一种混合工质高压气体液化与过冷系统的制作方法

专利2022-06-29  65


本发明涉及混合工质制冷预冷技术领域,特别涉及一种混合工质高压气体液化与过冷系统。



背景技术:

液化气体是重要的工业产品。气体液化后的过冷程度越大,液化气体的储运难度越小,使用过程中闪蒸损耗越小。以氮气和氧气液化为例,常规的大型空分工厂发展已较为成熟,也是市场上液化气体的主要来源,但其产品以气氮和气氧为主,液氮液氧气体只是占其产量极小部分的副产品。而极大批量液化气体的制取则需要专门的液化流程将气氮增压至高压后再度液化,通常液化压力越高单位液化能耗越低。当前可实现较大制冷量的方法是基于间壁式回热的气体膨胀制冷循环和混合工质节流制冷循环。与气体膨胀制冷循环,混合工质节流制冷循环在气体冷却液化方面表现出明显更高的效率、更小的压缩机排量,并且不含有低温运动部件,是气体液化的理想冷量来源。

然而对于天然气等常压沸点较高的待液化气体(-161℃左右及以上),由于液相显热释放起主导作用,其过冷端的温度-负荷特征呈现出线性,与混合工质的匹配效果较差,造成较低效率,因此需要设置额外的流程结构优化过冷段的匹配。对于氮气(-196℃)等常压沸点较低的待液化气体,除了过冷段负荷匹配问题,其过冷阶段所需的制冷温度较低,通常低于-180℃,而混合工质节流制冷机在-180℃以下温区性能衰减严重,难以直接将液化气体继续过冷至更低,因此同样需要附加其他流程结构来弥补其在较低制冷温度下性能短板。



技术实现要素:

有鉴如此,有必要针对现有技术存在的缺陷,提供一种结构简单且能实现高效制冷的混合工质高压气体液化与过冷系统。

为实现上述目的,本发明采用下述技术方案:

本发明提供的一种混合工质高压气体液化与过冷系统,包括:气体增压单元、混合工质制冷机单元和过冷单元,所述的气体增压单元包括气体压缩机与后冷却器,所述的混合工质制冷机单元包括混合工质主冷循环,所述的过冷单元包括分配器、过冷换热器、主节流元件、液化气体节流元件及储液罐,其中:

低压原料气经所述气体压缩机将增压后进入所述后冷却器冷却,形成的高压原料气进入所述预冷换热器;

低压原料气经所述气体压缩机将增压后进入所述后冷却器冷却,形成的高压原料气进入所述混合工质制冷机单元;

所述混合工质制冷机单元包括混合工质主冷循环,为气体液化提供制冷量;所述混合工质主冷循环可采用一次节流循环、分离循环等多种构型;

在所述混合工质制冷机单元中冷却至低温并被液化的所述高压原料气被所述的分配器分为两部分,一部分所述高压液化原料气进入所述过冷换热器被所述的低压蒸气过冷至-150℃~-190℃,过冷后的液化气体被所述液化气体节流元件节流进入所述储液罐,得到过冷液体;另一部分所述高压液化原料气经所述主节流元件节流至接近常压并降温至-152℃~-192℃以下后进入所述过冷换热器提供冷量并气化后形成低压蒸气,然后再经所述混合工质制冷机单元复温并回收冷量后返回至所述气体压缩机,继续参与液化。

在一些较佳的实施例中,所述混合工质制冷机单元还包括预冷循环,对所述高压原料气和混合工质进行预冷;所述预冷循环可采用蒸汽压缩制冷循环、吸收式制冷循环以及商用冷水机组等构型。

在一些较佳的实施例中,所述高压原料气经所述混合工质制冷机单元冷却形成的液化气体首先经过所述过冷换热器被所述低压蒸气过冷至-150℃~-190℃,然后再经过所述气体分配器分出一小股液化气体,该小股液化气体经所述主节流元件节流至接近常压并降温至-152℃~-192℃以下后进入所述过冷换热器提供冷量并气化后形成低压蒸气,然后再经所述混合工质制冷机单元复温并回收冷量后返回至所述气体压缩机,继续参与液化;经所述气体分配器分出的剩余液化气体经所述液化气体节流元件节流进入所述储液罐,得到过冷液体。

