一种基于图像处理的液滴接触角及尺寸的测量方法与流程

专利2022-06-29  60


本发明涉及一种基于图像处理的液滴接触角及尺寸的测量方法,属于图像处理领域。



背景技术:

图像处理是利用计算机对图像进行分析,以达到所需结果的技术。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术的一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。利用图像处理技术将图像转化为数字信息传递给人们无法用视觉感知的数字世界,结果反应的更加的直接。

传统的液滴接触角检测方法包括切线法、圆法、椭圆法以及laplace-young法等,但传统的检测方法有很多的局限性和不稳定性。已有的切线法需手工画切线,误差较大;圆法、椭圆法以及laplace-young法对于测量的接触角度的大小有一定的限制,局限性较大。并且传统的液滴接触角测量方法有共同的缺点就是测量效率低,不能进行批量处理,无法计算液滴尺寸,并且对于研究液滴挥发过程的一系列状态的多张液滴图片的测量来说,利用传统方法处理几百张液滴图像接触角费时费力。



技术实现要素:

本发明要解决的技术问题是:传统液滴接触角测量方法具有局限性,且误差大、效率低。

为了解决上述技术问题,本发明的技术方案是提供了一种基于图像处理的液滴接触角及尺寸的测量方法,其特征在于,包括以下步骤:

步骤1、对液滴挥发过程每隔ns拍摄的带有工件接面的液滴图片进行存储;

步骤2、对存储的所有液滴图片进行批量处理,利用每张液滴图片测量计算得到相对应的接触角及水滴尺寸,对于任一液滴图片,其处理过程包括以下步骤:

步骤201、对待处理的液滴图片进行中值滤波处理,去除局部高亮噪点;

步骤202、对经过步骤201处理的液滴图片采用高斯滤波处理,让灰度值更加的集中化以及清晰液滴与工件接触处的灰度浑浊区域;

步骤203、对经过步骤202处理的液滴图像进行轮廓提取;

步骤204、对步骤203获得的液滴轮廓图像进行二值化,分割图像;

步骤205、利用步骤204得到的轮廓提取后的图像定位工件基准线位置;

步骤206、对图像在工件基准线以上的区域进行基于像素坐标及灰度值的搜索,搜索定位液滴最高点并标记,以及搜索定位像素坐标横向跨度最大的液滴轮廓的两坐标点并标记;

步骤207、利用液滴轮廓最高点以及横向跨度最大的两坐标点定位液滴的区域进行自动框选;

步骤208、对步骤207框选得到的区域进行处理,去除中间的干扰小圆;

步骤209、利用步骤206标记的液滴最高点以及横向跨度最大的两坐标点将液滴划分为左下区域和右下区域,搜索出液滴两接触点并标记;

步骤210、利用206标记的液滴最高点以及横向跨度最大的两坐标点以及步骤209标记的液滴两接触点进行接触角测量以及水滴尺寸计算;

步骤3、将获得的所有液滴接触角及水滴尺寸用文本文档输出。

优选地,步骤1包括如下步骤:

步骤101、液滴滴落于水平接触面上;

步骤102、水平方向侧面拍摄液滴与水平接触面的液滴图像;

步骤103、接触角测量仪设定图像每ns保存一张液滴状态图像。

优选地,步骤207包括如下步骤:

步骤2071、像素灰度搜素确定液滴最高点,液滴最高点坐标为top(i0,j0);

步骤2072、像素灰度搜素确定横向跨度最大的两坐标点,两坐标点为左端点及右端点,左端点坐标为left(i1,j1)、右端点坐标为right(i3,j3);

步骤2073、利用液滴最高点坐标top(i0,j0)、左端点坐标left(i1,j1)及右端点坐标right(i3,j3)定位框选液滴。

优选地,步骤202包括以下步骤:

步骤2021、设定高斯内核大小;

步骤2022、高斯公式计算,高斯模糊就是将图像i和一个高斯内核gσ进行卷积操作:

iσ=i*gσ

式中,*表示卷积操作;gσ表示标准差为σ的二维高斯核,定义为:式中,(x,y)表示高斯中间点坐标;iσ表示高斯滤波之后的图像。

优选地,步骤209中,利用搜索左下区域及右下区域亮光点对应的图像像素列数值最大处,得到所述液滴两接触点,其中:

利用搜索左下区域亮光点对应的图像像素列数值最大处为左底端接触点,左底端接触点的坐标为lpoint(i4,j4);

利用搜索右下区域亮光点对应的图像像素列数值最大处为右底端接触点,右底端接触点的坐标为rpoint(i5,j5)。

优选地,步骤210中,液滴按照球体处理,通过相机标定已知比例系数k,则接触角测量以及水滴尺寸计算采用如下公式:

接触线长度l,

接触角θ,式中,d表示液滴像素直径;

