本发明环氧树脂领域,具体涉及一种高韧性绝缘环氧树脂固化物及其制备方法和应用。
背景技术:
环氧树脂固化物体系以其高强度、高模量、高耐热、高绝缘等优异的性能广泛的应用于航空航天、汽车领域、电气领域等。环氧树脂拥有优异的性能,得益于其固化后形成三维交联的网状结构,但是这种结构表现出质脆的特点,极易由于负载过大或者缺陷产生的微裂纹迅速扩散导致材料失效,从而降低了其使用范围。因此对环氧树脂固化物进行增韧改性以提高材料的耐冲击性成为亟待解决的问题之一,目前环氧树脂固化物的增韧方法有聚氨酯增韧、橡胶增韧、热塑性弹性体增韧,这些方法能够在一定程度上改善环氧树脂的冲击韧性,但是由于其与环氧树脂的相容性欠佳,一般来说会使环氧树脂固化物的力学性能、绝缘性能和耐热性变差。因此,亟需提供一种韧性高、耐热性能和绝缘性能好的环氧树脂固化物。
技术实现要素:
因此,本发明要解决的技术问题在于克服现有技术中的环氧树脂固化物冲击韧性、耐热性和绝缘性不能兼得的缺陷,从而提供一种高韧性、绝缘性和耐热性能好的环氧树脂固化物。
本发明还提供一种高韧性绝缘环氧树脂固化物的制备方法。
本发明还提供一种高韧性绝缘环氧树脂固化物的应用。
为此,本发明提供一种高韧性绝缘环氧树脂固化物,包括如下原料:
基体树脂、固化剂、增韧剂和促进剂,其中,所述基体树脂为环氧树脂与含有疏水脂肪链和芳香环的非活性树脂改性剂的混合物,所述增韧剂为活性稀释剂与纳米粒子的混合物,所述活性稀释剂与纳米粒子之间能够形成氢键。
进一步地,所述非活性树脂改性剂为卡德莱lite2020和/或卡德莱nx2026。
进一步地,所述基体树脂中非活性树脂改性剂的用量为环氧树脂质量的5-10%,优选为7-10%。
进一步地,所述活性稀释剂为含有酚基或醇羟基的活性稀释剂。
进一步地,所述活性稀释剂为腰果酚缩水甘油醚。
进一步地,所述纳米粒子的表面带有羟基或羧基。
进一步地,所述纳米粒子为纳米二氧化硅、纳米橡胶和纳米碳酸钙中的一种或几种。
进一步地,所述增韧剂中活性稀释剂与纳米粒子的质量比为30-70:70-30。
进一步地,包括如下重量百分比的原料:以原料总质量为100%计,基体树脂40-58%、固化剂30-48%、增韧剂5-10%和促进剂0.1-2%。
进一步地,所述固化剂为酸酐类固化剂。
进一步地,所述固化剂为甲基四氢苯酐、甲基六氢苯酐、甲基纳迪克酸酐、邻苯二甲酸酐和4,4-二氨基二苯砜中的一种或几种。
进一步地,所述促进剂为胺类促进剂。
进一步地,所述促进剂为二甲基苄胺、三乙醇胺和2-乙基-4-甲基咪唑中的一种或几种。
进一步地,所述环氧树脂为四官能团缩水甘油胺类环氧树脂、三官能团的环氧树脂、双酚a环氧树脂、脂肪族类环氧树脂、脂环族类环氧树脂和双酚f环氧树脂中的一种或者几种。
本发明还提供一种高韧性绝缘环氧树脂固化物的制备方法,包括以下步骤:
制备基体树脂:将非活性树脂改性剂与环氧树脂混合均匀;
制备增韧剂:将活性稀释剂与纳米粒子混合均匀;
制备环氧树脂固化物:将基体树脂、增韧剂、固化剂和促进剂混合均匀,加热。
本发明还提供一种高韧性绝缘环氧树脂固化物在电力行业的套管、支撑绝缘子、触头盒、绝缘筒和极柱中的应用。
本发明技术方案,具有如下优点:
1.本发明提供的高韧性绝缘环氧树脂固化物,包括如下原料:基体树脂、固化剂、增韧剂和促进剂,其中,所述基体树脂为环氧树脂与含有疏水脂肪链和芳香环的非活性树脂改性剂的混合物,非活性树脂改性剂中的长疏水脂肪侧链和芳香环,可赋予产品极低的粘度,进而降低环氧树脂的粘度,增加环氧树脂与其他组分之间的相容性、提高柔韧性、提供优异的早期耐水性、硬度性能和防腐保护,能够极大的降低环氧树脂中含水量,提高其绝缘性,并且体系粘度降低,能够消除成型过程中的微孔缺陷,消除高压电场“畸变”,避免“局放”现象,从而使绝缘性更好,并且,所还有的刚性芳环也可以提高产品的耐热性;所述增韧剂为活性稀释剂与纳米粒子的混合物,所述活性稀释剂与纳米粒子之间能够形成氢键,所述活性稀释剂能够与纳米粒子反应,与纳米粒子形成阻尼支链和增韧悬挂链结构,能够增大环氧树脂体系分子间距离,提供更好的韧性。
2.本发明提供的高韧性绝缘环氧树脂固化物,所述非活性树脂改性剂为卡德莱lite2020和/或卡德莱nx2026,基体树脂中非活性树脂改性剂的用量为环氧树脂质量的5-10%,卡德莱lite2020、卡德莱nx2026中,含有腰果酚分子,具有长疏水脂肪侧链和芳香环,能够使产品具有较高的耐水性和硬度;非活性稀释剂用量少于5%,对韧性和绝缘性能改善不明显;用量>10%,对固化物的整体耐热性能、拉伸强度均有不同的降低。
3.本发明提供的高韧性绝缘环氧树脂固化物,所述活性稀释剂为含有酚基或醇羟基的活性稀释剂,所述纳米粒子的表面带有羟基或羧基,二者之间可以形成弱氢键,收到外力冲击时,活性稀释剂与纳米粒子之间可以“滑移”,从而消耗能量并增加位移,提供更好的韧性;同时,纳米粒子的表面非配对原子比较多,其与环氧树脂发生物理或化学结合的可能性大,增大了粒子与基体的界面结合,能够起到增强和增韧的作用。
4.本发明提供的高韧性绝缘环氧树脂固化物,所述活性稀释剂为腰果酚缩水甘油醚,其分子链段中含有可参与固化反应的环氧基团,能够降低体系的粘度,含有长脂肪侧链和芳香环,能够使体系拥有较好的柔韧性和耐水性,低粘度和较长的使用期以及优异的防腐保护,同时腰果酚缩水甘油醚能够与纳米粒子形成键能合适的弱氢键,使得产品拥有更好的增强和增韧性能。
5.本发明提供的高韧性绝缘环氧树脂固化物,所述增韧剂中活性稀释剂与纳米粒子的质量比为30-70:70-30,在此比例范围内,可以使稀释剂与纳米粒子形成键能合适的弱氢键,在后续固化过程中能够完全参与反应,得到具有更优性能的产品;若超出此范围内,导致两者混合不均匀,导致产品性能下降。
6.本发明提供的高韧性绝缘环氧树脂固化物,所述固化剂为酸酐类固化剂酸酐类的固化剂固化的制品相对介电强度比较大,能够使产品的绝缘性能更好,且酸酐类固化剂与本申请所述的稀释剂搭配使用能够与环氧树脂容易混合,固化工艺及固化程度较好。
7.本发明提供的高韧性绝缘环氧树脂固化物,所使用的环氧树脂为多官能度环氧树脂,可提高固化体系的交联程度,使得耐热性提高;通过添加少量非活性树脂改性剂降低环氧树脂的粘度,采用酸酐类固化剂,胺类促进剂,添加增韧剂,在降低体系粘度的同时,使环氧树脂得到完整的交联网络,提高环氧树脂固化物的强度、韧性和耐热性;在环氧树脂体系的粘度基本上不增加的情况下,拉伸强度为70-85mpa,拉伸模量3.2-3.6gpa,断裂伸长率为3%-6%,能够应用于更多领域。
8.本发明提供的高韧性绝缘环氧树脂固化物的制备方法,纳米粒子为粉末状态,采用活性稀释剂先与其混合,可以很好的将粉末与活性稀释剂混合并反应形成键能合适的弱氢键,并且活性稀释剂含有参与固化反应的环氧基团,将上述混合物与其他物质混合制备产品,能够极大的提高两者的相容性,固化完全,制备出具有高韧性,耐水性,耐化学性的产品。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