在一些较佳的实施例中,所述过冷单元还包括第一液化气体节流元件;所述高压原料气经所述混合工质制冷机单元冷却形成的液化气体经所述过冷换热器被所述低压蒸气过冷至-150℃~-190℃,再经所述第一节流元件节流至某一优化的中间压力后进入气液分离器,分离出的气相经所述主节流元件进一步节流至接近常压并降温至-152℃~-192℃以下后形成低压蒸气进入所述过冷换热器提供冷量,然后再经所述混合工质制冷机单元复温并回收冷量后返回至所述气体压缩机,继续参与液化;经所述气液分离器分出的液相经所述液化气体节流元件节流进入所述储液罐,得到过冷液体。

在一些较佳的实施例中,所述高压原料气经所述混合工质制冷机单元冷却形成的液化气体经所述过冷换热器被所述低压蒸气过冷至-150℃~-190℃,然后直接被节流至储存压力后进入储罐,得到过冷液体;分离出的闪蒸气进入过冷换热器提供冷量,最后在混合工质制冷机单元回收冷量后返回气体增压单元,继续参与液化;

本发明采用上述技术方案的优点是:

本发明提供的混合工质高压气体液化与过冷系统,采用混合工质节流制冷技术,对高压气体进行分布式冷却,冷能利用效率高,且利用液化气体自身进行过冷,避免了混合工质制冷机制冷温度过低造成的效率严重衰减,同时流程结构相对简单,不需要额外的过冷制冷机。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1为本发明实施例1提供的混合工质高压气体液化与过冷系统的结构示意图。

图2为本发明实施例2提供的混合工质高压气体液化与过冷系统的结构示意图。

图3为本发明实施例3提供的一种过冷单元的结构示意图。

图4为本发明实施例4提供的一种过冷单元的结构示意图。

图5为本发明实施例5提供的一种过冷单元的结构示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

实施例1

请参阅图1,为本发明实施例1提供的一种混合工质高压气体液化与过冷系统,包括:气体增压单元1、混合工质制冷机单元2、和过冷单元3。其中:

所述的气体增压单元1包括气体压缩机101与后冷却器102。

可以理解,可采用多级压缩机将低压原料气与低压蒸气混合后增压至10~30bar。

所述的混合工质制冷机单元2包括混合工质主冷循环21。

所述的过冷单元3包括分配器301、过冷换热器302、主节流元件303及储液罐304和液化气体节流元件305。

本发明上述实施例1提供的混合工质高压气体液化与过冷系统的工作方式如下:

低压原料气经所述气体压缩机101将增压后形成高压原料气,所述高压原料气进入所述混合工质制冷机单元2被所述混合工质主冷循环21冷却液化后形成液化气体,然后所述液化气体进入所述过冷单元3。

所述液化气体被所述的分配器301分为两部分,一部分所述高压液化原料气进入所述过冷换热器302被所述的低压蒸气过冷至-150℃~-190℃,过冷后的液化气体被所述液化气体节流元件305节流进入所述储液罐,得到过冷液体;另一部分所述高压液化原料气经所述液化气体主节流元件303节流至接近常压并降温至-152℃~-192℃以下后进入所述过冷换热器302提供冷量并气化后形成低压蒸气,然后再经所述混合工质制冷机单元2复温并回收冷量后返回至所述气体压缩机101,继续参与液化。

本发明上述实施例1提供的混合工质高压气体液化与过冷系统,采用混合工质节流制冷技术,对高压气体进行分布式冷却,冷能利用效率高,且利用液化气体自身进行过冷,避免了混合工质制冷机制冷温度过低造成的效率严重衰减,同时流程结构相对简单,不需要额外的过冷制冷机。

实施例2

请参阅图2,为本发明实施例2提供的混合工质高压气体液化与过冷系统的结构示意图,为方便说明,以下仅说明相关的附图。

与上述实施例1不同之处在于,本发明实施例2提供的所述混合工质制冷机单元还包括预冷循环22,对所述高压原料气和混合工质进行预冷;所述预冷循环22可采用蒸汽压缩制冷循环、吸收式制冷循环以及商用冷水机组等构型。

