用于金属结构防腐蚀的中孔碳基纳米容器涂层的制作方法

专利2022-06-29  100


本发明涉及防腐蚀保护。在这种背景下,本发明涉及包含包埋的腐蚀抑制剂并且具有聚合物涂层的碳容器,涉及包含该类碳容器的涂层并且涉及它们的生产方法。



背景技术:

由于与气体、油、湿气、化学品等的相互作用,储存和运输设施频繁发生腐蚀,并因此需要维护并导致了巨大的经济损失。为了保护金属结构免于腐蚀,考虑了保护性聚合物涂层。这种保护性聚合物涂层具有屏障作用,然而,当在所述涂层中或涂层上形成允许腐蚀性物质直接进入金属表面的微孔或裂纹时,这种屏障作用被破坏。

还考虑了腐蚀抑制剂直接添加到涂层制剂中。然而,这种抑制剂经常与涂层制剂的其它组分化学相互作用,由此导致抑制剂失活和/或涂层快速降解。此外,可能会发生污染环境的抑制剂的持续浸出,并且抑制剂的广泛分布不能使抑制剂仅在受损区域按需释放。

在这种背景下,认为自修复性(自愈性,self-healing)涂层是有益替代,因为它们能够在破损之后重建聚合物基质的机械完整性,或者至少能够在所形成的缺陷处阻止腐蚀过程的发展。通常,将自修复性涂层分为:

i.导电聚合物(cp)涂层(例如,聚苯胺、聚吡咯等)或者具有反应性官能团的涂层(例如,壳聚糖);在涉及自修复性能的涂层基质中使用的聚合物。

ii.具有腐蚀抑制剂的微/纳米载体或容器的涂层。

已知包埋腐蚀抑制剂的纳米容器的涂层基质在自修复中发挥作用。如果涂层环境改变,则智能纳米容器可以快速响应并在金属表面上释放修补剂(healingagent)以终止腐蚀。

授权给sjong等人的标题为“self-healingcoatingsfromrecycledpolymerblends”的pct专利申请wo2014/099070描述了制备引入纳米容器的涂层的方法,其中所述纳米容器负载有防腐蚀抑制剂,其响应于ph变化而释放(第[0018]段,权利要求3)。该公开还确认了二氧化硅颗粒可以用于纳米容器基础/基底,其中通过带正电荷和带负电荷的电解质的交替,在其上构建了聚电解质壳(第[0021]段),并且在交替的聚电解质层内负载有防腐蚀物质,如苯并三唑(第[0021]段)。

sjong还公开了涂覆在二氧化硅颗粒上的电解质(以组成聚电解质层状壳)可以包括聚苯乙烯磺酸钠、聚二烯丙基二甲氯化铵、聚烯丙基胺盐酸盐等(第[0021]段)。纳米容器在合成后被引入聚合物涂层中(第[0028]段)。

us2011/0236596描述了腐蚀抑制涂层,其包括具有引入其中的腐蚀抑制剂负载的容器的底漆层(primerlayer),所述容器对电磁辐射响应而释放腐蚀抑制剂;以及当完整时会防止通过电磁辐射诱导的底漆层中所述容器的自发打开的无容器保护性表层,其中如果所述保护性表层含有使得所述容器能够直接暴露于电磁辐射的缺陷区,则所述涂层对电磁辐射响应而释放抑制剂。

cn103483897a涉及基于腐蚀抑制剂插层纳米钛酸盐载体的自修复涂层的制备方法。所述制备方法包括以下步骤:层状纳米钛酸盐的制备、腐蚀抑制剂插层的纳米载体的制备和自修复涂层的制备,其中所述层状纳米钛酸盐的制备包括将k2co3和tio2固体按一定摩尔比研磨的步骤;所述腐蚀抑制剂插层的纳米载体的制备包括以有机胺、咪唑类、丙烯基硫脲及其它含氮有机物为客体,以层状纳米钛酸盐为主体,在微波条件下于乙醇溶剂中通过插层反应制备腐蚀抑制剂插层的纳米载体的步骤;自修复涂层的制备包括最后将制备完成的功能性颗粒与溶胶-凝胶混合以制备功能性溶胶-凝胶膜以涂覆于待保护的金属表面上的步骤。

