本发明涉及控制电动车辆或混合动力车辆动力传动系(pt)的自动变速器,这些自动变速器包括变速箱,该变速箱藉由差速器以不同的传动比将来自若干致动器(内燃发动机和电动机器)的扭矩朝向车辆的车轮进行组合。
更具体地,本发明涉及一种用于控制机动车辆动力传动系的方法,该机动车辆动力传动系包括内燃发动机、主电动机器、副电动机器以及至少一个爪齿变速箱,该爪齿变速箱包括机械地连接至内燃发动机和副电动机器的第一主轴、机械地连接至主电动机器的第二主轴、以及副轴。
本发明尤其涉及这种类型的动力传动系,其中,传动比的接合和脱离接合是通过没有同步器而通过爪齿或扁平齿控制的联接系统(也称为“爪式离合器”,在轴上轴向活动)来执行的。通过控制拨叉朝向在其轴上自由旋转的轴向固定的大齿轮来控制这些爪齿。活动爪齿在大齿轮上的接合使得轴和大齿轮联接,以便以接合的传动比将扭矩传递至大齿轮。
背景技术:
可以参考的fr3007696描述了一种具有三个轴和两个电动机器(包括主电动机器和副电动机器)的混合动力变速器架构。变速器使用三个特定的爪齿联接系统。该变速器是一种自动变速箱,其机械性能类似于手动变速箱。传动比变化是通过使用致动系统自动发生的,该致动系统使得可以使爪齿接合和脱离接合。
通过这种架构,可以接合纯内燃发动机传动比(其中仅第一主轴机械地连接至副轴)、纯电动传动比(其中仅第二主轴机械地连接至副轴)、以及混合动力传动比(其中第一主轴和第二主轴二者均机械地连接至副轴)。在混合动力传动比的情况下,内燃发动机传动比与第一主轴和副轴之间的机械连接相对应,并且电动传动比与第二主轴和副轴之间的机械连接相对应。
当用户希望退出混合动力输入传动比而接合混合动力输出传动比时,由于输入传动比和输出传动比具有不同的电动传动比,因此实施以下方法。首先,将扭矩从第二主轴切换到第一主轴。当来自第二主轴的扭矩为零时,使用于输入传动比的电动传动比脱离接合。然后,主电动机器的转速被同步,以便为接合用于输出传动比的电动传动比的后续阶段做准备。当此接合完成时,扭矩从第一主轴切换到第二主轴。
为了将扭矩从第二主轴切换到第一主轴,通常使用的解决方案包括减小来自主电动机器的扭矩并同时地增大来自内燃发动机的扭矩。然而,这种解决方案并不完全令人满意。虽然来自主电动机器的扭矩可以非常快地减小,但是来自内燃发动机的扭矩不能同样快速增大。如果由主电动机器输送的扭矩尽可能快地减小,则供应给副轴的扭矩减小。这导致出现使用户感到不舒服的现象,比如加速平点、颠簸或冲击、减速、“急剧下降”效果等。
为了避免这些烦扰,可以根据来自内燃发动机的扭矩的最大增大速率来决定对来自主电动机器的扭矩的减小速度加以限制。但是,齿轮传动比改变的时间增大。
用于将扭矩从第二主轴切换到第一主轴的另一种解决方案包括通过增大来自副电动机器的扭矩来补偿来自主电动机器的扭矩的减小。然而,副电动机器通常比主电动机器输送更少的机械功率。在这些条件下,副电动机器不能补偿来自主电动机器的转矩。因此出现扭矩平点,到该扭矩平点作为烦扰而被车辆用户感受到。
技术实现要素:
鉴于以上内容,本发明的目的在于提供一种克服上述缺点的用于控制机动车辆动力传动系的方法。
更具体地,本发明的目的在于使得能够在混合动力输入传动比和具有与混合动力输入传动比不同的电动传动比的混合动力输出传动比之间进行齿轮传动比改变,其中,传动比改变时间最小并且对于车辆用户引起尽可能少的烦扰。
为此目的,提出了一种用于控制机动车辆动力传动系的方法,该机动车辆动力传动系包括内燃发动机、主电动机器、副电动机器、以及至少一个爪齿变速箱,该至少一个爪齿变速箱包括机械地连接至该内燃发动机和该副电动机器的第一主轴、机械地连接至该主电动机器的第二主轴、以及副轴,该方法包括将扭矩从该第二主轴切换到该第一主轴的第一阶段、使用于输入传动比的电动传动比脱离接合的第二阶段、使该主电动机器的转速同步的第三阶段、使用于输出传动比的电动传动比接合的第四阶段、以及将扭矩从该第一主轴切换到该第二主轴的第五阶段。
根据此方法的一般特征,其中,该第一阶段包括计算第一目标功率值的第一步骤和将该内燃发动机输送的功率增大到该第一目标值的第二步骤,该第一目标值被确定为使得在该第二步骤结束时,通过增大该副电动机器输送的功率能够完全补偿该主电动机器输送的功率。