其他的工作方式可参照实施例1,这里不再赘述。

本发明上述实施例2提供的混合工质高压气体液化与过冷系统,通过采用预冷循环,提高了系统适应较高环境温度的能力,并可降低液化能耗。

实施例3

请参阅图3,为本发明实施例4提供的混合工质高压气体液化与过冷系统的结构示意图。

所述高压原料气经所述混合工质制冷机单元2冷却形成的液化气体首先经过所述过冷换热器302被过冷至-150℃~-190℃,然后再经所述气体分配器301分出一小股液化气体,该小股液化气体经所述主节流元件303节流至接近常压并降温至-152℃~-192℃以下后进入所述过冷换热器302气化提供冷量并形成低压蒸气,然后再经所述混合工质制冷机单元2复温并回收冷量后返回至所述气体压缩机101,继续参与液化;

经所述气体分配器301分出的剩余液化气体经所述液化气体节流元件305节流进入所述储液罐304,得到过冷液体。

其他的工作方式可参照实施例1,这里不再赘述。

本发明上述实施例3提供的混合工质高压气体液化与过冷系统,利用液化气体自身进行过冷,避免了混合工质制冷机制冷温度过低造成的效率严重衰减,同时流程结构相对简单,不需要额外的过冷制冷机。

实施例4

请参阅图4,为本发明实施例4提供的混合工质高压气体液化与过冷系统的结构示意图。

与上述实施例1不同之处在于,所述过冷单元3还包括气液分离器306、第一液化气体节流元件307;其中:

所述高压原料气经所述混合工质制冷机单元2冷却形成的液化气体经所述过冷换热器302被过冷至-150℃~-190℃,再经所述第一液化气体节流元件307节流至某一优化的中间压力后进入所述气液分离器306,分离出的气相经所述主节流元件303节流至接近常压并降温至-152℃~-192℃以下后进入所述过冷换热器302提供冷量再经所述混合工质制冷机单元2复温并回收冷量后返回至所述气体压缩机101,继续参与液化;

经所述气液分离器306分出的液相经所述液化气体节流元件305节流进入所述储液罐304,得到过冷液体。

其他的工作方式可参照实施例1,这里不再赘述。

本发明上述实施例4提供的混合工质高压气体液化与过冷系统,利用液化气体自身进行过冷,避免了混合工质制冷机制冷温度过低造成的效率严重衰减,同时流程结构相对简单,不需要额外的过冷制冷机。

实施例5

请参阅图5,为本发明实施例5提供的混合工质高压气体液化与过冷系统的结构示意图。

与上述实施例1不同之处在于,所述高压原料气经所述混合工质制冷机单元2冷却形成的液化气体经所述过冷换热器302被过冷至-150℃~-190℃,然后直接被液化气体节流元件305至储存压力后进入储液罐304,分离出的闪蒸气进入过冷换热器302提供冷量后再经所述混合工质制冷机单元2复温并回收冷量后返回至所述气体压缩机101,继续参与液化;

本发明上述实施例5提供的混合工质高压气体液化与过冷系统,利用液化气体自身进行过冷,避免了混合工质制冷机制冷温度过低造成的效率严重衰减,同时流程结构相对简单,不需要额外的过冷制冷机。

可以理解,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

当然本发明的混合工质高压气体液化与过冷系统正极材料还可具有多种变换及改型,并不局限于上述实施方式的具体结构。总之,本发明的保护范围应包括那些对于本领域普通技术人员来说显而易见的变换或替代以及改型。


技术特征:

1.一种混合工质高压气体液化与过冷系统,其特征在于,包括:气体增压单元、混合工质制冷机单元、主冷箱单元和过冷单元,所述的气体增压单元包括气体压缩机与后冷却器,所述的混合工质制冷机单元包括混合工质主冷循环,所述的过冷单元包括分配器、过冷换热器、主节流元件、液化气体节流元件及储液罐,其中:

