本发明涉及制冷循环装置,特别涉及具备多个膨胀阀的制冷循环装置。
背景技术:
以往提出了以下制冷循环装置:使用全球变暖潜能值(gwp:globalwarmingpotential)低的制冷剂并能抑制效率降低,而且也能减小连接配管的配管直径(例如参照日本特开2013-200090号公报)
在先技术文献
专利文献
专利文献1:日本特开2013-200090号公报
技术实现要素:
发明所要解决的课题
如日本特开2013-200090号公报所示那样,若减小配管直径,则会因容积降低而能实现由制冷剂量削减、铜使用量降低而带来的成本降低,但相反配管直径对压力损失的影响会变大,产生了制冷循环装置的能力变差及大幅地限定了运转范围这样的课题。另外,在像组合式空调等已经设置有设备或配管的场合,在配管直径相同时可再利用已设的配管,但在减小配管直径时则需要新替换配管,所以存在反而与作业负荷的量相应地导致成本增加这样的课题。
另外,即便是具有同等能力的制冷循环装置,也存在有在将室内机与室外机连接的配管的长度变长的场合下必需的制冷剂量的增加量大这样的课题。
本发明是为了解决上述课题而做出的,其目的在于提供即便在配管长的场合也能削减必需的制冷剂量且能实现最佳运转的制冷循环装置。
用于解决课题的方案
本发明所涉及的制冷循环装置具备:室外机,该室外机包括压缩机、第1热交换器和第1膨胀阀;室内机,该室内机包括第2膨胀阀和第2热交换器;以及第1配管以及第2配管,该第1配管以及第2配管连接在室外机与室内机之间。在制冷运转中,从压缩机排出的制冷剂依次流经第1热交换器、第1膨胀阀、第1配管、第2膨胀阀、第2热交换器、第2配管而返回压缩机,在制冷运转中,第1膨胀阀使液相制冷剂变化成二相制冷剂并将该二相制冷剂送往第1配管。
发明的效果
根据本发明,由于将连接在室外机与室内机之间的第1配管的制冷剂设成为二相而非液相,所以能够削减在配管长的场合所必需的制冷剂量。
附图说明
图1是示出实施方式1所涉及的制冷循环装置200的构成以及制冷剂的流动的图。
图2是用于对配管的长度和必需的制冷剂量的关系进行说明的图。
图3是示出实施方式1中的制冷时以及制热时的各膨胀阀的控制的图。
图4是示出参数ε的设定值的容许范围的图。
图5是示出配管为短尺寸的场合的制冷运转时的p-h线图。
图6是示出配管为长尺寸的场合的制冷运转时的p-h线图。
图7是示出配管为短尺寸的场合的制热运转时的p-h线图。
图8是示出配管为长尺寸的场合的制热运转时的p-h线图。
图9是示出判别运转模式的处理的流程图。
图10是示出实施方式1的制冷运转时的处理的流程图。
图11是示出实施方式1的制热运转时的处理的流程图。
图12是示出实施方式2的制冷循环装置的构成的图。
图13是膨胀阀的第1例的特性线图。
图14是膨胀阀的第2例的特性线图。
图15是实施方式3的制冷循环装置200b的回路图。
图16是作为实施方式3的变形例的制冷循环装置200c的回路图。
图17是实施方式4的制冷循环装置200d的回路图。
图18是示出实施方式4中的制冷时以及制热时的各膨胀阀的控制的图。
图19是示出实施方式4的制冷运转时的处理的流程图。
图20是示出实施方式4的制热运转时的处理的流程图。
具体实施方式
以下,参照附图对本发明的实施方式进行详细说明。另外,在以下的附图中,各构成部件的大小关系有时与实际的大小关系不同。另外,在以下的附图中,标注相同的附图标记的部分是相同或与之相当的构成,这在整个说明书中是通用的。进而,整个说明书示出的构成要素的形态终究不过是例示而已,并不限定于这些记载。
实施方式1.