因此,根据两个不同的切换动态(第一缓慢动态和第二快速动态)来消除和补偿来自主电动机器的扭矩,在这种情况下,第一缓慢动态为了避免出现比如加速平点的烦扰,第二快速动态为了限制传动比改变时间。
根据特定实施例,在该第二步骤期间,减小由该主电动机器输送的功率,由该主电动机器输送的功率的减小速率基本上等于由该内燃发动机输送的功率的增大速率。
有利地,在该第一步骤期间,还确定能够由该副电动机器输送的附加功率,并且仅在确定的所述附加功率严格小于不请求改变传动的情况下由该主电动机器产生的功率时实施该第二步骤。
通过这样的实施例中,如果可以通过副电动机器完全补偿来自第二主轴的扭矩的消除,则不修改来自内燃发动机的扭矩的控制。因此,传动比改变时间被尽可能地限制,同时防止加速平点的出现。
有利地,在该第一步骤期间,通过应用公式确定该第一目标值:
pice_目标_s03=pmem_no pice_no-phsg_pot
其中,pice_目标_s03表示该第一目标值,
pmem_no表示不请求改变传动比的情况下由该主电动机器产生的功率,
pice_no表示不请求改变传动比的情况下由该内燃发动机产生的功率,并且
phsg_pot表示可以由该副电动机器输送的附加功率。
在一个实施例中,在该第二步骤期间,来自该内燃发动机的扭矩以与来自该内燃发动机的扭矩的最大增大速率相等的增大速率增大。
还可以提供的是,所述第一阶段包括第三步骤:计算由该内燃发动机输送的功率的第二目标值、由该主电动机器输送的功率的第三目标值、以及由该副电动机器输送的功率的第四目标值。
通过此第三步骤规定如何补偿来自第二主轴的剩余扭矩。
在一个实施例中,在所述第三步骤期间,通过应用以下等式确定这些目标值:
pice_目标_s06=pice_目标_s03,
phsg_目标_s06=phsg_最大,和
pmem_目标_s06=0,
其中,pice_目标_s06表示该第二目标值,
pmem_目标_s06表示该第三目标值,
phsg_目标_s06表示该第四目标值,
phsg_最大表示可以由该副电动机器供应的最大机械功率,并且
pice_目标_s03表示该第一目标值。
这样的实施例使得可以限制传动比改变期间由内燃发动机引起的噪声、燃料消耗、以及污染物排放。
在另一个实施例中,在所述第三步骤期间,通过应用以下等式确定这些目标值:
pice_目标_s08=min(pice_最大,pice_no pmem_no),
pmem_目标_s08=0,
phsg_目标_s08=p车轮-pice_目标_s08,和
其中,pice_目标_s08表示该第二目标值,
pmem_目标_s08表示该第三目标值,
phsg_目标_s08表示该第四目标值,
pice_no表示不请求改变传动比的情况下由该内燃发动机产生的功率,
pmem_no表示不请求改变传动比的情况下由该主电动机器产生的功率,
pice_最大表示能够由该内燃发动机供应的最大机械功率,并且
p车轮表示由该动力传动系供应给车轮的功率设定点。
在这样的实施例中,保留了为动力传动系的电动机器供电的电能存储电池的电量状态。
有利地,在该第三步骤期间,通过实施等式组确定该第二目标值、该第三目标值、以及该第四目标值,并且其中,从至少两个不同的等式组中选择所述等式组,根据从该车辆的蓄电池的电量状态和该内燃发动机的最大噪声水平中选择的至少一个标准来实施等式组的选择。
通过这种等式组的选择,在补偿来自第二主轴的剩余扭矩时,驾驶员的要求被考虑在内。
有利地,该第一阶段包括第四步骤:将由该内燃发动机、该主电动机器、以及该副电动机器输送的功率分别调节到该第二目标值、该第三目标值、以及该第四目标值,并且其中,在该第四步骤期间,由该主电动机器输送的功率以与来自该主电动机器的扭矩的最大减小速率相等的变化速率减小。
附图说明
通过阅读仅作为非限制性示例给出并且参考附图给出的以下描述,本发明的进一步的目的、特征和优点将变得清楚,在附图中:
-图1是混合动力传动系架构的简化示例,
-图2示出了图1中的动力传动系的变速箱的换挡曲线;
-图3是根据本发明的控制方法的实施例,并且
