

步骤2:

n-(6-溴萘-2-基)-9,9-二甲基-n-苯基-9h-芴-2-胺(化合物3)的制备,反应方程式:

将化合物ii(6.0g,0.02mol)和2-碘-9,9-二甲基-9h-芴(7.7g,0.024mol),1,10-菲啰啉(0.725g,4mmol)、cui(0.38g,2mmol)和叔丁醇钠(7.7g,0.08mol)加入到装有90ml无水甲苯的反应瓶中,氮气氛围下加热到115℃反应12h,冷却后浓缩除去甲苯,加入去离子水和二氯甲烷进行萃取,经分液得到的有机层用无水硫酸镁干燥、抽滤、减压蒸馏后,以石油醚和二氯甲烷的混合溶剂作为展开剂进行柱层析分离提纯,得到固体产物,产率约88%(8.6g);

步骤3:

9,9-二甲基-n-苯基-n-(6-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)萘-2-基)-9h-芴-2-胺(化合物4)的制备,反应方程式:

在n2气氛下,将化合物3(6.0g,0.012mol)、双联频哪醇硼酸酯(3.73g,0.014mol)、双(三苯基膦)二氯化钯(pd(pph3)2cl2)(85mg,0.12mmol)和无水醋酸钾(3.6g,0.037mol)加入到无水四氢呋喃(80ml)的中,反应加热到95℃反应10h,待反应结束后将粗产品进行减压浓缩除去四氢呋喃,然后用蒸馏水和二氯甲烷萃取并分液,有机层经无水硫酸镁干燥、过滤、减压浓缩后,以石油醚:二氯甲烷体积比为2:1的混合溶剂作为展开剂进行柱层析分离提纯,得到固体产物,产率91%(5.98g);

步骤4:

n′,n″-二(9,9-二甲基-9h-芴-2-基)-n′,n″-二苯基-[2,2′-联萘]-6,6′-二胺(a-1)的制备,反应方程式:

在氮气的保护下,将pd(pph3)4(48mg,0.041mmol)、化合物3(2.1g,4.28mmol),化合物4(2.2g,4.07mmol)和k2co3水溶液(2mol/l,12ml)加入到甲苯(70ml)和乙醇(12ml)的混合溶剂中,加热到108℃反应10h,冷却后,浓缩除掉甲苯,加入体积比为1∶1的水和二氯甲烷进行萃取,有机层用无水硫酸镁干燥、过滤、减压浓缩,经柱层析分离提纯得到固体产物,柱层析的展开剂为体积比4∶1的石油醚:二氯甲烷的混合溶剂,柱层析分离得到的固体产物用乙醇进行回流洗涤,抽滤,烘干,得到纯的固体产物,产率约86%(2.9g)。

下面对本实施例制备的高玻璃化转变温度空穴传输材料a-1进行测试:

1.核磁共振氢谱:

1hnmr(500mhz,cd2cl2)δ8.84(s,2h),8.54(m,4h),8.45-8.32(m,6h),8.22(s,2h),8.15(m,2h),8.09(dd,j=8.9,2.2hz,2h),8.07-7.98(m,10h),7.94(m,4h),7.86-7.78(m,4h),2.15(s,12h).

图1为本发明实施例1制备的高玻璃化转变温度空穴传输材料a-1的核磁共振氢谱。

2.核磁共振碳谱:

13cnmr(126mhz,cd2cl2)δ155.91,154.36,148.56,147.90,146.54,139.59,137.45,135.14,134.38,130.99,130.03,129.80,128.13,127.68,127.26,126.51,125.96,125.35,125.14,124.29,123.75,123.22,121.34,120.16,120.10,119.66,54.56,54.34,54.12,53.91,53.69,47.49,27.54.