准备原料:基体树脂50g,由卡德莱lite2020和四官能团缩水甘油胺类环氧树脂tt410组成,其中,卡德莱lite2020的质量为四官能团缩水甘油胺类环氧树脂tt410质量的7%;固化剂甲基四氢苯酐42g,促进剂二甲基苄胺0.5g以及增韧剂7.5g,其中,增韧剂由质量比为1:1的腰果酚缩水甘油醚与纳米二氧化硅组成。
制备基体树脂:将非活性树脂卡德莱lite2020与四官能团缩水甘油胺类环氧树脂tt410置于烧杯中并混合均匀;
制备增韧剂:将腰果酚缩水甘油醚和纳米二氧化硅放入混合器中,进行预混,并搅拌均匀;
制备环氧树脂固化物:将基体树脂、增韧剂、固化剂和促进剂混合于烧杯中,并置于70℃恒温油浴锅内,采用搅拌桨搅拌10min,然后抽真空去气泡,然后在80℃/5h 120℃/3h 150℃/2h注入模具固化成型,即得到环氧树脂固化物,固化物性能参数见表1。
实施例2
准备原料:基体树脂40g,由卡德莱nx2026和三官能团的环氧树脂afg-90组成,其中,卡德莱nx2026的质量为三官能团的环氧树脂afg-90质量的5%;固化剂甲基六氢苯酐48g,促进剂三乙醇胺2g以及增韧剂10g,其中,增韧剂由质量比为3:7的腰果酚缩水甘油醚与纳米橡胶组成。
制备方法同实施例1。
实施例3
准备原料:基体树脂58g,由卡德莱nx2026和双酚a环氧树脂e-51组成,其中,卡德莱nx2026的质量为双酚a环氧树脂e-51质量的10%;固化剂甲基纳迪克酸酐30g,促进剂2-乙基-4-甲基咪唑2g以及增韧剂10g,其中,增韧剂由质量比为7:3的腰果酚缩水甘油醚与纳米碳酸钙组成。
制备方法同实施例1。
实施例4
准备原料:基体树脂50g,由卡德莱nx2026和脂肪类环氧树脂erl-4221组成,其中,卡德莱nx2026的质量为脂肪类环氧树脂erl-4221质量的8%;固化剂4,4-二氨基二苯砜39.9g,促进剂2-乙基-4-甲基咪唑0.1g以及增韧剂10g,其中,增韧剂由质量比为2:3的腰果酚缩水甘油醚与纳米碳酸钙组成。
制备方法同实施例1。
实施例5
准备原料:基体树脂50g,由卡德莱nx2026和脂环族类环氧树脂cer-170组成,其中,卡德莱nx2026的质量为脂环族类环氧树脂cer-170质量的8%;固化剂4,4-二氨基二苯砜39.9g,促进剂2-乙基-4-甲基咪唑0.1g以及增韧剂10g,其中,增韧剂由质量比为2:3的腰果酚缩水甘油醚与纳米碳酸钙组成。
制备方法同实施例1。
实施例6
准备原料:基体树脂50g,由卡德莱nx2026和双酚f环氧树脂epon-862组成,其中,卡德莱nx2026的质量为双酚f环氧树脂epon-862质量的8%;固化剂邻苯二甲酸酐39.9g,促进剂2-乙基-4-甲基咪唑0.1g以及增韧剂10g,其中,增韧剂由质量比为2:3的腰果酚缩水甘油醚与纳米碳酸钙组成。
制备方法同实施例1。
对比例1
非活性树脂为苯甲醇,其余同实施例1。
对比例2
活性稀释剂为丁基缩水甘油醚,其余同实施例1。
对比例3
活性稀释剂为苄基缩水甘油醚,其余同实施例1。
对比例4
增韧剂中腰果酚缩水甘油醚与纳米二氧化硅的质量比为1:9,其余同实施例1。
对比例5
基体树脂中卡德莱lite2020的质量为四官能团缩水甘油胺类环氧树脂质量的12%,其余同实施例1。
实验例