-图4是示出在图3的方法期间由图1中的动力传动系的元件输送的扭矩的变化的曲线图。
具体实施方式
图1是具有三个轴和两个电动机器的混合动力传动系(pt)1的框图,该混合动力传动系使用三个爪齿联接系统,这些爪齿联接系统的操作由所引用的文献展示。动力传动系1包括三个致动器,在这种情况下是内燃发动机2(ice)、主电动机器3(mem)、以及副电动机器4或混合动力起动发电机(hsg)。动力传动系1包括连接至发动机2的实心主轴5、连接至主电动机器3的空心主轴6、副轴7、以及连接至副电动机器4的中间轴8。传动比由不具有机械同步器的三个爪齿联接器c1、c2、c3接合。
变速箱将来自发动机2的扭矩、来自主电动机器3的扭矩、以及来自副电动机器4的扭矩朝向车辆的车轮组合到副轴7上。传动比的变化在分别布置在实心主轴5、副轴6、以及中间轴8上的三个爪齿联接器c1、c2、c3的控制下发生。放置在实心主轴5上的第一联接器(称为主联接器c1)使得可以接合右侧的长内燃发动机传动比ice4,并联接左侧的两个主轴。放置在副轴上的第二联接器(称为副联接器c2)使得可以接合两个电动传动比ev1和ev2。放置在中间轴8上的第三联接器(称为传递联接器c3)使得可以将扭矩从副电动机器传递至副轴7(右侧)或空心主轴6(左侧)。
变速箱具有用于源自主电动机器3的运动的两个电动传动比ev1和ev2以及用于源自由副电动机器4和内燃发动机2组成的组件的运动的四个内燃发动机传动比ice1、ice2、ice3和ice4。将这些传动比进行组合使得变速箱具有15个齿轮传动比。每个齿轮传动比根据车辆的行驶速度将最大的力传递给车轮。通过举例的方式,图2示出了针对这些传动比中的一些传动比的换挡曲线。车辆的行驶速度v以公里/小时表示。针对两个电动挡位(zev1和zev2)和四个混合动力挡位(分别称为hyb21、hyb22、hyb32、hyb42),车轮处的最大力f作为速度的函数以牛顿(n)表示。第一位数字指示变速箱的内燃发动机传动比。第二位数字指示变速箱的电动传动比。
图3是可以被实施以控制图1中的动力传动系的方法的示例的图解表示。图3中的方法旨在在从输入齿轮传动比到输出齿轮传动比的齿轮传动比变化期间实施。更具体地,输入齿轮传动比和输出齿轮传动比是变速箱的各自具有不同的电动传动比的两个混合动力传动比。换句话说,(输入传动比,输出传动比)对可以是(hyb21,hyb22)和(hyb22,hyb21)。例如,将针对齿轮传动比从输入传动比hyb21改变到输出传动比hyb22给出方法的以下描述。
在该方法的初始状态下,动力传动系1的变速箱接合在齿轮传动比hyb21中。换句话说,内燃发动机传动比ice2和电动传动比ev1接合。
在所有时刻:
ωice表示内燃发动机2的转速,
ωmem表示主电动机器3的转速,
ωhsg表示副电动机器4的转速,
ω7表示副轴7的转速,
tice表示内燃发动机2输送的扭矩,
tmem表示由主电动机器3输送的扭矩,
thsg表示由副电动机器4输送的转矩,
t7表示副轴7上的扭矩,
pice表示来自内燃发动机2的功率,
pmem表示来自主电动机器3的功率,
phsg表示来自副电动机器4的功率,并且
p7表示由副轴7接收的功率。
该方法包括检测将齿轮传动比从输入混合动力传动比改变为输出混合动力传动比的指令的初始化的阶段p0,该输入混合动力传动比和输出混合动力传动比分别具有两个不同的电动传动比的。在所示的情况下,检测到将齿轮传动比从输入传动比hyb21改变为输出传动比hyb22的指令。如果没有检测到这样的指令,则周期性地重复阶段p0。当检测到此指令时,实施阶段p1。
阶段p1的目的是将扭矩从轴6切换到轴5,以其目的是使电动传动比ev1脱离接合。
阶段p1包括计算可用机械功率phsg_pot的第一步骤s01。功率phsg_pot与可以由副电动机器4供应的相对于在方法的初始状态下已经供应的机械功率的附加功率相对应。通过应用以下等式来计算功率:
phsg_pot=phsg_最大-phsg_no,(1)