ep1832629a1描述了用于金属产品和结构的主动腐蚀保护的包含腐蚀抑制颜料的腐蚀抑制剂的纳米级储库(储罐,reservoirs)(纳米库(nanoreservoirs)),其中所述纳米库包含聚合物或聚电解质壳,其对特定引发因素敏感并且能够在所述引发因素作用之后释放所述抑制剂。还描述了包含所述颜料的具有自修复性的防腐蚀涂层,用于制备所述颜料的方法,具体地通过逐层沉积制备的方法,以及所述颜料的使用方法。

us2013/0145957a1涉及用于金属和聚合物产品和结构的主动腐蚀和/或防污保护的包封的腐蚀抑制剂和/或杀菌剂的储库,其中所述储库的平均尺寸为10-50000nm并且包含多孔表面/界面、多孔或空的内部和在刺激作用后将包封的抑制剂或杀菌剂释放到所述储库外部的刺激-敏感性塞(stoppers),所述刺激选自由外部电磁场、局部ph变化、离子强度和环境温度组成的组,其中所述刺激-敏感性塞通过包封的腐蚀抑制剂和/或杀菌剂或者包封的溶剂/分散剂与其它外部化合物之间的化学或物理相互作用产生并且防止在不存在刺激的情况下,包封的抑制剂或杀菌剂向所述储库外部释放。

印度专利申请in2012mu01539a研究了通过lbl法的超声辅助的纳米容器合成及其在防腐蚀涂层中的应用。还描述了纳米容器颗粒的合成、通过原位法的纳米容器聚酰胺复合材料的制备、环氧-聚酰胺涂层的制备、涂层在软钢基底上的施加、涂覆膜的腐蚀抑制性的评价。

wo2013/083293a1涉及生产涂覆的钢基底的方法,其包括以下步骤:(i)提供钢基底;(ii)制备第一涂层混合物,其包含具有容纳其中的纳米级腐蚀抑制剂的纳米容器;(iii)制备第二涂层混合物,其包含可固化有机组分;(iv)将所述第一涂层混合物与所述第二涂层混合物合并;(v)将合并的混合物施加于钢基底上;(vi)使合并的混合物固化以产生致密的涂层网状结构以用于钢基底的屏障和主动腐蚀保护。

us2003/0219384a1涉及用聚电解质壳涂覆的胶囊及其生产方法。

gr20110100152a描述了由环氧树脂和有机改性的硅酸盐组成的多功能涂层,其包括用于金属合金防腐蚀所合成的纳米容器。所述纳米容器负载有腐蚀抑制剂。通过特定引发因素来实现纳米容器中抑制剂的释放。包括了纳米容器和涂层的合成方法以及将所述涂层施加于金属合金的方法。

wo99/47253a1涉及通过用带相反电荷的纳米颗粒和聚电解质的交替层涂覆胶体颗粒并任选地除去胶体核,制备涂覆颗粒和中空壳的方法。

cn102784598a包括对聚电解质和腐蚀抑制剂在二氧化硅水溶胶上的lbl添加的描述,以获得用于金属板长效腐蚀防护的自修复纳米级复合溶胶。

l.mingzhu,w.tao,z.xiaoxue,f.xiaoli,t.jing,x.qiaoqiao,x.hairong,g.hu,h.jianping,corrosionscience(2014),87,297-305描述了紧凑、钼包埋的、有序、中孔、石墨结构的保护性碳膜的合成。

wang,tao;zhang,chuanxiang;sun,xin;guo,yunxia;guo,hu;tang,jing;xue,hairong;liu,mingzhu;zhang,xiaoxue;zhu,lei,journalofpowersources(2012),212,1-12描述了有序中孔含硼碳膜的合成以及它们在模拟质子交换膜燃料电池环境中的腐蚀行为。



技术实现要素:

本发明的目的是提供用于容纳腐蚀抑制剂的改善的容器。就腐蚀抑制剂从容器中的按需释放、成本效率、含有这种容器的涂层的自修复性质、含有这种容器的涂层的均一厚度和含有这种容器的涂层的低固化温度以改善涂覆期间的能量效率而言,这种容器应是特别有利的。