对上述实施例和对比例制备得到的环氧树脂固化物的拉伸强度、拉伸模量、断裂伸长率、介电强度和玻璃化转变温度进行测试,具体测试方法和结果如下。
拉伸强度、模量和断裂伸长率按照gb/t2567-2008标准进行;
介电强度(击穿电压)按照astm-d149标准进行;
玻璃化转变温度tg测试按照astm-3418标准进行。
表1
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
1.一种高韧性绝缘环氧树脂固化物,其特征在于,包括如下原料:
基体树脂、固化剂、增韧剂和促进剂,其中,所述基体树脂为环氧树脂与含有疏水脂肪链和芳香环的非活性树脂改性剂的混合物,所述增韧剂为活性稀释剂与纳米粒子的混合物,所述活性稀释剂与纳米粒子之间能够形成氢键。
2.根据权利要求1所述的高韧性绝缘环氧树脂固化物,其特征在于,所述非活性树脂改性剂为卡德莱lite2020和/或卡德莱nx2026。
3.根据权利要求1或2所述的高韧性绝缘环氧树脂固化物,其特征在于,所述基体树脂中非活性树脂改性剂的用量为环氧树脂质量的5-10%。
4.根据权利要求1或2所述的高韧性绝缘环氧树脂固化物,其特征在于,所述活性稀释剂为含有酚基或醇羟基的活性稀释剂。
5.根据权利要求4所述的高韧性绝缘环氧树脂固化物,其特征在于,所述活性稀释剂为腰果酚缩水甘油醚。
6.根据权利要求1或2所述的高韧性绝缘环氧树脂固化物,其特征在于,所述纳米粒子的表面带有羟基或羧基。
7.根据权利要求6所述的高韧性绝缘环氧树脂固化物,其特征在于,所述纳米粒子为纳米二氧化硅、纳米橡胶和纳米碳酸钙中的一种或几种。
8.根据权利要求1或2所述的高韧性绝缘环氧树脂固化物,其特征在于,所述增韧剂中活性稀释剂与纳米粒子的质量比为30-70:70-30。
9.根据权利要求1所述的高韧性绝缘环氧树脂固化物,其特征在于,包括如下重量百分比的原料:以原料总质量为100%计,基体树脂40-58%、固化剂30-48%、增韧剂5-10%和促进剂0.1-2%。
10.根据权利要求1、2、5、7或9中任一项所述的高韧性绝缘环氧树脂固化物,其特征在于,所述固化剂为酸酐类固化剂。
11.根据权利要求10所述的高韧性绝缘环氧树脂固化物,其特征在于,所述固化剂为甲基四氢苯酐、甲基六氢苯酐、甲基纳迪克酸酐、邻苯二甲酸酐和4,4-二氨基二苯砜中的一种或几种。
12.根据权利要求1、2、5、7或9中任一项所述的高韧性绝缘环氧树脂固化物,其特征在于,所述促进剂为胺类促进剂。
13.根据权利要求12所述的高韧性绝缘环氧树脂固化物,其特征在于,所述促进剂为二甲基苄胺、三乙醇胺和2-乙基-4-甲基咪唑中的一种或几种。
14.根据权利要求1、2、5、7或9中任一项所述的高韧性绝缘环氧树脂固化物,其特征在于,所述环氧树脂为四官能团缩水甘油胺类环氧树脂、三官能团的环氧树脂、双酚a环氧树脂、脂肪族类环氧树脂、脂环族类环氧树脂和双酚f环氧树脂中的一种或者几种。
15.权利要求1-14任一项所述的高韧性绝缘环氧树脂固化物的制备方法,其特征在于,包括以下步骤:
制备基体树脂:将非活性树脂改性剂与环氧树脂混合均匀;
制备增韧剂:将活性稀释剂与纳米粒子混合均匀;
制备环氧树脂固化物:将基体树脂、增韧剂、固化剂和促进剂混合均匀,加热。
16.权利要求1-14任一项所述的高韧性绝缘环氧树脂固化物或权利要求15所述的方法制备的高韧性绝缘环氧树脂固化物在电力行业的套管、支撑绝缘子、触头盒、绝缘筒和极柱中的应用。
技术总结