图2为本发明实施例1制备的高玻璃化转变温度空穴传输材料a-1的核磁共振碳谱。

3.光物理性质

图3为本发明实施例1制备的高玻璃化转变温度空穴传输材料a-1的紫外吸收与荧光发射光谱。根据图3中的吸收光谱,根据薄膜吸收边位置计算得到光学带隙为2.82ev。

4.差示扫描量热分析(dsc)测试:

差示扫描量热分析(dsc)使用netzschdsc204f1热分析仪,在氮气保护下,从-30℃开始以10℃/min的升温速率到300℃,然后以20℃/min降温到-30℃,恒温5min,再次以10℃/min的升温速率到300℃测试。

图4为本发明实施例1制备的高玻璃化转变温度空穴传输材料的差式扫描量热曲线。

由图4差示扫描量热曲线(dsc曲线)表明,材料的玻璃化转变温度比较高,约为146℃,可见a-1具有很好的热稳定性和形态学稳定性。

实施例2

本实施例的有机小分子空穴传输材料的结构式如下:

本实施例的有机小分子空穴传输材料a-2的制备方法:

步骤1:6-溴-n-苯基-2-萘胺(ii)的制备,反应方程式:

步骤(1)与实施例1中的步骤(1)完全相同,不再赘述;

步骤2:n-(6-溴萘-2-基)-9-甲基-n-苯基-9h-咔唑-3-胺(5)的制备,反应方程式:

步骤(2)操作过程与实施例1步骤(2)的不同之处在于,实施例1中步骤(2)的其中一个反应物2-碘-9,9-二甲基-9h-芴用3-碘-9-甲基-9h-咔唑代替,柱层析分离展开剂一开始使用石油醚,待将未反应的3-碘-9-甲基-9h-咔唑除掉后,展开剂改为石油醚和二氯甲烷的混合溶剂,体积比约为4∶1;产率约90%(10.1g);

步骤3:9-甲基-n-苯基-n-(6-(4,4,5,5-四甲基-1,3,2-二氧杂硼硼烷-2-基)萘-2-基)-9h-咔唑-3-胺(6)的制备,反应方程式:

步骤(3)的操作过程与实施例1中步骤(3)的不同之处在于实施例1中步骤(3)的其中一个反应物化合物3用化合物5代替,产率93%(8.37g);

步骤4:n′,n″-二(9,9-二甲基-9h-咔唑-3-基)-n′,n″-二苯基-[2,2′-联萘]-6,6′-二胺(a-2)的制备,反应方程式如下:

步骤(4)的操作过程与实施例1中步骤(4)的不同之处在于实施例1中步骤(3)的反应物化合物3用化合物5代替、化合物4用化合物6代替,产率88%(7g)。

下面对本发明实施例2有机小分子空穴传输材料a-2进行测试:

1、核磁共振氢谱:

图5为本发明实施例2制备的高玻璃化转变温度空穴传输材料a-2的核磁共振氢谱。

1hnmr(400mhz,cdcl3)δ8.04(s,2h),7.95(d,j=7.7hz,4h),7.79-7.73(m,4h),7.64(s,1h),7.62(s,1h),7.50-7.33(m,12h),7.28(m,1h),7.25-7.23(m,3h),7.18(m,6h),6.99(m,2h),3.88(s,6h).

2、光物理性质

图6为本发明实施例2制备的高玻璃化转变温度空穴传输材料a-2的紫外吸收与荧光发射光谱。根据图6中的吸收光谱,根据薄膜吸收边位置计算得到光学带隙为2.73ev。

3、差示扫描量热分析(dsc)测试:

差示扫描量热分析(dsc)使用netzschdsc204f1热分析仪,在氮气保护下,从-30℃开始以10℃/min的升温速率到400℃,然后以20℃/min降温到-30℃,恒温5min,再次以10℃/min的升温速率到400℃测试。

图7为本发明实施例2制备的高玻璃化转变温度空穴传输材料a-2的差式扫描量热(dsc)曲线。由图7可以看到,a-2的玻璃化转变温度比较高,约为161℃,可见a-2具有很好的热稳定性和形态学稳定性。

