本发明属于日用化学品与生物医学工程领域,具体涉及一种可用于面膜的水凝胶材料制备方法。
背景技术:
面膜(facemask),是美容护肤品中的一个类别,涂敷于面部具有美容功能,如补水保湿、美白、抗衰老、平衡油脂等等。面膜的原理,就是利用覆盖在脸部的短暂时间,暂时隔离外界的空气与污染,提高肌肤温度,皮肤的毛孔扩张,促进汗腺分泌与新陈代谢,使肌肤的含氧量上升,有利于肌肤排除表皮细胞新陈代谢的产物和累积的油脂类物质,面膜中的水分渗入表皮的角质层,皮肤变得柔软,肌肤自然光亮有弹性。传统面膜的形式主要有泥膏型、撕拉型、冻胶型、湿纸巾型四种。泥膏型、撕拉型和冻胶型存在着手工涂敷、易沾污家居环境的缺点。湿纸巾型依赖于惰性织物,存在着面部匹配不好、功能成分易流失等缺点。
水凝胶型面膜是以具保湿作用的水凝胶材料为基材制成的面膜。水凝胶(hydrogel),它是由高分子网络和水溶剂两种组分构成,兼具固体和液体两方面的性质。当把凝胶贴到皮肤上时,受到体温的影响,凝胶内部的物理结构从聚集态变成自由态,并渗透到皮肤里。因此,水凝胶面膜具有亲和皮肤、蓄水量高和缓释补水三大特质。另外,在以水凝胶为核心的面膜内加入胶原蛋白、透明质酸、熊果苷、烟酰胺等有效成分,可制成多种功能的面膜。水溶性水凝胶内的果冻状精华成分不易蒸发、干燥,其退热舒缓的效果对急性皮肤损伤(如过敏、长痘、擦伤)有良好效果
cn108685791a提出了一种无载体混合成型补水凝胶面膜及其制备方法,以海藻酸钠为高分子网络主体,以碳酸钙、氯化钙或氯化镁等无机盐作为力学性能调节。cn106821772a提出了一种网络互穿面膜基材的制备方法,是通过溶液共混方式制备互穿网络膜。采用海藻酸钠和明胶作为原料,选用儿茶素和氯化钙作为交联剂,以增强其力学强度。无机盐存在着与皮肤的渗透生理作用问题;有机小分子交联剂与天然高分子通过氢键实现,属于较弱的相互作用、且具有可逆性,在配方多组分体系中并不稳定。
cn201910952885提出了一种抗菌型琼脂丙烯酰胺水凝胶的制备方法,原料为双键功能化抗菌材料(g-ε-pl)、琼脂和丙烯酰胺,在紫外光(340~360nm)辐射引发下,得到抗菌型琼脂丙烯酰胺水凝胶。但是,紫外光辐射会对很多生物活性物质产生破坏作用,包括对化妆品里常用的熊果苷[日用化学工业,2014,44(10):580-583]、维生素[刘艳玲,安徽农业大学硕士学位论文,2015]、磷脂[王宁,郑州大学硕士学位论文,2007]、植物精油[洪鹏,中国食品科学技术学会第十三届年会.2016]和蛋白[国际皮肤性病学杂志,2015,41(1):54-57]等功能活性组分的光降解。
cn108467464a提出了一种化妆品含壬二酸可见光固化水凝胶,配方包括水溶性单体、多官能团交联单体、可见光引发剂、壬二酸等。但是,配方中并没有水的成分,并使用了多达40~80%的有机单体,既不经济、脱离了水凝胶的初衷,又有潜在的皮肤不适应性。
cn106986967a提出了一种具有双交联网络结构海藻酸钠复合水凝胶的方法,配方包括海藻酸钠、活性单体、光引发剂、交联剂、鎓盐、纳米钙和去离子水等。但是,配方中使用了一些合成小分子,如光引发剂和鎓盐,固化反应后会留在凝胶体系中,极具迁移的可能性。如用于食品或化妆品,则有潜在的生理安全问题[食品安全质量检测学报2015,(9):23-30.],尤其是鎓盐,更有遗传毒性的可能[中国药理学与毒理学杂志,2006,20(6):500-503.]。
cn106146689a提出了丙烯基甲基化β-环糊精和苯乙酮类光引发剂分子形成包合物的,相对于传统的的光引发剂具有更高的聚合速率和更好的聚合效率。但由于环糊精类包合作用具有可逆性[angewandtechemieinternationaledition,19(5):344-362.],因此亦无法避免小分子引发剂(苯乙酮类)的迁移。
技术实现要素:
为解决上述技术问题,本发明提出一种可用于面膜的水凝胶材料制备方法。
本发明的目的是通过以下技术方案来实现的:
本发明涉及一种可用于面膜的水凝胶材料制备方法;其步骤为:将0.1~3%质量分数的天然水性框架材料预溶或分散于50~100℃的84~99.3%质量分数的水中形成溶液,溶液中加入0.5~10%质量分数的互穿交联剂和0.5~10%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物进行光引发反应,得到所述可用于面膜的水凝胶材料。
进一步的,所述天然水性框架材料可以包括透明质酸、壳聚糖、明胶、海藻酸钠、纤维素、蚕丝蛋白和蛋清中的一种或几种。
进一步的,所述互穿交联剂可以包括聚乙二醇二丙烯酸酯、丙烯酸-2-羟乙酯、甲基丙烯酸-2-羟乙酯、丙烯酰胺和丙烯酰氧乙基三甲基氯化铵中的一种或几种。
进一步的,所述甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物的制备步骤为:
