碳纤维及其制造方法与流程

专利2022-06-29  67

本发明涉及碳纤维及其制造方法。



背景技术:

非专利文献1中公开了一种通过将碳纤维浸渍至富勒烯(fullerene)c60的甲苯溶液(toluenesolution)后,再进行干燥,由此在表面附着有富勒烯c60的碳纤维。

专利文献1中公开了一种通过将其中分散有富勒烯类的异丙醇(isopropylalcohol)分散液藉由毛刷或喷雾器涂敷至碳膜后,再进行干燥,由此对碳膜表面进行富勒烯处理的方法。

[现有技术文献]

[专利文献]

[专利文献1](日本)特开2010-137155号公报

[非专利文献]

[非专利文献1]journalofmaterialsscienceandengineeringa,2013,3(11),725-731.‘carbonfibermodifiedwithcarbonnanotubesandfullerenesforfibrouscompositeapplication



技术实现要素:

[发明要解决的课题]

然而,非专利文献1的方法中,溶剂从碳纤维蒸发时,藉由凝聚而析出的富勒烯仅是不均匀地附着在碳纤维表面上,碳纤维上附着的富勒烯的量等于溶解在附着于碳纤维的溶剂中的富勒烯的量。此外,所析出的富勒烯和碳纤维之间的相互作用也较小,故将该碳纤维作为强化(增强)剂添加至树脂时,存在难以充分发挥提高碳纤维和树脂之间的界面剪切强度的效果的问题。另外,专利文献1的方法中,富勒烯不溶解于溶剂,并进行了凝聚,故富勒烯也仅是不均匀地附着在碳纤维表面上而已,碳纤维和树脂之间的界面剪切强度的提高效果不够好。

本发明是鉴于上述问题而提出的,其目的在于提供一种富勒烯吸附在了表面上的碳纤维及其制造方法。

[用于解决课题的手段]

本发明的发明人发现了,在特定的条件下,富勒烯c70会吸附至碳纤维。此外还发现了,与仅使富勒烯附着于表面的碳纤维相比,这样的碳纤维和树脂之间的界面剪切强度较高。

即,为了解决上述问题,本发明提供如下技术方案。

[1]一种吸附有富勒烯c70的碳纤维。

[2]前项[1]所述的碳纤维中,每1000质量份的所述碳纤维上吸附有0.001~1质量份的所述富勒烯c70。

[3]一种吸附有富勒烯c70的碳纤维的制造方法,依次执行:

使富勒烯c70溶解于有机溶剂以制备富勒烯溶液的步骤(i);

将原料碳纤维浸渍在所述富勒烯溶液中的步骤(ii);及

从所述富勒烯溶液中取出所述碳纤维并对其进行干燥的步骤(iii)。

[4]前项[3]所述的碳纤维的制造方法中,所述溶液中的富勒烯c70的浓度为1~1000质量ppm。

[5]前项[3]或[4]所述的碳纤维的制造方法中,所述有机溶剂为芳香烃(aromatichydrocarbon)或卤代烷(alkylhalide)。

[6]前项[3]~[5]中的任一项所述的碳纤维的制造方法中,所述原料碳纤维为聚丙烯腈基碳纤维(polyacrylonitrile-basedcarbonfiber)。

[7]前项[3]~[6]中的任一项所述的碳纤维的制造方法中,所述步骤(ii)中原料碳纤维的浸渍时间为5秒~24小时。

[8]前项[3]~[7]中的任一项所述的碳纤维的制造方法中,所述步骤(ii)中浸渍时的所述溶液的温度为10℃~80℃。

[发明效果]

根据本发明,能够获得一种与树脂之间的界面剪切强度较高的碳纤维。

具体实施方式

下面通过列举实施方式来进行详细说明,但本发明并不限定于该实施方式,在不改变其主旨的范围内,还可对其进行适当的变更和变形等。

<碳纤维>

本实施方式的碳纤维是一种吸附有富勒烯c70的碳纤维,可通过依次执行如下步骤而获得,即:使富勒烯c70溶解于有机溶剂以制备富勒烯溶液的步骤(i);将原料碳纤维(富勒烯c70没有进行吸附的碳纤维)浸渍在所述富勒烯溶液中的步骤(ii);及从所述富勒烯溶液中取出所述碳纤维,并对所取出的所述碳纤维进行干燥的步骤(iii)。