图1是一并示出实施方式1所涉及的制冷循环装置200的构成以及制冷剂的流动的图。如图1所示那样,制冷循环装置200具备室外机101和室内机102。
室外机101包括压缩机1、四通阀2、室外热交换器3、贮液器(receiver)5、膨胀阀41、43和温度传感器10a、10b、10f。并不特别限定控制装置100的配置,也可以配置在室外机101。室内机102包括室内热交换器6、膨胀阀42和温度传感器10c、10d、10e。
室外机101和室内机102利用配管111、112连接。尽管没有特别限定,但配管112(气体管)的配管直径大于配管111(液体管)的配管直径。
压缩机1将低压的气体制冷剂绝热压缩,排出高压的气体制冷剂。膨胀阀41~43分别构成为能够将液体制冷剂减压并使其流出。作为膨胀阀41~43,例如可以使用线性电子膨胀阀(lev:linearexpansionvalve)。
贮液器5构成为能够贮存制冷剂,对因负荷的变动等导致的制冷剂循环量的变化进行吸收。另外,贮液器5为制冷剂配管长度因设置场所而变化的情形做准备,用于预先蓄积与该变化量相应的制冷剂量。
控制装置100控制压缩机1的驱动频率,对压缩机1每单位时间排出的制冷剂量进行控制。控制装置100控制四通阀2,对制冷剂的循环方向进行切换。控制装置100控制膨胀阀41~43的开度。控制装置100从温度传感器10a~10e取得各部分的制冷剂温度。温度传感器10a~10e例如是热敏电阻。
在制冷运转中,制冷剂以流经压缩机1、四通阀2、室外热交换器3、膨胀阀43、贮液器5、膨胀阀41、配管111、膨胀阀42、室内热交换器6、配管112、四通阀2、贮液器5的内部流路而返回压缩机1的方式进行循环。
作为流路切换阀的一例的四通阀2在制冷运转中将压缩机1的排出口和室外热交换器3连接,并且将配管112和贮液器5的内部流路连接。
利用压缩机1,使制冷剂经由四通阀2向室外热交换器3流入。室外热交换器3在制冷运转中作为冷凝器发挥功能。来自压缩机1的气体制冷剂在室外热交换器3中放出冷凝热而冷凝,变成液体制冷剂。
通过室外热交换器3冷凝了的制冷剂在膨胀阀43被减压。在膨胀阀43被减压的制冷剂在经由贮液器5之后,到达膨胀阀41。由膨胀阀41节流的制冷剂经由配管111、膨胀阀42而到达室内热交换器6。
室内热交换器6在制冷运转中作为蒸发器发挥作用。来自膨胀阀42的制冷剂在室内热交换器6中从室内空气吸收气化热而气化。在室内热交换器6蒸发了的制冷剂经由四通阀2、贮液器5而返回压缩机1。
来自室外热交换器3的制冷剂在经过膨胀阀43之后,在贮液器5中与来自室内热交换器6的气体制冷剂进行热交换,被冷却。
另一方面,在制热运转中,制冷剂以流经压缩机1、四通阀2、配管112、室内热交换器6、膨胀阀42、配管111、膨胀阀41、贮液器5、膨胀阀43、室外热交换器3、四通阀2、贮液器5的内部流路而返回压缩机1的方式进行循环。
在制热运转中,室外热交换器3作为蒸发器发挥功能,室内热交换器6作为冷凝器发挥功能。在制热运转中,制冷剂利用压缩机1经由四通阀2、配管112而在室内热交换器6被冷凝。在室内热交换器6中被冷凝的制冷剂在膨胀阀42被减压。在膨胀阀42被减压的制冷剂在经由配管111、膨胀阀41、贮液器5之后,在膨胀阀43进一步被减压而到达室外热交换器3。并且,在室外热交换器3蒸发的制冷剂经由四通阀2、贮液器5而返回压缩机1。
在本实施方式中,控制装置100对膨胀阀41~43的开度进行控制,以便在配管111中流动着二相状态的制冷剂,在配管112中流动着气体状态的制冷剂。通过在制冷制热中的任意运转状态下都将至少2个以上的膨胀阀的入口状态设为液体状态,从而使控制变容易,并且,通过根据运转状态来进行各膨胀阀的控制方法的切换及控制,能够实现运转状态的维持、配管111的长短的应对以及制冷剂量的降低。
图2是用于对配管的长度和必需的制冷剂量的关系进行说明的图。在图2中,在横轴示出配管长度,在纵轴示出必需的制冷剂量。对于仅在室外机设有1个膨胀阀的构成(没有图1的膨胀阀42的构成),配管111在制冷时供经过膨胀阀41后的二相制冷剂流动,在制热时供经过膨胀阀41前的液相制冷剂流动。如线w1、w2所示那样,若将在制热时流经配管111的制冷剂设为液相,则在配管长度小于l1的场合,根据制冷所必需的制冷剂量来确定制冷剂量,而在配管长度大于l1的场合,根据制热所必需的制冷剂量来确定制冷剂量。