取0.5~3%质量分数的乙酸锌溶于82~97.5%质量分数的乙醇,均匀搅拌,逐滴加入1~10%质量分数的2~10%浓度的氨水至ph=8,常温搅拌0.5~3小时,加入1~5%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯,加热至50~75℃搅拌0.5~4小时,得甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物。
进一步的,所述甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物中纳米氧化锌的粒径为1~900nm。
进一步的,所述光引发反应的条件为0~40℃、400~500nm光波长、10~500j/m2辐射剂量。
在甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物中,存在着双羰基与氧化锌纳米粒子表面的锌的配位作用(图2),既可以稳定氧化锌纳米粒子,又可以形成大π共轭结构,使其吸收波长红移至400~500nm。复合物在与其波长匹配的光源辐射下,可形成自由基或空穴-电子对,引发含双键的化合物聚合,甲基丙烯酸乙酰乙酸乙二醇双酯即与互穿交联剂共聚成网络,而氧化锌纳米粒子在光照和反应水热作用下进一步晶化、粒径长大至微米以上晶体颗粒。由于复合物生成的产物皆为难以迁移之物质。而氧化锌本身是安全无毒,皮肤亲和性较高,能舒缓镇静敏感肌肤,有收敛性和一定的杀菌能力,在许多护肤品都有使用。
进一步的,步骤中可以加入0.1~5%质量分数的功能助剂。
进一步的,所述功能助剂包括熊果苷、玻尿酸、维生素e、烟酰胺、尼泊金酯、尿囊素、植物精油和胶原蛋白中的一种或几种。
进一步的,所述水凝胶材料拉伸强度不低于30mpa。
本发明通过互穿交联天然水性框架材料方法获得的可用于面膜的水凝胶材料,是一种较有前途的面膜基材制备方法。
与现有技术相比,本发明具有如下优势:材料选择范围宽、力学性能调节余地大、引发剂安全无迁移和制备工艺简单温和。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为实施例1的甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物的电镜图;
图2为在甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物中存在的双羰基与氧化锌纳米粒子表面的锌的配位作用之示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进,包括各实例间的任意组合。
实施例1
将0.5%质量分数的明胶预溶于90℃的97%质量分数的水中形成溶液,溶液中加入2%质量分数的聚乙二醇二丙烯酸酯和0.5%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,在20℃、405nm光波长、200j/m2辐射剂量下进行光引发反应,得到一种可用于面膜的水凝胶材料,其拉伸强度为82mpa(gb/t1040.2-2006)。
其中,甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物的制备步骤为:取1%质量分数的乙酸锌溶于95%质量分数的乙醇,均匀搅拌,逐滴加入2%质量分数的氨水(5%浓度)至ph=8,常温搅拌1小时,加入2%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯,加热至60℃搅拌2小时,得甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,电镜图显示纳米氧化锌的平均粒径为100nm;具体见附图1。
实施例2
将0.1%质量分数的透明质酸预溶于50℃的89.8%质量分数的水中形成溶液,溶液中加入10%质量分数的丙烯酸-2-羟乙酯和0.1%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,在20℃、420nm光波长、100j/m2辐射剂量下进行光引发反应,得到一种可用于面膜的水凝胶材料,其拉伸强度为125mpa(gb/t1040.2-2006)。
其中,甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物的制备步骤为:取0.5%质量分数的乙酸锌溶于93.5%质量分数的乙醇,均匀搅拌,逐滴加入1%质量分数的氨水(2%浓度)至ph=8,常温搅拌0.5小时,加入5%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯,加热至50℃搅拌0.5小时,得甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,电镜图显示纳米氧化锌的平均粒径为1nm。
实施例3