这里,执行所述步骤(ii)时,与原料碳纤维浸渍前相比,浸渍后所述溶液中的富勒烯c70的浓度减少了。这也会导致溶液中的富勒烯c70吸附在碳纤维上,从而使碳纤维表面上的富勒烯c70的浓度上升。在仅发生了非专利文献1或专利文献1那样的附着的情况下,溶液中的富勒烯c70的浓度不会产生变化。因此,当溶液中的富勒烯c70的浓度减少时,可判断为富勒烯c70已经吸附至原料碳纤维,当没有观察到所述浓度的减少时,可判断为没有进行吸附。需要说明的是,就所述溶液中的富勒烯c70的浓度而言,可采用后述的实施例中所述的“吸附至碳纤维的富勒烯吸附量的测定方法”进行测定。

这里,每1000质量份的碳纤维的富勒烯c70的吸附量(质量份)可由如下公式(1)计算。

吸附量=([吸附前的富勒烯溶液中的富勒烯c70的浓度(质量ppm)]-[吸附后的富勒烯溶液中的富勒烯c70的浓度(质量ppm)])×[富勒烯溶液的质量(g)]/[碳纤维的质量(mg)]···(1)

就每1000质量份的所述碳纤维上的所述富勒烯c70的吸附量而言,优选为0.001~1质量份,较佳为0.001~0.1质量份,更佳为0.002~0.03质量份。如果吸附量位于该范围内,则容易获得可使与树脂之间的界面剪切强度充分提高的效果。

接着,对吸附有富勒烯c70的碳纤维的制造方法进行说明。

<步骤(i)>

步骤(i)中,使富勒烯c70溶解于有机溶剂,由此制备了富勒烯溶液。步骤(i)的溶液中的所述富勒烯c70的浓度优选为1~1000质量ppm,较佳为10~500质量ppm。如果位于该范围的下限以上,则容易使富勒烯c70进行吸附。如果位于该范围的上限以下,则容易进行溶液的调制,并且也较为经济。

作为步骤(i)的有机溶剂,其为富勒烯c70可进行溶解的溶剂,优选为芳香烃或卤代烷,较佳为从苯类(benzene)、甲苯(toluene)、二甲苯(xylene)、三甲苯(trimethylbenzene)、二氯甲烷(dichloromethane)、氯仿(chloroform)、及四氯化碳(carbontetrachloride)中选出的至少一种溶剂,更佳为甲苯或二氯甲烷。通过使用这样的溶剂,可容易使富勒烯c70进行吸附。

<步骤(ii)>

步骤(ii)中,将原料碳纤维浸渍在所述富勒烯溶液中。就步骤(ii)中使用的原料碳纤维而言,可使用沥青基碳纤维(pitch-basedcarbonfiber)和聚丙烯腈基碳纤维中的任一种,但聚丙烯腈基碳纤维为优选。这样的原料碳纤维一般用于碳纤维强化塑料的强化剂等,与树脂之间的界面剪切强度较高。

步骤(ii)中碳纤维的浸渍时间优选为5秒~24小时,较佳为5分钟~12小时,更佳为30分钟~2小时。如果位于该范围的下限以上,则容易使富勒烯c70进行吸附。尽管也可以进行更长时间的浸渍,但吸附量难以再继续增加,故如果位于该范围的上限以下,则处理时间较短,并且也较为经济。

可以不对步骤(ii)中的浸渍时的所述富勒烯溶液进行特别的冷却和/或加热,但富勒烯溶液的温度优选为10℃~80℃,较佳为15℃~60℃,更佳为20℃~50℃。如果位于该范围内,则容易使富勒烯c70进行吸附,冷却和/或加热的能量较小,并且也较为经济。

<步骤(iii)>

步骤(iii)中,从步骤(ii)的富勒烯溶液中取出所述碳纤维,并对所取出的所述碳纤维进行干燥。对取出碳纤维的方法并无特别限定,但从容易使碳纤维和富勒烯溶液分离的观点来看,优选为过滤(filtration)。干燥可采用加热、减压、风干等方式,只要能除去碳纤维表面上残留的步骤(ii)的溶剂即可,对其并无特别限定。

这里,将从所述干躁时残存在碳纤维表面上的溶剂中析出并残留在碳纤维上的富勒烯称为“附着在碳纤维上的富勒烯”,其并不是吸附于上述碳纤维的富勒烯。

就附着在碳纤维上的富勒烯而言,并没有吸附在碳纤维上的富勒烯有效,故在所述干躁之前,可藉由有机溶剂对碳纤维进行洗涤以对富勒烯进行回收,由此可使附着在碳纤维上的富勒烯变少。就洗涤时所使用的有机溶剂而言,优选为步骤(i)的富勒烯溶液中所使用的溶剂。此情况下,就作为洗涤液而被回收的富勒烯的溶液而言,通过浓缩或对富勒烯c70进行添加和溶解等来调整富勒烯c70的浓度,也可作为步骤(i)的富勒烯溶液而被再利用。