在本实施方式中,在室外机侧配置有膨胀阀41,在室内机侧配置有膨胀阀42。根据这样的构成,如线w3所示那样,也能够在制热时将流经配管111的制冷剂控制成为二相状态。线w3的随着配管长度增加的制冷剂的增加量(曲线图的斜度)相比线w1的场合有所减少。其结果,在配管长度大于l1的场合,制冷所必需的制冷剂量也占主导地位,能够以与图2中的箭头所示的部分相应的量来削减制冷循环装置所必需的制冷剂量。
图3是表示实施方式1中的制冷时以及制热时的各膨胀阀的控制的图。在此,把将配管111的制冷剂控制成液相状态的方法(与图2的w1、w2相当)作为比较例表示,把本实施方式中所执行的控制方法(与图2的w1、w3相当)作为新式控制来表示。另外,比较例的制冷循环装置虽未图示,但实际上是从图1所示的构成去除了膨胀阀42而得的构成。
在制冷运转中,在比较例的制冷循环装置的场合,膨胀阀43通过sc控制而被控制,膨胀阀42通过吸入sh控制而被控制。
在此,sc控制是指以下控制:变更膨胀阀43的开度,以便室外热交换器3的中间温度(由温度传感器10a检测)与室外热交换器3的出口温度(由温度传感器10b检测)的温度差δtab(=t10a-t10b)成为预先设定的值。
另外,吸入sh控制是指以下控制:变更膨胀阀41的开度,以便室内热交换器6的中间温度(由温度传感器10e检测)与压缩机1的吸入温度(由温度传感器10f检测)的温度差δtef(=t10f-t10e)成为预先设定的值。
另一方面,对于本实施方式所执行的新式控制,在制冷运转中,膨胀阀43通过sc控制(ε)而被控制,膨胀阀42通过吸入sh控制而被控制,膨胀阀42被设为全开。吸入sh控制与上述比较例的吸入sh控制相同,但sc控制(ε)是变更膨胀阀43的开度以便新导入的参数ε(epsilon,艾普西隆)[0≤ε≤1]处在预先设定的值的范围内的控制。
在此,参数ε由ε=δtab/δtao表示。
温度差δtab(=t10a-t10b)是室外热交换器3的中间温度(由温度传感器10a检测)与室外热交换器3的出口温度(由温度传感器10b检测)之差。另外,温度差δtao(=t10a-t10aout)是室外热交换器3的中间温度(由温度传感器10a检测)与运转前的温度传感器10a的检测温度(外气温度tout)之差。
接下来,在制热运转中,在比较例的制冷循环装置的场合,膨胀阀43通过吸入sh控制而被控制,膨胀阀41通过sc控制而被控制。
该场合的sc控制是指以下控制:变更膨胀阀41的开度,以便室内热交换器6的中间温度(由温度传感器10e检测)与室内热交换器6的出口温度(由温度传感器10d检测)的温度差δted(=t10e-t10d)成为预先设定的值。
另外,吸入sh控制是指以下控制:变更膨胀阀43的开度,以便室外热交换器3的中间温度(由温度传感器10a检测)与压缩机1的吸入温度(由温度传感器10f检测)的温度差δtaf(=t10f-t10a)成为预先设定的值。
另一方面,对于本实施方式所执行的新式控制,在制热运转中,膨胀阀43通过吸入sh控制而被控制,膨胀阀41被设成全开,膨胀阀42通过中压控制而被控制。吸入sh控制与上述比较例的吸入sh控制相同,而中压控制是变更膨胀阀42的开度以便新导入的参数ζ(zeta,泽塔)[ζ≥1]处在预先设定的值的范围内的控制。
在此,参数ζ由ζ=δtdc/δted表示。
温度差δtdc(=t10d-t10c)是室内热交换器6的出口温度(由温度传感器10d检测)与膨胀阀42的出口温度(由温度传感器10c检测)之差。另外,温度差δted(=t10e-t10d)是室内热交换器6的中间温度(由温度传感器10e检测)与室内热交换器6的出口温度(由温度传感器10d检测)之差。
图4是示出参数ε的设定值的容许范围的图。外气温度taout越高则参数ε就设定得越低,而考虑了温度传感器的测定误差的设定值的容许范围在实线的设定值的上下由虚线表示。因此,相对于参数ε预先设定的值的范围可以设成图4中箭头所示的2根虚线之间的区域。
另外,关于参数ζ,也同样可以考虑温度传感器的测定误差来确定预先设定的值的范围。
图5是配管为短尺寸的场合的制冷运转时的p-h线图。图6是配管为长尺寸的场合的制冷运转时的p-h线图。在图5、图6中,点m1~m6分别与图1的点m1~m6对应。从点m1起至点m2,由膨胀阀43将制冷剂减压,从点m2起至点m3,在贮液器5将制冷剂冷却。进而从点m3至点m4,由膨胀阀41将制冷剂减压。
在此,与配管111为短尺寸的场合相比,在长尺寸的场合,由于点m4~点m5的压力损失变大,所以相应地增大膨胀阀41的开度,减小膨胀阀41处的减压。