其中,phsg_最大是副电动机器4可以输送的最大机械功率,而phsg_no是在没有传动比改变的情况下副电动机器4要产生的功率。换句话说,功率phsg_no对应于紧接在初始化阶段p0结束之前的副电动机器4的功率设定点。
阶段p1包括第二测试步骤s02,在第二测试步骤,确定在没有传动比改变的情况下主电动机器3的功率pmem_no是否小于功率phsg_pot。换句话说,在步骤s02期间,确定初始状态下由主电动机器3输送的机械功率是否可以被由副电动机器4输送的附加功率来完全补偿。
如果pmem_no>phsg_pot,则实施后续的步骤s03。如果pmem_no≤phsg_pot,则该方法直接移动到步骤s05。
步骤s03的目的是计算动力传动系1的致动器的目标功率的三元组。更具体地,在步骤s03期间,确定发动机2的目标功率pice_目标_s03、主电动机器3的目标功率pmem_目标_s03、以及副电动机器4的目标功率phsg_目标_s03。通过应用以下等式来计算这些功率:
pice_目标_s03=pmem_no pice_no-phsg_pot(2)
pmem_目标_s03=phsg_pot(3)
phsg_目标_s03=phsg_no(4),
其中,pice_no表示在没有传动比改变的情况下来自内燃发动机2的功率。
然后实施修改扭矩tice和tmem的步骤s04。修改扭矩tice,使得功率pice朝向目标功率pice_目标_s03收敛。类似地并且同时地,修改扭矩tmem,使得功率pmem朝向目标功率pmem_目标_s03收敛。更具体地,控制扭矩tice和tmem,使得:
其中,rev1表示电动传动比ev1,并且rice2表示内燃发动机传动比ice2。
在步骤s04期间,扭矩tice的增大速率定义如下:
其中,rtice_最大是内燃发动机2的扭矩的最大增大速率。可以使用映射(未示出)来获得此速率,在该映射中存储随内燃发动机2的工作点变化的速率rtice_最大的值。
以这种方式,在步骤s04中开始通过增大来自内燃发动机2的扭矩来补偿来自轴6的扭矩的消除。由于根据等式(2)、(3)、以及(4)选择目标,并且根据等式(5)和(6)进行控制,步骤s04的持续时间被最小化,同时防止了加速平点的出现。
当在扭矩tice增大和扭矩tmem减小之后功率pice已经达到目标功率pice_目标_s03并且功率pmem已经达到目标功率pmem_目标_s03时,步骤s04完成。
然后实施确定动力传动系1的操作模式的步骤s05。如果在步骤s05期间确定动力传动系1正在根据第一操作模式操作,则实施步骤s06。如果确定动力传动系1正在根据第二操作模式操作,则实施步骤s08。
在步骤s06期间,计算动力传动系1的致动器的目标功率的第二三元组。更具体地,在步骤s06期间,确定发动机2的目标功率pice_目标_s06、主电动机器3的目标功率pmem_目标_s06、以及副电动机器4的目标功率phsg_目标_s06。通过应用以下等式来计算这些功率:
pice_目标_s06=pice_目标_s03(7)
phsg_目标_s06=phsg_最大(8)
pmem_目标_s06=0(9)
然后实施修改扭矩tice、tmem、以及thsg的步骤s07。如在步骤s04中,分别修改扭矩tice、tmem,使得功率pice、pmem分别朝向目标功率pice_目标_s06、pmem_目标_s06收敛。
在步骤s07期间,扭矩tmem和tice的减小速率定义如下:
其中,rtmem_最大是来自主电动机器3的扭矩的最大减小速率。
当扭矩tice、tmem、以及thsg已被修改使得功率pice、pmem、以及phsg分别达到目标功率pice_目标_s06、pmem_目标_s06、以及phsg_目标_s06时,步骤s07完成。
步骤s08和s09分别与步骤s06和s07相类似。步骤s08与步骤s06的不同之处在于,通过应用以下等式来计算动力传动系1的致动器的目标功率的第三三元组:
pice_目标_s08=min(pice_最大,pice_no pmem_no)(12)
pmem_目标_s08=0(13)
phsg_目标_s08=p车轮-pice_目标_s08(14),
其中,pice_最大表示可以由内燃发动机2供应的最大机械功率,p车轮表示由动力传动系1供应给车轮的功率设定点。