将3%质量分数的海藻酸钠预溶于99℃的93.4%质量分数的水中形成溶液,溶液中加入0.1%质量分数的熊果苷、0.5%质量分数的丙烯酰氧乙基三甲基氯化铵和3%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,在40℃、450nm光波长、10j/m2辐射剂量下进行光引发反应,得到一种可用于面膜的水凝胶材料,其拉伸强度为43mpa(gb/t1040.2-2006)。
其中,甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物的制备步骤为:取3%质量分数的乙酸锌溶于86%质量分数的乙醇,均匀搅拌,逐滴加入10%质量分数的氨水(10%浓度)至ph=8,常温搅拌3小时,加入1%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯,加热至75℃搅拌3小时,得甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,电镜图显示纳米氧化锌的平均粒径为900nm。
实施例4
将1%质量分数的壳聚糖预溶于80℃的93.5%质量分数的水中形成溶液,溶液中加入5%质量分数的丙烯酰胺和甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,在1℃、500nm光波长、500j/m2辐射剂量下进行光引发反应,得到一种可用于面膜的水凝胶材料,其拉伸强度为98mpa(gb/t1040.2-2006)。
甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物的制备步骤为:取2%质量分数的乙酸锌溶于94%质量分数的乙醇,均匀搅拌,逐滴加入2%质量分数的氨水(5%浓度)至ph=8,常温搅拌1小时,加入2%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯,加热至60℃搅拌2小时,得甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物,电镜图显示纳米氧化锌的平均粒径为300nm。
对比例1
将0.5%质量分数的琼脂预溶于90℃的97%质量分数的水中形成溶液,溶液中加入2%质量分数的聚乙二醇二丙烯酸酯,得到的材料拉伸强度仅为2mpa(gb/t1040.2-2006),不耐扯动,不适合作为面膜材料使用。
对比例2
将1%质量分数的壳聚糖预溶于80℃的93.5%质量分数的水中形成溶液,溶液中加入5%质量分数的丙烯酰胺和0.5%质量分数的硫杂蒽酮,在1℃、500nm光波长、500j/m2辐射剂量下进行光引发反应,得到一种可用于面膜的水凝胶材料,其拉伸强度为102mpa(gb/t1040.2-2006),但表面有硫杂蒽酮迁移析出。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
1.一种可用于面膜的水凝胶材料制备方法,其特征在于,具体步骤为:
将0.1~3%质量分数的天然水性框架材料预溶或分散于50~100℃的84~99.3%质量分数的水中形成溶液,溶液中加入0.5~10%质量分数的互穿交联剂和0.5~10%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物进行光引发反应,得到所述可用于面膜的水凝胶材料。
2.根据权利要求1所述的可用于面膜的水凝胶材料制备方法,其特征在于,所述天然水性框架材料包括透明质酸、壳聚糖、明胶、海藻酸钠、纤维素、蚕丝蛋白和蛋清中的一种或几种。
3.根据权利要求1所述的可用于面膜的水凝胶材料制备方法,其特征在于,所述互穿交联剂包括聚乙二醇二丙烯酸酯、丙烯酸-2-羟乙酯、甲基丙烯酸-2-羟乙酯、丙烯酰胺和丙烯酰氧乙基三甲基氯化铵中的一种或几种。
4.根据权利要求1所述的可用于面膜的水凝胶材料制备方法,其特征在于,所述甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物的制备步骤为:
取0.5~3%质量分数的乙酸锌溶于82~97.5%质量分数的乙醇,均匀搅拌,逐滴加入1~10%质量分数的2~10%浓度的氨水至ph=8,常温搅拌0.5~3小时,加入1~5%质量分数的甲基丙烯酸乙酰乙酸乙二醇双酯,加热至50~75℃搅拌0.5~4小时,得甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物。
5.根据权利要求1所述的可用于面膜的水凝胶材料制备方法,其特征在于,所述甲基丙烯酸乙酰乙酸乙二醇双酯-纳米氧化锌复合物中纳米氧化锌的粒径为1~900nm。
6.根据权利要求1所述的可用于面膜的水凝胶材料制备方法,其特征在于,所述光引发反应的条件为0~40℃、400~500nm光波长、10~500j/m2辐射剂量。
7.根据权利要求1所述的可用于面膜的水凝胶材料制备方法,其特征在于,步骤中可以加入0.1~5%质量分数的功能助剂。
8.根据权利要求7所述的可用于面膜的水凝胶材料制备方法,其特征在于,所述功能助剂包括熊果苷、玻尿酸、维生素e、烟酰胺、尼泊金酯、尿囊素、植物精油和胶原蛋白中的一种或几种。
技术总结