图7是配管为短尺寸的场合的制热运转时的p-h线图。图8是配管为长尺寸的场合的制热运转时的p-h线图。在图7、图8中,点m1~m6分别与图1的点m1~m6对应。另外,由于制冷剂的循环的朝向是反方向,所以点m1~m6的配置与制冷运转时的图5、图6不同。从点m6起至点m5,由膨胀阀42将制冷剂减压,从点m5起至点m4,产生与配管111的配管长度对应的压力损失,从点m3起至点m2,在贮液器5中将制冷剂冷却。进而,从点m2起至点m1,由膨胀阀43将制冷剂减压。
在此,与配管111为短尺寸的场合相比,在长尺寸的场合,由于点m4~点m5的压力损失变大,所以相应地增大膨胀阀42的开度,减小膨胀阀42处的减压。
基于图9~图11对控制装置100执行的控制流程进行说明。图9是示出判别运转模式的处理的流程图。图10是示出实施方式1的制冷运转时的处理的流程图。图11是示出实施方式1的制热运转时的处理的流程图。
在图9中,控制装置100在步骤s1中判定运转模式。在判定处理中,控制装置100既可以直接读取用户设定,也可以根据由用户的设定进行控制的四通阀的状态来判定,还可以基于温度传感器(例如温度传感器10a、10e)的温度检测结果来判定。在步骤s1中,在判定结果为制冷的场合向步骤s2推进处理,在为制热的场合向步骤s3推进处理。在步骤s2中执行制冷控制(图10),在步骤s3中执行制热控制(图11)。
在图10的制冷控制中,在步骤s4中,控制装置100首先确认室内温度和外气温度。在该确认中,可以使用温度传感器10a、10e。在确认时,既可以使各设备全部停止运转来进行确认,也可以使用在使例如室内外的风扇运转适当时间后检测到的结果。并且,控制装置100将四通阀2切换成制冷模式(图1中的四通阀2的实线所示的流路)。另外,将膨胀阀41、43变更成初始设定开度,将膨胀阀42设为固定开度(全开)。
之后,基于制冷循环装置的运转状态,在步骤s5、s6中对膨胀阀41执行吸入sh控制,在步骤s7、s8中对膨胀阀43执行sc控制(ε)。
在步骤s5中,控制装置100判定温度传感器10f的检测温度t10f与温度传感器10e的检测温度t10e的温度差是否处在过热度sh的设定范围内。若温度差处在设定范围内(s5中为是),则向步骤s7推进处理,若处在设定范围外(s5中为否),则向步骤s6推进处理。对于控制装置100,在步骤s6中,在过热度sh为设定范围的下限以下的场合存在回液状态的可能性,因而将膨胀阀41节流,在为上限以上的场合,制冷剂过干而排出温度变高,因而将膨胀阀41打开。
在膨胀阀41的开度逐渐变更时,制冷循环的状态容易稳定,故而优选。为了进一步缩短过热度sh到达设定范围内的时间,也可以根据与设定范围之差的大小来调整开度变更的程度。例如也可以进行以下等控制:若是阈值与过热度sh之差大的状态,则增大膨胀阀的开度,若是阈值与过热度sh之差小的状态,则减小膨胀阀的开度。
在步骤s7中,控制装置100判定参数ε是否处在设定阈值以内。参数ε[0≤ε≤1]是根据室外热交换器3的中间温度(温度传感器10a)与室外热交换器3的出口温度(温度传感器10b)的温度差跟室外热交换器3的中间温度(温度传感器10a)与运转前的温度传感器10a的检测温度的温度差之比而得到的值。
若ε处在范围内(s7中为是),则向步骤s9推进处理,若ε处在范围外(s7中为否),则向步骤s8推进处理。在ε为设定范围的下限以下的场合,由于根据冷凝器的冷凝温度和从冷凝器出口至膨胀阀43入口的温度检测结果得到的过冷度sc无法达到设定值,所以,控制装置100将膨胀阀43节流。相反地,在ε为设定范围的上限以上的场合,控制装置100使膨胀阀43的开度增加。在将膨胀阀43的开度变更之后,以适当的时间维持开度,再次在步骤s5中实施判定。
在步骤s9中,若ε为设定范围的下限值则结束控制,否则就执行步骤s10的处理。在步骤s10中,在ε不是设定范围的下限值的场合,为了设成下限值(为了在高压侧不形成差压)而将膨胀阀43打开,再次通过步骤s5实施判定。
通过上述的制冷运转中的控制,能够将过冷度sc、过热度sh维持在目标范围内,并且可最低限度地确保必需的过冷度sc,且无论配管111的长短如何都能最大限度地增大配管111的入口干度。
在图11的制热控制中,在步骤s104中,当进行制热控制时,控制装置100确认室内温度和外气温度。在该确认中可使用温度传感器10a、10e。在确认时,既可以使各设备全部停止运转来进行确认,也可以使用例如使室内外的风扇运转适当的时间后检测到的结果。并且,控制装置100将四通阀2切换成制热模式(图1中四通阀2的虚线所示的流路)。另外,将膨胀阀42、43变更成初始设定开度,膨胀阀41设为固定开度(全开)。
之后,基于制冷循环装置的运转状态,在步骤s105、s106中,对膨胀阀43执行吸入sh控制,在步骤s107、s108中,对膨胀阀42执行中压控制。