本发明的另一个目的是提供包含这种改善的容器的涂层,该容器含有腐蚀抑制剂。

本发明的目的还在于提供用于生产含有腐蚀抑制剂的这种改善的容器的方法。

为了达到一个或多个所提及的目的,本发明提供了包含包埋的有机腐蚀抑制剂并且具有有机聚合物涂层的中孔碳容器。优选地,该腐蚀抑制剂是唑衍生物,尤其是苯并三唑,而该有机聚合物涂层优选地由聚电解质、尤其是由聚(烯丙胺)盐酸盐制成。因此,在特别优选的实施方式中,该腐蚀抑制剂是苯并三唑并且该有机聚合物涂层由聚(烯丙胺)盐酸盐制成。

本发明还提供了包含底漆(底层,预涂层,primer)和如上文和此处所述的中孔碳容器的涂层组合物。该底漆优选地选自丙烯酸乙烯酯和聚乙烯醇缩丁醛,并且尤其是丙烯酸乙烯酯。为了实现本发明的某些优势,将该组合物,优选地以丙烯酸乙烯酯或聚乙烯醇缩丁醛,并且尤其是以丙烯酸乙烯酯作为底漆的组合物,即该涂层组合物涂覆在钢表面上。这种涂层组合物更优选地是自修复涂层组合物,其在本发明申请的意义上表示在该组合物中形成的裂纹“修复”,即其中所形成的裂纹随时间至少部分消失。

本发明还提供了用于生产包含包埋的有机腐蚀抑制剂并且具有有机聚合物涂层的中孔碳容器的方法,该方法包括处于给定顺序的下列步骤:

-通过超声处理将中孔碳分散在水中以提供中孔碳和水的混合物,

-对中孔碳真空脱气,

-向中孔碳和水的混合物中添加有机腐蚀抑制剂以提供中孔碳、水和有机腐蚀抑制剂的混合物,

-对中孔碳、水和有机腐蚀抑制剂的混合物真空脱气,

-通过离心除去过量的腐蚀抑制剂并用水清洗,

-干燥,

-添加有机聚合物涂层材料以形成有机聚合物涂层,

其中,该腐蚀抑制剂优选地是苯并三唑并且其中该有机聚合物涂层优选地由聚(烯丙胺)盐酸盐制成。

定义

在本申请的意义上,中孔表示如iupac所定义的微孔,参见,例如,rouquerol,j.;avnir,d.;fairbridge,c.w.;everett,d.h.;haynes,j.m.;pernicone,n.;ramsay,j.d.f.;sing,k.s.w.;unger,k.k.(1994)."recommendationsforthecharacterizationofporoussolids(technicalreport)".pureandappliedchemistry.66(8).doi:10.1351/pac199466081739,从而根据本发明所述的中孔碳含有直径为2至50nm的孔。

在本申请的意义上,碳容器表示如本发明技术领域中所理解的容器或储库,即含有或包封释放后可以充当有机腐蚀抑制剂的化合物的容器或储库。因此,将有机腐蚀抑制剂包埋或包含或容纳在中孔碳中。腐蚀抑制剂应理解为通常当加入液体或气体时,降低材料、特别是金属或合金的腐蚀速率的化合物,参见,例如,hubertelmar-manfredhorn,hartmutschlecker,helmutschindler"corrosion"ullmann'sencyclopediaofindustrialchemistry,wiley-vch:weinheim,2002.doi:10.1002/14356007.b01_08。

在本申请的意义上,有机聚合物涂层是由聚合物制成的涂层,该聚合物本身由一种或多种如化学中通常所理解的有机单体组成。将所有种类的有机聚合物考虑用于在本发明中使用并因此将所有种类的有机聚合物认为是本发明所述的有机聚合物涂层。有机聚合物涂层存在于其中包埋了有机腐蚀抑制剂的中孔碳容器的外表面上,由此包封两者,即中孔碳容器和有机腐蚀抑制剂。此外,该有机聚合物涂层可以防止腐蚀抑制剂从该纳米容器中不希望的释放。

附图说明

将参考附图描述本发明,其中:

图1显示了在不同ph的溶液中,苯并三唑从中孔碳/(bt)3/pah(纳米)容器中释放的特征。

图2显示了在0.35m氯化钠溶液中浸渍1天后,单独丙烯酸乙烯酯涂覆的基底的刮伤表面的数字图像。

图3显示了在0.35m氯化钠溶液中浸渍3天后,单独丙烯酸乙烯酯涂覆的基底的刮伤表面的数字图像。

图4显示了图3中用圆圈标记的单独丙烯酸乙烯酯涂覆的基底上的刮痕的腐蚀区域的光学图像。

图5显示了图3中用圆圈标记的单独丙烯酸乙烯酯涂覆的基底上的刮痕的腐蚀区域的sem图像。

图6显示了图3中用圆圈标记的单独丙烯酸乙烯酯涂覆的基底上的刮痕的腐蚀区域的edax。

图7显示了在0.35m氯化钠溶液中浸渍1天后,中孔碳/(bt)3/pah(纳米)容器涂层的刮伤表面的数字图像。

图8显示了在0.35m氯化钠溶液中浸渍3天后,中孔碳/(bt)3/pah(纳米)容器涂层的刮伤表面的数字图像。

图9显示了图8中用圆圈1标记的中孔碳/(bt)3/pah(纳米)容器涂层上的刮痕的腐蚀区域的光学图像。

图10显示了图8中用圆圈2标记的中孔碳/(bt)3/pah(纳米)容器涂层上的刮痕的非腐蚀区域的光学图像。

图11显示了图8中用圆圈1标记的中孔碳/(bt)3/pah(纳米)容器涂层上的刮痕的腐蚀区域的sem图像。

图12显示了图8中用圆圈1标记的中孔碳/(bt)3/pah(纳米)容器涂层上的刮痕的腐蚀区域的edax。

图13显示了图8中用圆圈2标记的中孔碳/(bt)3/pah(纳米)容器涂层上的刮痕的非腐蚀区域的sem图像。

图14显示了图8中用圆圈2标记的中孔碳/(bt)3/pah(纳米)容器涂层上的刮痕的非腐蚀区域的edax。

图15显示了在0.35m氯化钠溶液中浸渍不同时间的丙烯酸乙烯酯涂层的波特图。

图16显示了在0.35m氯化钠溶液中浸渍不同时间的中孔碳/(bt)3/pah(纳米)容器包埋的涂层的波特图。

图17显示了在0.35m氯化钠溶液中浸渍不同时间的中孔碳/(bt)3/pah(纳米)容器包埋的涂层和单独丙烯酸乙烯酯涂覆的基底的ocp图。

图18是根据本发明的中孔碳/(bt)3/pah(纳米)容器合成和在碳钢基底上施加的示意图。

具体实施方式

根据本发明人所提供的公开内容,自修复性防腐蚀涂层组合物的确认优势如下所示:

该聚合物涂层中的纳米容器比其中它们与溶胶-凝胶紧密结合的溶胶-凝胶涂层中的纳米容器具有更大的移动自由度。

由于溶胶-凝胶涂层所使用的原料(金属醇盐)的成本较高,因此该方法是经济不可行的。用于纳米容器-聚合物涂层的起始材料,如丙烯酸乙烯酯和聚乙烯醇缩丁醛(pvb)是最经济合算的。

纳米容器-聚合物涂层在30-70℃的固化足以获得均一厚度的涂层。溶胶-凝胶涂层总是需要高温退火以实现致密的微观结构。

高温烧结在溶胶-凝胶涂层中引入了裂纹和/或分层。纳米容器-聚合物涂层的固化改善了外层聚电解质壳上的官能团如胺、羟基等与聚合物基质之间的化学和物理相互作用,其提高了纳米容器的相容性并且降低了涂层损坏的可能性。