将本发明的高玻璃化转变温度空穴传输材料用于制备oled器件(用作空穴传输层),该器件结构由下至上依次包括ito,空穴注入/传输层,发光层,电子注入/传输层,金属电极;

将本发明的高玻璃化转变温度空穴传输材料用于制备太阳能电池(有机太阳能电池或者钙钛矿太阳能电池)的正装器件(用于空穴传输层),该器件结构由下至上依次包括ito/fto,空穴传输层,活性层,阴极界面层,金属电极;

将本发明的高玻璃化转变温度空穴传输材料用于制备太阳能电池(有机太阳能电池或者钙钛矿太阳能电池)的倒装器件(用于空穴传输层),器件结构结构由下至上依次包括ito/fto,阴极界面层,活性层,空穴传输层,金属电极。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。


技术特征:

1.一种高性能空穴传输材料,其特征在于:其结构式为式i:

其中,ar1与ar2独立地为未取代或取代的咔唑单元、芴单元、二苯并吡喃单元、二苯并噻吩单元;所述取代的取代基为碳原子数分别为1~6的烷基、烷氧基或烷硫基。

2.根据权利要求1所述高性能空穴传输材料,其特征在于:所述ar1与ar2基团独自优选为以下化学结构中一种:

其中/*表示所述ar1或ar2基团上的连接位点,连接位点至少包括-1-、-2-、-3-、-4-、-5-、-6-、-7-、-8-位的其中一个。

3.根据权利要求1所述高性能空穴传输材料,其特征在于:为以下结构中一种以上:

4.根据权利要求1~3任一项所述高性能空穴传输材料的制备方法,其特征在于:包括以下步骤:

(1)保护性氛围中,在催化剂的作用下,6-溴-2-萘酚和苯胺在有机溶剂反应,反应结束后进行提纯处理,得到中间体产物即式ii化合物,所述中间体产物的结构式为式ii:

(2)保护性氛围下,ar的碘取代化合物或ar的溴取代化合物与式ii化合物在有机溶剂和催化体系中进行反应,反应结束后分离提纯,得到中间体产物式iii化合物,其结构式为:

其中ar代表ar1或ar2的其中一种;

(3)在保护性氛围和有机溶剂中,式iii化合物与双联频哪醇硼酸酯在催化体系的作用下进行反应,后经分离提纯,得到式iv化合物,其结构式为:

其中ar代表ar1或ar2的其中一种;

(4)保护性氛围下,式iii化合物和式iv化合物在有机溶剂和催化体系中进行反应,反应结束后进行分离提纯,得到高性能空穴传输材料即式i化合物;

式iii化合物中ar代表ar1,那么式iv化合物中ar代表ar2;式iii化合物中ar代表ar2,那么式iv化合物中ar代表ar1;当式i化合物结构对称时,ar1与ar2结构相同。

5.根据权利要求4所述高性能空穴传输材料的制备方法,其特征在于:步骤(1)中所述催化剂为甲磺酸或对甲苯磺酸;步骤(1)所述反应的加热温度为150~210℃;所述反应的时间为3~15h;

步骤(1)中所述催化剂、6-溴-2-萘酚和苯胺的摩尔比为(0.15~0.5)∶1∶(1.5~5);

步骤(2)所述催化体系包括催化剂;步骤(2)所述催化体系包括碱性化合物;步骤(2)所述反应为加热回流反应,所述加热回流反应为70~130℃下反应8~20h;

步骤(2)中催化剂、碱性化合物、ar的碘取代化合物或ar的溴取代化合物与式ii化合物的摩尔比为(0.005~0.4)∶(2~6)∶(1.1~2)∶1;

步骤(3)所述催化体系包括催化剂,所述催化剂为pd(pph3)2cl2;步骤(3)所述催化体系包括碱性化合物;步骤(3)所述反应为80~130℃反应7~15h;

步骤(3)中式iii化合物、双联频哪醇硼酸酯、催化剂和碱性化合物的摩尔比为1∶(1.1~1.5)∶(0.01~0.03)∶(2~4);