在步骤s105中,控制装置100对温度传感器10f的检测温度t10f与温度传感器10a的检测温度t10a的温度差是否处在过热度sh的设定范围内进行判定。若温度差处在设定范围内(s105中为是),则向步骤s107推进处理,若处在设定范围外(s105中为否),则向步骤s106推进处理。控制装置100在步骤s106中,在过热度sh为设定范围的下限以下的场合,由于存在回液状态的可能性,所以将膨胀阀43节流,在过热度sh为设定范围的上限以上的场合,由于存在排出温度过高的可能性,所以将膨胀阀43打开。在步骤s106中将膨胀阀43的开度变更之后,控制装置100以适当的时间维持开度,再次通过s105实施判定。
另外,在膨胀阀43的开度变更逐渐变更时制冷循环的状态容易稳定,故而优选。为了进一步缩短过热度sh到达设定范围内的时间,也可以根据设定范围之差的大小来调整开度变更。例如可以进行以下等控制:若是阈值与过热度sh之差大的状态,则增大膨胀阀的开度,若是阈值与过热度sh之差小的状态,则减小膨胀阀的开度。
在步骤s107中,控制装置100判断参数ζ是否为1以上。在此,参数ζ由ζ=δtdc/δted表示。温度差δtdc(=t10d-t10c)是室内热交换器6的出口温度(由温度传感器10d检测)与膨胀阀42的出口温度(由温度传感器10c检测)之差。另外,温度差δted(=t10e-t10d)是室内热交换器6的中间温度(由温度传感器10e检测)与室内热交换器6的出口温度(由温度传感器10d检测)之差。即,在步骤s107中判定ζ=(t10d-t10c)/(t10e-t10d)≥1是否成立。
另外,关于ζ,也与ε同样地判定是否处在考虑了温度传感器的测定误差的设定阈值的范围内。
若ζ为设定阈值以上(ζ≥1)(s107中为是),则向步骤s109推进处理,若ζ小于设定阈值(ζ<1)(s107中为否),则向步骤s108推进处理。
在步骤s108中,由于膨胀阀42出口侧的制冷剂是液体制冷剂,所以控制装置100将膨胀阀42节流。在步骤s108中将膨胀阀42的开度变更之后,控制装置100在以适当的时间维持开度之后,再次通过s105实施判定。
在步骤s109中,若膨胀阀43的开度为阈值以上,则结束控制,若小于阈值,则向s110推进处理。在步骤s110中,控制装置100将膨胀阀42节流,再次通过s105实施判定。
通过上述控制,能够将过冷度sc、过热度sh维持在目标范围内,并且无论配管111的长短如何都能最大限度地提高入口干度。
另外,在几乎没有附加过冷度sc而温度传感器10d与10c的检测温度存在差异的场合,ζ异常变高,且温度传感器10f与10a的检测温度的差表示异常值(吸入sh变大)。在该场合,存在封入制冷剂量原本就少或是制冷剂泄漏的可能性。例如在ζ为设定值异常[ex.ζ>30]且吸入sh为设定值以上[ex.吸入sh>20]的场合,可以通过遥控器或显示设备等向用户显示制冷剂量不足的情形。
根据以上说明的实施方式1所涉及的制冷循环装置,可获得以下的效果。
以往,在可切换制冷制热的机种中膨胀阀的设置部位为室内的场合,在制冷时,通过室外机冷凝的高压液体制冷剂以液体状态在配管111内流动,通过室内的膨胀阀而变成低压二相制冷剂,而通过形成本实施方式所示的构成,在制冷制热的任意模式下都能将配管111内的制冷剂二相化。
通过将配管111内的制冷剂二相化,能够降低配管内的制冷剂密度,能够降低封入制冷剂量。通过降低封入制冷剂量,能够降低gwp总量值(制冷剂的gwp×制冷剂量)。
另外,若制冷剂以二相状态流入膨胀阀,则由于每单位时间的制冷剂的密度变动而使得膨胀阀的控制变困难或是能力(制热能力或者制冷能力)不稳定,而通过形成本实施方式所示的构成,能够将控制的膨胀阀的入口侧的制冷剂状态设为液相状态。通过将控制的膨胀阀的入口侧的制冷剂状态设成液体状态,可使运转状态容易稳定,能够使制冷循环装置的控制变得容易。
另外,通过根据由运转前的温度检测结果和运转状态获得的比ε和设定吸入sh来控制各膨胀阀,能够以最佳状态维持制冷循环装置的运转状态。
另外,通过根据运转状态、温度传感器的检测结果以及低压侧膨胀阀的开度状态来控制高压侧膨胀阀的开度,无论配管111的长短如何,都能够将配管111的入口设成为最佳的湿状态。
另外,外气温度虽然可以根据运转前的温度传感器10a的检测温度来推定,但也可以另外设置外气温度传感器。
另外,通过根据冷凝温度与膨胀阀入口温度的温度差、由膨胀阀入出口的温度差得到的比ζ和设定吸入sh来控制各膨胀阀,能够以最佳状态维持制冷循环装置的运转状态。
实施方式2.