当在扭矩tice、tmem、以及thsg变化之后功率pice、pmem和phsg已经分别达到目标功率pice_目标_s08、pmem_目标_s08、以及phsg_目标_s08时,步骤s09完成。
当步骤s07和s09之一完成时,阶段p1完成。在阶段p1结束时,空心主轴6上的扭矩tmem为零。
然后实施使电动传动比ev1脱离接合的阶段p2。在此阶段期间,操纵联接器c2,使得产生传动比ev1的惰轮的离合被停用。在阶段p2结束时,轴6从轴7机械地断开连接。
然后实施使空心主轴6同步的阶段p3。在此阶段期间,修改对主电动机器3的电力供应,使得速度ωmem与通过电动传动比ev2降低的速度ω7同步:
ωmem=rev2.ω7,(15)
其中,rev2为电动传动比ev2。
然后实施接合电动传动比ev2的阶段p4。在此阶段期间,操纵爪齿联接器c2,使得与电动传动比ev2相对应的惰轮的离合被启用。在阶段p4结束时,变速箱接合在混合动力传动比hyb22中。
然后实施将扭矩从轴5切换到轴6的阶段p5。以这种方式,动力传动系1被朝向齿轮传动比变化的输出控制。在阶段p5结束时,该方法完成。
图4是在图3的方法期间,扭矩tice、tmem、以及thsg根据时间t变化的图解表示。
在图4的曲线图上,时间t0与初始化阶段p0的结束时间相对应。时间t1与阶段p1的步骤s04的结束时间相对应。时间t2与阶段p2的结束时间相对应。时间t3与阶段p4的结束时间相对应。另外,在图4所示的实施例的步骤s05期间选择的操作模式是第二操作模式。
从图4中可以看到,响应于扭矩tmem的减小,扭矩tice和thsg增大。由于传动比rev1和rice2之间的差异,扭矩tice和thsg的增大完全补偿扭矩tmem的减小。结果,在阶段p1期间,功率p7和扭矩t7保持基本恒定,从而车辆用户不感觉到加速平点。此外,计算目标的多个三元组的步骤s03、s06、以及s08使得可以在必要时实施将扭矩从轴6切换到轴5的不同动态。在适当的情况下,来自轴6的扭矩的消除和补偿根据缓慢的动态开始,直至使得能够根据快速动态来实施来自轴6的剩余扭矩的消除和补偿的操作点,然后,根据这些快速动态来消除和补偿来自轴6的剩余扭矩。
此外,根据动力传动系1的操作模式的选择来确定目标功率。如果驾驶员期望具有燃料效益、安静、低污染的驾驶,则他将选择第一操作模式。相比之下,如果驾驶员希望保持车辆的蓄电池的电量状态,则他将选择第二操作模式。还可以通过车辆的计算机基于车辆的操作参数(比如电池的电量状态、动力传动系1的致动器的操作点、动力传动系发出的允许噪声水平等)来实施操作模式的选择。
鉴于以上内容,根据本发明的方法使得可以在防止对用户产生比如加速平点的烦扰的同时最小化齿轮传动比改变时间。
1.一种用于控制机动车辆动力传动系(1)的方法,该机动车辆动力传动系包括内燃发动机(2)、主电动机器(3)、副电动机器(4)、以及至少一个爪齿变速箱,该至少一个爪齿变速箱包括机械地连接至该内燃发动机和该副电动机器的第一主轴(5)、机械地连接至该主电动机器的第二主轴(6)、以及副轴(7),该方法包括将扭矩从该第二主轴切换到该第一主轴的第一阶段(p1)、使用于输入传动比的电动传动比脱离接合的第二阶段(p2)、使该主电动机器的转速(ωmem)同步的第三阶段(p3)、使用于输出传动比的电动传动比接合的第四阶段(p4)、以及将扭矩从该第一主轴切换到该第二主轴的第五阶段(p5),其中,该第一阶段包括计算第一目标功率值(pice_目标_s03)的第一步骤(s03)和将该内燃发动机输送的功率(pice)增大到该第一目标值的第二步骤(s04),该第一目标值被确定为使得在该第二步骤结束时,通过增大该副电动机器输送的功率(phsg)能够完全补偿该主电动机器输送的功率(pmem)。
2.根据权利要求1所述的方法,其中,在该第二步骤(s04)期间,减小由该主电动机器输送的功率(pmem),由该主电动机器输送的功率的减小速率基本上等于由该内燃发动机输送的功率(pice)的增大速率。