液滴高度h,

液滴体积v,

本发明提供了一种检测应用范围广、误差小且效率高的基于图像处理的液滴接触角和尺寸的测量方法。本发明提供的液滴接触角以及尺寸的测量方法,相较于传统的接触角测量方法自动化程度高、效率高、精度高。对挥发过程的液滴图片批量处理并且可以文本输出,方便高效。并且为了对液滴挥发过程有更进一步的了解,本文方法还可以对液滴进行尺寸检测,为学术研究提供了更多可参考的参数。

附图说明

图1是本发明的多张液滴挥发过程图像;

图2是本发明的单张液滴处理实例图像;

图3是本发明的液滴轮廓提取效果图像;

图4是本发明的液滴关键点定位以及液滴自动框选效果图像;

图5是本发明的去除液滴中间干扰小圆的效果图像;

图6是本发明的液滴底端接触点区域划分示意图;

图7是本发明的单张液滴处理结束效果图像;

图8是本发明的多张液滴批量处理后的效果图像。

具体实施方式

下面结合附图,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

本发明提供了一种基于图像处理的液滴表面接触角以及尺寸的测量方法,包括如下步骤:

步骤1:采集液滴图如图1所示,是观测液滴挥发过程的拍摄的一系列液滴接触工件的挥发过程图像,观测液滴挥发一组实验大概有600张实验图样,将图样进行保存待检测;

步骤2:图像处理,以检测如图2所示的单张液滴为例介绍本发明的处理方法:

步骤201:中值滤波处理,中值滤波是一种非线性平滑滤波技术,在一定条件下可以克服线性滤波带来的图像细节的模糊问题,特别是针对被椒盐噪声污染的图像,由于光的原因采用可以消除局部高亮点。本发明采用的中值滤波核设为7取得较好的去噪效果;

步骤202:高斯滤波处理,高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。高斯模糊就是将图像i和一个高斯内核gσ进行卷积操作:

iσ=i*gσ

式中,*表示卷积操作;gσ表示标准差为σ的二维高斯核,定义为:式中,(x,y)表示高斯中间点坐标;iσ表示高斯滤波后的图像。

步骤203:图像轮廓提取,首先利用opencv里canny方法对图像进行边缘检测,再利用提取目标轮廓的函数是findcontours,最后利用drawcontours绘制出液滴轮廓线如图3所示。

步骤204:将轮廓图像二值化;

步骤205:工件基准线定位,从轮廓提取后的液滴图像可以看出,工件的基准线贯穿真个图像,以这个特点可以利用像素灰度值搜索定位出工件基准线所处在图像里对应的位置,就是基准线所对应的像素行数i,为后面的特征点寻找做准备;

步骤206:特征点定位,在工件基准线所对应的像素行数i以上进行搜索,利用像素搜素加灰度值判断可以找到水滴的最高点top(i0,j0),利用搜索横向灰度跨度最大的两点左端点left(i1,j1)、右端点right(i3,j3),左右端点跨度作为液滴像素直径d;

步骤207:框选待处理液滴区域,利用步骤205得到的特征点及直径d,可以定位框选出液滴的待处理区域,如图4所示;

步骤208:去除中间干扰圆,由于光源影响会出现中间干扰的小圆,处理矩形框内的液滴图像,根据像素每行开始点和结束点,将除此以外的其他干扰点清除,得到的标准液滴轮廓,如图5所示;

步骤209:定位底端接触点,如图6所示的划分示意图,划分左下区域和右下区域,定位方法如下:

左底端接触点,利用搜索左下区域亮光点对应的图像像素列数值最大处即为左底端接触点lpoint(i4,j4);

右底端接触点,利用搜索右下区域亮光点对应的图像像素列数值最小处即为右底端接触点rpoint(i5,j5);

步骤210:通过以上的搜素定位可以确定5个关键参考点如图7所示;

步骤211:液滴体积小可以按照球体处理,通过相机标定已知比例系数k,接触角以及尺寸计算如下:

接触线长度l,

接触角θ,式中,d表示液滴像素直径;

液滴高度h,

液滴体积v,

以上步骤完成对单张液滴图像处理,本发明的方法编写了运行程序,可以对文件夹下的所有液滴图像批量自动处理,600张液滴挥发过程图像接触角及尺寸测量1分钟就可以测量完成并且数据可以以文本文档输出,处理后的多张液滴测量效果图如图8所示。

通过以上步骤就可以对液滴接触角以及尺寸进行批量处理,极大的提高了液滴接触角及尺寸检测的效率和准确率。


技术特征:

1.一种基于图像处理的液滴接触角及尺寸的测量方法,其特征在于,包括以下步骤:

步骤1、对液滴挥发过程每隔ns拍摄的带有工件接面的液滴图片进行存储;

步骤2、对存储的所有液滴图片进行批量处理,利用每张液滴图片测量计算得到相对应的接触角及水滴尺寸,对于任一液滴图片,其处理过程包括以下步骤:

步骤201、对待处理的液滴图片进行中值滤波处理,去除局部高亮噪点;

步骤202、对经过步骤201处理的液滴图片采用高斯滤波处理,让灰度值更加的集中化以及清晰液滴与工件接触处的灰度浑浊区域;

步骤203、对经过步骤202处理的液滴图像进行轮廓提取;

步骤204、对步骤203获得的液滴轮廓图像进行二值化,分割图像;

步骤205、利用步骤204得到的轮廓提取后的图像定位工件基准线位置;

步骤206、对图像在工件基准线以上的区域进行基于像素坐标及灰度值的搜索,搜索定位液滴最高点并标记,以及搜索定位像素坐标横向跨度最大的液滴轮廓的两坐标点并标记;

步骤207、利用液滴轮廓最高点以及横向跨度最大的两坐标点定位液滴的区域进行自动框选;

步骤208、对步骤207框选得到的区域进行处理,去除中间的干扰小圆;

步骤209、利用步骤206标记的液滴最高点以及横向跨度最大的两坐标点将液滴划分为左下区域和右下区域,搜索出液滴两接触点并标记;

步骤210、利用206标记的液滴最高点以及横向跨度最大的两坐标点以及步骤209标记的液滴两接触点进行接触角测量以及水滴尺寸计算;

步骤3、将获得的所有液滴接触角及水滴尺寸用文本文档输出。

2.如权利要求1所述的一种基于图像处理的液滴接触角及尺寸的测量方法,其特征在于,步骤1包括如下步骤:

步骤101、液滴滴落于水平接触面上;

步骤102、水平方向侧面拍摄液滴与水平接触面的液滴图像;

步骤103、接触角测量仪设定图像每ns保存一张液滴状态图像。

3.如权利要求1所述的一种基于图像处理的液滴接触角及尺寸的测量方法,其特征在于,步骤207包括如下步骤:

步骤2071、像素灰度搜素确定液滴最高点,液滴最高点坐标为top(i0,j0);

步骤2072、像素灰度搜素确定横向跨度最大的两坐标点,两坐标点为左端点及右端点,左端点坐标为left(i1,j1)、右端点坐标为right(i3,j3),左端点与右端点之间的跨度作为液滴像素直径d;

步骤2073、利用液滴最高点坐标top(i0,j0)、左端点坐标left(i1,j1)及右端点坐标right(i3,j3)定位框选液滴。

4.如权利要求1所述的一种基于图像处理的液滴接触角及尺寸的测量方法,其特征在于,步骤202包括以下步骤:

步骤2021、设定高斯内核大小;

步骤2022、高斯公式计算,高斯模糊就是将图像i和一个高斯内核gσ进行卷积操作:

iσ=i*gσ

式中,*表示卷积操作;gσ表示标准差为σ的二维高斯核,定义为:式中,(x,y)表示高斯中间点坐标;iσ表示高斯滤波后的图像。

5.如权利要求1所述的一种基于图像处理的液滴接触角及尺寸的测量方法,其特征在于,步骤209中,利用搜索左下区域及右下区域亮光点对应的图像像素列数值最大处,得到所述液滴两接触点,其中:

利用搜索左下区域亮光点对应的图像像素列数值最大处为左底端接触点,左底端接触点的坐标为lpoint(i4,j4);

利用搜索右下区域亮光点对应的图像像素列数值最大处为右底端接触点,右底端接触点的坐标为rpoint(i5,j5)。

6.如权利要求5所述的一种基于图像处理的液滴接触角及尺寸的测量方法,其特征在于,步骤210中,液滴按照球体处理,通过相机标定已知比例系数k,则接触角测量以及水滴尺寸计算采用如下公式:

接触线长度l,

接触角θ,式中,d表示液滴像素直径;

液滴高度h,

液滴体积v,

技术总结
本发明公开了一种基于图像处理的液滴接触角及尺寸的测量方法。其特征在于,处理步骤如下:读取接触角测量仪采集的液滴实验接触图片,利用中值滤波和高斯滤波处理图片,并利用图像轮廓提取算法提取图像轮廓;利用处理后的轮廓图像定位液滴接触的工件位置,并利用像素灰度搜索定位液滴最高点位置及横向跨度最大的两点,然后框选出待处理的液滴区域;最后对框选区域进行处理,首先去除中间干扰小圆,再利用所定位出的关键点划分左下和右下区域,最后定位出最低接触工件的液滴两接触点。该方法相比传统方法准确度和稳定性更高,并且实现批量处理,单张图片处理时间在0.1s以内,极大的提高了测量效率。

技术研发人员:胡俊;郭纯方;咸凯强;张美菊
受保护的技术使用者:东华大学
技术研发日:2020.01.09
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-48850.html

最新回复(0)