图12是示出实施方式2的制冷循环装置的构成的图。在实施方式2中,相对于图1的构成追加了2个止回阀。实施方式2所涉及的制冷循环装置200a具备压缩机1、四通阀2、室外热交换器3、膨胀阀43、膨胀阀41、膨胀阀42、贮液器5、室内热交换器6、止回阀71、止回阀72、温度传感器10a~10f和控制装置100a。
在该制冷循环装置200a中,也是通过在制冷制热中的任意运转状态下都将至少2个以上的膨胀阀的入口状态设成液体状态,使得膨胀阀的控制变容易。另外,通过根据运转状态来进行各膨胀阀的控制方法的切换,能够实现运转状态的维持、配管111的长短的应对、制冷剂量的降低。
优选的是,图12所示的止回阀71、72的流量系数分别是膨胀阀41、42的开度为全开的场合的流量系数以上。另外,优选的是,止回阀7的个数是安装部的膨胀阀的个数以上。
另外,在图12中示出了组合膨胀阀与止回阀地进行配置的例子,但也可以将膨胀阀构成为膨胀阀自身的流量系数显示出特殊特性。
图13是膨胀阀的第1例的特性线图。图14是膨胀阀的第2例的特性线图。
在图13所示的膨胀阀中,根据制冷剂的流动方向而流量系数的特性有所变化。即,在制冷剂的流动方向a和b上具有满足b>a的特性。在图3中,在进行被记载成“全开”的控制的场合,优选的是,以变成b侧的特性的方式来确定流路中的膨胀阀的朝向。
另外,也可以具有如图14所述那样与制冷剂的流动方向无关地在某个开度以上时向流量特性全开大幅地变化的特性。在图3中,在进行被记载成“全开”的控制的场合,优选的是,将膨胀阀的开度设成为流量特性变化的区域的开度。
在图12中,通过膨胀阀与止回阀的组合,实现图13或者图14的特性。另外,在本发明的实施方式中通过追加止回阀而实现了图13或者图14的特性,但也可以替代止回阀而由开闭阀等构成。
实施方式2的制冷循环装置的基本动作与实施方式1同样。在制冷时,通过膨胀阀41膨胀的二相制冷剂分开地流向膨胀阀42和止回阀72,在经过各阀之后再次合流而流入室内热交换器6。
另外,在制热时,通过膨胀阀42膨胀的二相制冷剂分开地流向膨胀阀41和止回阀71,在经过各阀之后再次合流而流入贮液器5。
根据以上说明的实施方式2所涉及的制冷循环装置,可获得以下的效果。
通过使经过在各运转条件下设定开度的膨胀阀的制冷剂的循环流量也流入止回阀71、72,能够降低流经膨胀阀的制冷剂的循环流量。通过降低制冷剂循环流量,即便是同等流量系数也能够降低在经过膨胀阀时产生的压力损失。通过降低膨胀阀的压力损失,图5等的p-h线图所记载的m5~m6处产生的压力损失变小,能够在实现同等低压时将膨胀阀41进一步节流。
通过将膨胀阀41节流,能够增大配管111的入口干度。另外,通过增大配管111的入口干度,能够减小配管111内的平均制冷剂密度。另外,通过配管111内的平均制冷剂密度变小,能够进一步降低实现同等运转状态时所必需的封入制冷剂量。通过降低封入制冷剂量,能够降低gwp总量值(制冷剂的gwp×制冷剂量)。
除了上述的效果之外,通过设成具有图13或者图14所记载的特性的膨胀阀也能够获得同样的效果而不会增加零件数。由于无需增加零件数,所以不使制造成本增加就能获得制冷剂量降低效果。
实施方式3.
在实施方式3中,介绍在1台室外机连接多个室内机的例子。在该场合,各室内机的负荷设成相同条件。图15是实施方式3的制冷循环装置200b的回路图。参照图15,制冷循环装置200b具备压缩机1、四通阀2、室外热交换器3、膨胀阀43、膨胀阀41、膨胀阀42-1、42-2、贮液器5、室内热交换器6-1、6-2、温度传感器10a~10f和控制装置100b。
控制装置100b通过在制冷制热中的任意运转状态下都将至少2个以上的膨胀阀的入口状态控制成液体状态而使得制冷循环装置200b的控制变容易,并且根据运转状态来进行各膨胀阀的控制方法的切换和控制。由此,能够实现运转状态的维持、配管111的长短的应对、制冷剂量的降低。
制冷循环装置200b的基本构成与实施方式1同样,但在相对于1台室外机连接2台以上的室内机这方面有所不同。另外,也可以设成与实施方式2同样地设有止回阀等的构成。
图16是作为实施方式3的变形例的制冷循环装置200c的回路图。图15的制冷循环装置200b与实施方式1同样地利用2根配管111、112连接室外机101b与室内机102b之间。相对于此,制冷循环装置200c利用各2根总计4根配管111-1、111-2、112-1、112-2将室外机101b与室内机102b之间连接。
另外,制冷循环装置200b、200c的基本动作都与实施方式1同样。
在实施方式3所涉及的制冷循环装置中,即便是相对于1台室外机连接了多台室内机的场合也能够将液体管内的制冷剂二相化,因而能够降低封入制冷剂量。
另外,由于设有与室内热交换器6-1、6-2分别对应的膨胀阀42-1、42-2,所以,连接室外机与室内机的配管的连接根数是1对也好还是2对也好都能够将液体管内的制冷剂二相化。
实施方式4.