<用途>

就本实施方式的碳纤维而言,与树脂之间的界面剪切强度较高,故优选用于碳纤维强化塑料。

[实施例]

下面基于实施例和比较例对本发明进行更具体的说明,但本发明并不限定于以下的实施例。

<实施例1~3和比较例1~2>

使用表1所示的溶剂和富勒烯,并使富勒烯以10质量ppm的浓度溶解于所述溶剂,由此获得溶液,然后,在室温(约20℃)下,将100mg预先藉由二氯甲烷对收敛剂进行了除去的碳纤维(mitsubishirayon公司制;碳纤维towpyrofiltmtr50s12l)浸渍至10g所获得的溶液中,浸渍时间为表1所示的时间。之后,藉由过滤使溶液和碳纤维分离,并对溶液进行了富勒烯吸附量的测定。接着,使碳纤维风干后,再对其进行了界面剪切强度试验。

<吸附至碳纤维的富勒烯吸附量的测定方法>

针对各实施例和比较例,采用预先藉由富勒烯的甲苯溶液而制作了检量线的高速液体色谱法(装置:agilenttechnology公司制高速液体色谱仪1200series;column:ymc公司制columnymc-packods-am;展开溶剂(体积比):甲苯/甲醇=51/49;流速:1.2ml/min;检测方法:308nm紫外线吸收),对碳纤维浸渍前后的所述富勒烯溶液中的c60和c70的浓度进行了测定,并根据上述公式(1)计算出了吸附至碳纤维的富勒烯的吸附量。

<界面剪切强度试验方法>

就各实施例和比较例的界面剪切强度而言,藉由基于东荣产业株式会社制复合材料界面特性评价装置(hm410型号)的微滴(microdroplet)试验进行了评价。具体而言,将各实施例和比较例中所获得的碳纤维作为试料,由此对藉由“吸附至碳纤维的富勒烯吸附实验”而获得的碳纤维实施了微滴试验(树脂:victrex公司制peek450g;温度:室温;气氛:大气;拉拔速度:0.12mm/min)。之后,针对各试料进行了5次界面剪切强度的测定,并采用了平均值。

[表1]

表1中,

富勒烯c70:frontiercarbon公司制;nanom(注册商标)orangesu

富勒烯c60:frontiercarbon公司制;nanom(注册商标)purplesuh

本申请主张基于2017年10月27日申请的日本国专利申请第2017-208032号的优选权,并将该申请的内容全部援引于此。


技术特征:

1.一种吸附有富勒烯c70的碳纤维。

2.如权利要求1所述的碳纤维,其中,

每1000质量份的所述碳纤维上吸附有0.001~1质量份的所述富勒烯c70。

3.一种吸附有富勒烯c70的碳纤维的制造方法,依次执行:

使富勒烯c70溶解于有机溶剂以制备富勒烯溶液的步骤(i);

将原料碳纤维浸渍在所述富勒烯溶液中的步骤(ii);及

从所述富勒烯溶液中取出所述碳纤维,并对所取出的所述碳纤维进行干躁的步骤(iii)。

4.如权利要求3所述的碳纤维的制造方法,其中,

所述溶液中的所述富勒烯c70的浓度为1~1000质量ppm。

5.如权利要求3或4所述的碳纤维的制造方法,其中,

所述有机溶剂为芳香烃或卤代烷。

6.如权利要求3~5中的任一项所述的碳纤维的制造方法,其中,所述原料碳纤维为聚丙烯腈基碳纤维。

7.如权利要求3~6中的任一项所述的碳纤维的制造方法,其中,所述步骤(ii)中原料碳纤维的浸渍时间为5秒~24小时。

8.如权利要求3~7中的任一项所述的碳纤维的制造方法,其中,所述步骤(ii)中浸渍时的所述溶液的温度为10℃~80℃。

技术总结
依次执行使富勒烯C70溶解于有机溶剂以制备富勒烯溶液的步骤(I)、将原料碳纤维浸渍在所述富勒烯溶液中的步骤(II)、及从所述富勒烯溶液中取出所述碳纤维并对所取出的所述碳纤维进行乾燥的步骤(III),据此获得吸附有富勒烯C70的碳纤维。

技术研发人员:五十岚威史;武居共之;高宇;栗谷真澄
受保护的技术使用者:昭和电工株式会社
技术研发日:2018.10.17
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-48936.html

最新回复(0)