低压原料气经所述气体压缩机将增压后进入所述后冷却器冷却,形成的高压原料气进入所述混合工质制冷机单元;

所述混合工质制冷机单元包括混合工质主冷循环,为气体液化提供制冷量;所述混合工质主冷循环可采用一次节流循环、分离循环等多种构型;

在所述混合工质制冷机单元中冷却至低温并被液化的所述高压原料气被所述的分配器分为两部分,一部分所述高压液化原料气进入所述过冷换热器被所述的低压蒸气过冷至-150℃~-190℃,过冷后的液化气体被所述液化气体节流元件节流进入所述储液罐,得到过冷液体;另一部分所述高压液化原料气经所述主节流元件节流至接近常压并降温至-152℃~-192℃以下后进入所述过冷换热器提供冷量并气化后形成低压蒸气,然后再经所述混合工质制冷机单元复温并回收冷量后返回至所述气体压缩机,继续参与液化。

2.如权利要求1所述的混合工质高压气体液化与过冷系统,其特征在于,所述混合工质制冷机单元还包括预冷循环,对所述高压原料气和混合工质进行预冷;所述预冷循环可采用蒸汽压缩制冷循环、吸收式制冷循环以及商用冷水机组等构型。

3.如权利要求1和2所述的混合工质高压气体液化与过冷系统,其特征在于,所述液化气体先经过所述过冷换热器再经过所述分配器,其中:

所述高压原料气经所述混合工质制冷机单元冷却形成的液化气体经所述过冷换热器被所述低压蒸气过冷至-150℃~-190℃,再经所述气体分配器分出一小股液化气体,该小股液化气体经所述主节流元件节流至接近常压并降温至-152℃~-192℃以下后进入所述过冷换热器提供冷量并气化后形成低压蒸气,然后再经所述混合工质制冷机单元复温并回收冷量后返回至所述气体压缩机,继续参与液化;

经所述分配器分出的剩余液化气体经所述液化气体节流元件节流进入所述储液罐,得到过冷液体。

4.如权利要求1和2所述的混合工质高压气体液化与过冷系统,其特征在于,所述过冷单元还包第一液化气体节流元件;其中:

所述高压原料气经所述混合工质制冷机单元冷却形成的液化气体经所述过冷换热器被所述低压蒸气过冷至-150℃~-190℃,再经所述第一液化气体节流元件节流至某一优化的中间压力后进入气液分离器,分离出的气相经所述主节流元件进一步节流至接近常压并降温至-152℃~-192℃以下后形成低压蒸气进入所述过冷换热器提供冷量,然后再经所述混合工质制冷机单元复温并回收冷量后返回至所述气体压缩机,继续参与液化;

经所述气液分离器分出的液相经所述液化气体节流元件节流进入所述储液罐,得到过冷液体。

5.根据权利要求1和2所述的一种混合工质高压气体液化与过冷流程,其特征在于,所述高压原料气经所述混合工质制冷机单元冷却形成的液化气体经所述过冷换热器被所述低压蒸气过冷至-150℃~-190℃,然后直接被节流至储存压力后进入储罐,得到过冷液体;分离出的闪蒸气进入过冷换热器提供冷量,最后在混合工质制冷机单元回收冷量后返回气体增压单元,继续参与液化。

技术总结
本发明提供的混合工质高压气体液化与过冷系统,包括:气体增压单元、混合工质制冷机单元和过冷单元,所述的气体增压单元包括气体压缩机与后冷却器,所述的混合工质制冷机单元包括混合工质主冷循环,所述的过冷单元包括过冷换热器、节流元件及储液罐,本发明采用混合工质节流制冷技术,对高压气体进行分布式冷却,冷能利用效率高,且利用液化气体自身进行过冷,避免了混合工质制冷机制冷温度过低造成的效率严重衰减,同时流程结构相对简单,不需要额外的过冷制冷机。

技术研发人员:公茂琼;王昊成;郭浩
受保护的技术使用者:中国科学院理化技术研究所
技术研发日:2020.02.13
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-51632.html

最新回复(0)