在实施方式4中,对以下制冷循环装置进行说明:在1台室外机中设有多个室内热交换器的场合,在多个室内热交换器中能够应对室内负荷条件不同的情形。
图17是实施方式4的制冷循环装置200d的回路图。图17所示的制冷循环装置200d具备压缩机1、四通阀2、室外热交换器3、膨胀阀43、膨胀阀41、膨胀阀42、膨胀阀42-1、42-2、贮液器5、室内热交换器6-1、6-2、温度传感器10a~10j和控制装置100d。
控制装置100d通过在制冷制热中的任意运转状态下都将至少2个以上的膨胀阀的入口状态设成液体状态,使得制冷循环装置200d的控制变容易,并且,根据运转状态来进行各膨胀阀的控制方法的切换和控制。由此,能够实现运转状态的维持、配管111的长短的应对、制冷剂量的降低。
另外,在连接多台室内热交换器的场合,会出现室内侧的负荷条件或室内温度状态等在各室内热交换器中不同的场合。在该场合,在实施方式3中,存在着以下课题:在制冷时无法判断单独的室内热交换器的出口侧的状态这样的课题;在制热时进行中压控制之际,作为控制目标的膨胀阀42-1、42-2的出口侧合流,相对于1个状态而作为控制对象的膨胀阀却变成2个,控制会变得困难这样的课题。
实施方式4是应对上述课题的方式。实施方式4的制冷循环装置202d的基本构成与实施方式3同样,但在除了各室内机的膨胀阀42-1、42-2还在配管111附近追加了膨胀阀42的方面、以及在各室内热交换器出入口追加了温度传感器10g1、10g2的方面有所不同。
图18是示出实施方式4中的制冷时以及制热时的各膨胀阀的控制的图。接下来,参照图17、图18对实施方式4所涉及的制冷循环装置200d的基本动作进行说明。
首先,在制冷运转中,通过压缩机1,使制冷剂经由四通阀2流入室外热交换器3,制冷剂冷凝。通过室外热交换器3冷凝的制冷剂在膨胀阀43被减压。控制装置100d对膨胀阀43执行sc控制(ε)。在膨胀阀43被减压的制冷剂在经由贮液器5之后被送往膨胀阀41。控制装置100d对膨胀阀41执行吸入sh控制。在膨胀阀41被减压的制冷剂经由配管111、膨胀阀42、膨胀阀42-1、42-2而被送往室内热交换器6-1和室内热交换器6-2。控制装置100d对膨胀阀42-1、42-2执行蒸发sh控制。另外,控制装置100d将膨胀阀42的开度固定成全开。在室内热交换器6-1以及6-2蒸发的制冷剂经由四通阀2、贮液器5而返回压缩机1。
另一方面,在制热运转中,通过压缩机1使制冷剂经由四通阀2、配管112(气体管)而到达室内热交换器6-1以及6-2,被冷凝。通过室内热交换器6-1以及6-2被冷凝的制冷剂被送往膨胀阀42-1、42-2。控制装置100d对膨胀阀42-1、42-2执行sc控制(ε)。由膨胀阀42-1、42-2减压的制冷剂在合流之后进一步通过膨胀阀42被减压。控制装置100d对膨胀阀42执行中压控制。由膨胀阀42减压的制冷剂在经由配管111(液体管)、膨胀阀41、贮液器5之后,由膨胀阀43节流而被送往室外热交换器3。控制装置100d对膨胀阀43执行吸入sh控制。另外,控制装置100d将膨胀阀41的开度固定为全开。由室外热交换器3蒸发的制冷剂经由四通阀2、贮液器5而返回压缩机1。
使用图9、图19~图20对控制装置100d所执行的控制流程进行说明。另外,判别图9所示的运转模式的处理也同样在实施方式4中被执行。
通过图9的步骤s1判定运转模式。在判定处理中,控制装置100d既可以直接读取用户设定,也可以根据由用户设定控制的四通阀的状态进行判定,还可以基于温度传感器(例如温度传感器10a、10e1(或者10e2))的温度检测结果进行判定。
以下,依次对动作模式为制冷运转时、制热运转时的处理进行说明。
图19是示出实施方式4的制冷运转时的处理的流程图。
在步骤s204中,当根据判定结果进行制冷控制时,对室内和室外的外气温度t10a、t10e进行确认。在该确认中可使用温度传感器10a、10e1(或者10e2)。在确认时,既可以使各设备全都停止运转来进行确认,也可以使用在使例如室内外的风扇运转适当的时间后检测的结果。并且,控制装置100d将四通阀2切换成制冷模式(图17中四通阀2的由实线表示的流路)。另外,将膨胀阀41、42-1、42-2、43变更成初始设定开度,将膨胀阀42设成固定开度(全开)。