步骤(4)所述催化体系包括催化剂和相转移剂,所述催化剂为四三苯基膦钯,相转移剂为乙醇;步骤(4)所述催化体系包括碱性化合物;步骤(4)所述反应是指在80~130℃下反应5~15h;步骤(4)所述式iii化合物和式iv化合物的摩尔比为(1~1.5)∶1;四三苯基膦钯、碱性化合物和式iv化合物的摩尔比为(0.01~0.03)∶(2~6)∶1。

6.根据权利要求5所述高性能空穴传输材料的制备方法,其特征在于:

步骤(2)中所述催化剂为cui/反式1,2-环己二胺、cui/1,10-菲咯啉中的其中一个组合;所述碱性化合物为叔丁醇钠、叔丁醇钾、氢氧化钾和氢氧化钠中的一种以上;

步骤(3)中所述碱性化合物为乙酸钾或乙酸钠中的一种以上。

7.根据权利要求4所述高性能空穴传输材料的制备方法,其特征在于:步骤(1)中所述有机溶剂为邻二甲苯、间二甲苯或对二甲苯;步骤(2)所述有机溶剂为无水四氢呋喃、无水dmf和无水甲苯中的一种以上;步骤(3)所述有机溶剂为无水四氢呋喃或无水dmf中的一种以上;

步骤(4)中所述有机溶剂为四氢呋喃或甲苯中的一种以上。

8.根据权利要求4所述高性能空穴传输材料的制备方法,其特征在于:

步骤(1)中所述提纯处理是指反应后体系降温至40~80℃,加入乙酸钾或乙酸钠和乙醇进行搅拌,然后减压蒸馏除去液体溶剂后,加入温水搅拌,抽滤,取滤饼,加入乙醇进行洗涤回流,降温后抽滤,得到固体产物,烘干;

步骤(2)中所述分离提纯是指将粗产物减压蒸馏除掉溶剂后,加入二氯甲烷和水进行萃取,分液,取有机层干燥后、减压浓缩除掉二氯甲烷,然后经柱层析分离并蒸馏除掉洗脱剂后得到固体产物;

步骤(3)中所述的分离提纯是指将反应悬浊液减压蒸发除掉反应溶剂后加入二氯甲烷和水萃取,分液后将有机层进行干燥并减压浓缩去除有机溶剂,然后经柱层析进行分离并浓缩,得到固体产物;

步骤(4)所述分离提纯包括萃取、柱层析分离、加热回流洗涤并抽滤;所述的萃取是指将反应结束的粗产物进行减压旋转蒸发除去反应溶剂,然后加入二氯甲烷和水进行充分搅拌后分液,将有机层经硫酸镁干燥后旋转蒸发,得到粗固体产物;所述的加热回流洗涤的洗涤剂为乙醇。

9.根据权利要求1~3任一项所述高性能空穴传输材料在光电器件中的应用。

10.根据权利要求9所述的应用,其特征在于:所述光电器件为oled器件和太阳能电池。

技术总结
本发明属于有机小分子光电材料的技术领域,公开了一种高性能空穴传输材料及其制备与应用。所述空穴传输材料的结构为式I,其中,Ar1与Ar2独立地为未取代或取代的咔唑单元、芴单元、二苯并吡喃单元、二苯并噻吩单元;所述取代的取代基为碳原子数分别为1~6的烷基、烷氧基或烷硫基。本发明的空穴传输材料具有高玻璃化转变温度、低HOMO能级、良好的空穴迁移率。本发明还公开了空穴传输材料的制备方法。本发明的方法简单、成本低。本发明的空穴传输材料用于制备光电器件,特别是OLED器件和太阳能电池器件。

技术研发人员:朱旭辉;黄小兰;彭俊彪;曹镛
受保护的技术使用者:华南理工大学
技术研发日:2020.01.17
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-52573.html

最新回复(0)