3.如权利要求1或2所述的方法,其中,在该第一步骤(s03)期间,还确定能够由该副电动机器输送的附加功率(phsg_pot),并且仅在确定的所述附加功率(phsg_pot)严格小于不请求改变传动的情况下由该主电动机器产生的功率(pmem_no)时实施该第二步骤(s04)。
4.根据权利要求1至3中任一项所述的方法,其中,在该第一步骤(s03)期间,通过应用公式确定该第一目标值(pice_目标_s03):
pice_目标_s03=pmem_no pice_no-phsg_pot
其中,pice_目标_s03表示该第一目标值,
pmem_no表示不请求改变传动比的情况下由该主电动机器产生的功率,
pice_no表示不请求改变传动比的情况下由该内燃发动机产生的功率,并且
phsg_pot表示可以由该副电动机器输送的附加功率。
5.根据权利要求1至4中任一项所述的方法,其中,在该第二步骤(s04)期间,来自该内燃发动机的扭矩(tice)以与来自该内燃发动机的扭矩的最大增大速率(rtice_最大)相等的增大速率增大。
6.根据权利要求1至5中任一项所述的方法,其中,所述第一阶段(p1)包括第三步骤(s06,s08):计算由该内燃发动机输送的功率的第二目标值(pice_目标_s06,pice_目标_s08)、由该主电动机器输送的功率的第三目标值(pmem_目标_s06,pmem_目标_s08)、以及由该副电动机器输送的功率的第四目标值(phsg_目标_s06,phsg_目标_s08)。
7.根据权利要求6所述的方法,其中,在所述第三步骤(s06)期间,通过应用以下等式确定这些目标值(pice_目标_s06,pmem_目标_s06,phsg_目标_s06):
pice_目标_s06=pice_目标_s03,
phsg_目标_s06=phsg_最大,和
pmem_目标_s06=0,
其中,pice_目标_s06表示该第二目标值,
pmem_目标_s06表示该第三目标值,
phsg_目标_s06表示该第四目标值,
phsg_最大表示可以由该副电动机器供应的最大机械功率,并且
pice_目标_s03表示该第一目标值。
8.根据权利要求6所述的方法,其中,在所述第三步骤(s08)期间,通过应用以下等式确定这些目标值(pice_目标_s08,pmem_目标_s08,phsg_目标_s08):
pice_目标_s08=min(pice_最大,pice_no pmem_no),
pmem_目标_s08=0,
phsg_目标_s08=p车轮-pice_目标_s08,并且
其中,pice_目标_s08表示该第二目标值,
pmem_目标_s08表示该第三目标值,
phsg_目标_s08表示该第四目标值,
pice_no表示不请求改变传动比的情况下由该内燃发动机产生的功率,
pmem_no表示不请求改变传动比的情况下由该主电动机器产生的功率,
pice_最大表示能够由该内燃发动机供应的最大机械功率,并且
p车轮表示由该动力传动系供应给车轮的功率设定点。
9.根据权利要求6至8中任一项所述的方法,其中,在该第三步骤(s06,s08)期间,通过实施等式组确定该第二目标值(pice_目标_s06,pice_目标_s08)、该第三目标值(pmem_目标_s06,pmem_目标_s08)、以及该第四目标值(phsg_目标_s06,phsg_目标_s08),并且其中,从至少两个不同的等式组中选择(s05)所述等式组,根据从该车辆的蓄电池的电量状态和该内燃发动机的最大噪声水平中选择的至少一个标准来实施等式组的选择。
10.根据权利要求6至9中任一项所述的方法,其中,该第一阶段(p1)包括第四步骤(s07,s09):将由该内燃发动机、该主电动机器、以及该副电动机器输送的功率(pice,pmem,phsg)分别调节到该第二目标值、该第三目标值、以及该第四目标值(pice_目标_s06,pice_目标_s08,pmem_目标_s06,pmem_目标_s08,phsg_目标_s06,phsg_目标_s08),并且其中,在该第四步骤(s07,s09)期间,由该主电动机器输送的功率(pmem)以与来自该主电动机器的扭矩的最大减小速率(rtice_最大)相等的变化速率减小。
技术总结