成功可商购的溶胶-凝胶涂层是薄膜。溶胶-凝胶涂层的厚膜(>1μm)总是具有裂纹的问题。厚度大于1μm的均一涂层可以容易地获自根据本发明的纳米容器-聚合物制剂。

在本发明中,描述了由中孔碳(mesoc)制成的所谓的纳米容器。在文献中尚未很好地报道中孔碳作为腐蚀抑制剂载体的使用。因此,在用于金属结构防腐蚀的包封有腐蚀抑制剂的中孔碳基纳米容器涂层的制造中实施了本发明工作。将腐蚀抑制剂直接加入到碳基质的孔中,然后用聚电解质层覆盖以防止不希望的释放。通过与丙烯酸乙烯酯底漆混合,将其应用于涂层制备。中孔碳纳米容器相对于二氧化硅纳米容器的优势在于该涂层会更疏水,并且它还可以保护uv辐射。

中孔碳/(bt)3/pah纳米容器的合成

通过超声处理,将中孔碳(0.5g)分散在15ml水中。然后,对其进行真空脱气以打开孔。在持续搅拌下,将溶于水中的苯并三唑(bt)(20mg/ml)加入至该混合物,然后再次真空脱气。在空气开始从孔中鼓泡时,调整真空。该脱气过程持续直至来自混合物的气泡完全消失。通过离心除去过量的苯并三唑,并用水清洗,然后在80℃干燥24h。将这些步骤重复三次以将苯并三唑完全填充中孔碳的孔。作为包封苯并三唑的中孔碳的保护层,加入10mg/ml的聚(烯丙胺)盐酸盐(pah),并且获得了中孔碳/(bt)3/pah的最终结构。

碳钢上的中孔碳纳米容器涂层

将最终的中孔碳/(bt)3/pah纳米容器混合物在烘箱中,在80℃干燥过夜。在磁力搅拌下,将0.5g中孔碳纳米容器缓慢加入至30g溶剂基丙烯酸乙烯酯中,然后通过浸涂涂覆至碳钢基底上。在80℃干燥2h,然后在60℃干燥12h后,所有侧边被快速固化性环氧化物密封。图12提供了二氧化硅纳米容器合成和在碳钢基底上涂覆的示意图。通过在0.35m氯化钠溶液中的浸渍测试进行了各涂层的腐蚀分析。为了研究该涂层的自修复性质,在氯化钠溶液中浸渍之前制备刮痕。使用显微技术以固定时间段监测腐蚀,并通过电化学技术定量测量腐蚀。在不同ph的溶液中,通过uv-可见-nir光谱仪监测纳米容器中苯并三唑的释放。

结果与讨论

图1显示了在不同ph的溶液中,通过uv-可见-nir光谱仪所测量的中孔碳/(bt)3/pah纳米容器中苯并三唑的释放。在uv光谱中,在ph3和10的溶液中,纳米容器显示出比ph7溶液中更高的吸光度,表明苯并三唑在酸性和碱性介质中的释放更多。这是由于苯并三唑溶于酸性和碱性溶液中的溶解度远好于中性介质中的溶解度所造成的。另外,uv光谱还确认了苯并三唑在碳纳米容器孔内的存在。

为了分析自修复性质,将丙烯酸乙烯酯和包埋纳米容器的丙烯酸乙烯酯两者的刮伤涂层浸没在0.35m氯化钠溶液中。在图2和3中,在单独丙烯酸乙烯酯涂覆的基底的刮痕上明显可见更严重的腐蚀产物。光学和sem图像也显示了该刮痕上的腐蚀产物,并且edax结果也确认了铁氧化物的形成(图4、5和6)。腐蚀随时间进行并且它慢慢地覆盖了所有刮痕。

图7和8提供了对包埋中孔碳/(bt)3/pah纳米容器的涂层所实施的浸渍测试。与单独丙烯酸乙烯酯涂覆的基底相比,纳米容器涂层显示刮痕上腐蚀产物较少(图7和8)。观察到在图8中用圆圈1标记的腐蚀区的光学和sem图像被沉淀物覆盖,并且edax显示在该区域中存在氮(图9、11和12)。这表明纳米容器中苯并三唑的释放降低了腐蚀程度,这根据以下结果是显而易见的:与丙烯酸乙烯酯涂层相比,纳米容器涂层刮痕上腐蚀产物的强度更低(图3和8)。图10和图13分别提供的刮痕的非腐蚀区域的光学和sem图像显示出清洁的表面。该区域的edax也显示了氮和氧原子以及铁的存在(图14)。这表明纳米容器中苯并三唑的释放通过金属表面上的铁和氧形成了防腐蚀的防护层。因此,这可以表明中孔碳纳米容器是苯并三唑的有效载体,该苯并三唑在金属结构的所需区域按需释放以用于防腐蚀。

通过测量在0.35m氯化钠溶液中浸渍不同时间的阻抗和开路电位(ocp)来定量包埋纳米容器的涂层的自修复性能。图15和16分别提供了使用三电极装置所测量的丙烯酸乙烯酯涂层和纳米容器涂层的电化学阻抗(eis)。在浸渍起始时间,纳米容器涂层的低频阻抗(logz)为5.5ωcm2,其略低于丙烯酸乙烯酯涂层(6.2ωcm2)。丙烯酸乙烯酯涂层的低频阻抗持续降低并在4d达到4.6ωcm2,而对于纳米容器涂层,低频阻抗在13d达到类似的值。纳米容器涂层的这种行为是由于中孔碳/(bt)3/pah纳米容器中释放的苯并三唑的腐蚀抑制性所引起的。

当对电池不施加电流或电势时所测量的与腐蚀电位有关的开路电位(ocp)显示在初始暴露期间纳米容器涂层降低的趋势,然后在50小时后开始升高(图17)。这种类型的ocp行为清楚地显示了该涂层的自修复性。同时,单独丙烯酸乙烯酯涂覆的基底的ocp在初始降低之后不升高,并且它在氯化钠溶液中进一步浸渍期间,继续保持在较低的值。浸渍测试和电化学分析两者得出以下结论:通过包封的腐蚀抑制剂的释放,中孔碳纳米容器在通过抑制金属表面上的腐蚀来提供保护中是有效的。


技术特征:

1.一种中孔碳容器,包含包埋的有机腐蚀抑制剂,并且具有有机聚合物涂层。

2.根据权利要求1所述的中孔碳容器,其中所述腐蚀抑制剂是唑衍生物,尤其是苯并三唑。

3.根据权利要求1或2所述的中孔碳容器,其中所述有机聚合物涂层由聚电解质制成,尤其是由聚(烯丙胺)盐酸盐制成。

4.根据权利要求1所述的中孔碳容器,其中所述腐蚀抑制剂是苯并三唑,并且其中所述有机聚合物涂层由聚(烯丙胺)盐酸盐制成。

5.一种涂层组合物,包含底漆和根据权利要求1至4中任一项所述的中孔碳容器。

6.根据权利要求5所述的涂层组合物,其中所述底漆选自丙烯酸乙烯酯和聚乙烯醇缩丁醛,并且尤其是丙烯酸乙烯酯。

7.根据权利要求5或6所述的涂层组合物,其中所述涂层组合物涂覆在钢表面上。

8.根据权利要求5至7中任一项所述的涂层组合物,其中所述涂层组合物是自修复的,即其中所形成的裂纹随时间至少部分消失。

9.一种用于生产中孔碳容器的方法,所述中孔碳容器包含包埋的有机腐蚀抑制剂,并且具有有机聚合物涂层,所述方法包括处于给定顺序的下列步骤:

-通过超声处理将中孔碳分散在水中以提供中孔碳和水的混合物,

-对中孔碳真空脱气,

-向所述中孔碳和水的混合物中添加有机腐蚀抑制剂以提供中孔碳、水和有机腐蚀抑制剂的混合物,

-对所述中孔碳、水和有机腐蚀抑制剂的混合物真空脱气,

-通过离心除去过量的腐蚀抑制剂并用水清洗,

-干燥,

-添加有机聚合物涂层材料以形成有机聚合物涂层。

10.根据权利要求9所述的方法,其中所述腐蚀抑制剂是苯并三唑,并且其中所述有机聚合物涂层由聚(烯丙胺)盐酸盐制成。

技术总结
描述了一种中孔碳容器,其包含包埋的有机腐蚀抑制剂,并且具有有机聚合物涂层。还描述了包含这种容器的涂层和生产这种容器的方法。

技术研发人员:维卡斯·米塔尔;吉沙·伊丽莎白·卢卡尚
受保护的技术使用者:哈里发科学技术大学
技术研发日:2017.08.17
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-49307.html

最新回复(0)