之后,基于制冷循环装置200d的运转状态,在步骤s205、s206中对膨胀阀41执行吸入sh控制,在步骤s207~s210中对膨胀阀43执行sc控制(ε),在步骤s211、s212中对膨胀阀42-1、42-2执行蒸发sh控制。
在步骤s205中,控制装置100d判定温度传感器10f的检测温度t10f与温度传感器10e1、10e2的检测温度t10e1、t10e2的温度差是否处在过热度sh的设定范围内。若温度差处在设定范围内(s205中为是),则向步骤s207推进处理,若处在设定范围外(s205中为否),则向步骤s206推进处理。控制装置100d在步骤s206中,在过热度sh为设定范围的下限以下的场合,将膨胀阀41节流,在为上限以上的场合,将膨胀阀41打开。并且,控制装置100d在将膨胀阀41的开度变更之后以适当的时间维持膨胀阀41的开度,再次通过步骤s205实施判定。
另外,在膨胀阀41的开度逐渐变更时制冷循环的状态容易稳定,故而优选。为了进一步缩短过热度sh到达设定范围内的时间,也可以根据与设定范围之差的大小来调整开度变更的程度。例如也可以进行以下等控制:若是阈值与过热度sh之差大的状态,则增大膨胀阀的开度,若是阈值与过热度sh之差小的状态,则减小膨胀阀的开度。
在步骤s207中,控制装置100d判定参数ε是否处在设定阈值以内。参数ε[0≤ε≤1]是根据室外热交换器3的中间温度(温度传感器10a)与室外热交换器3的出口温度(温度传感器10b)的温度差跟室外热交换器3的中间温度(温度传感器10a)与运转前的温度传感器10a的检测温度的温度差之比得到的值。
若参数ε处在范围内(s207中为是),则向步骤s209推进处理,若处在范围外(s207中为否),则向步骤s208推进处理。在步骤s208中,在ε为设定范围的下限以下的场合,根据冷凝器的冷凝温度(温度传感器10a)和从冷凝器出口至膨胀阀43入口的温度检测结果(温度传感器10b)得到的过冷度sc无法达到设定值,因而,将膨胀阀43节流,在为上限以上的场合,将膨胀阀43打开。在将膨胀阀43的开度变更之后,控制装置100d以适当的时间维持膨胀阀43的开度,再次通过步骤s205实施判定。
在步骤s209中,若ε为设定范围的下限值,则进入步骤s211,否则执行步骤s210的处理。在步骤s210中,在ε不是设定范围的下限值的场合,为了设成下限值而将膨胀阀43打开,再次通过步骤s205实施判定。
通过上述控制,可将过冷度sc、过热度sh维持在目标范围内,同时可确保必需的过冷度sc,并且无论配管111的长短如何都能最大限度地增大配管111的入口干度。
在步骤s211中,若温度传感器10g1与温度传感器10e1的温度差、温度传感器10g2与温度传感器10e2的温度差全都为阈值以下,则结束控制,否则对单独地设于室内机的膨胀阀42-1以及膨胀阀42-2的开度进行调整。
图20是示出实施方式4的制热运转时的处理的流程图。首先,在步骤s304中,当进行制热控制时,控制装置100d确认室内温度和外气温度。在该确认中可使用温度传感器10a、10e。在确认时,既可以使各设备全部停止运转来进行确认,也可以使用例如使室内外的风扇以适当的时间运转之后检测出的结果。并且,控制装置100d将四通阀2切换成制热模式(图17中四通阀2的由虚线示出的流路)。另外,将膨胀阀42、42-1、42-2、43变更为初始设定开度,膨胀阀41设成固定开度(全开)。
之后,基于制冷循环装置的运转状态,在步骤s305、s306中对膨胀阀43执行吸入sh控制,在步骤s307、s308中对膨胀阀42执行中压控制。另外,在步骤s309、s310中,对膨胀阀42-1、42-2执行sc控制(ε)。
在步骤s305中,控制装置100d判定温度传感器10f的检测温度t10f与温度传感器10a的检测温度t10a的温度差是否处在过热度sh的设定范围内。若温度差处在设定范围内(s305中为是),则向步骤s307推进处理,若处在设定范围外(s305中为否),则向步骤s306推进处理。控制装置100d在步骤s306中,在过热度sh为设定范围的下限以下的场合,将膨胀阀43节流,在过热度sh为设定范围的上限以上的场合,打开膨胀阀43。在步骤s306中将膨胀阀43的开度变更之后,控制装置100d以适当的时间维持开度,再次通过步骤s305实施判定。
另外,在膨胀阀43的开度变更逐渐变更时制冷循环的状态容易稳定,故而优选。为了进一步缩短过热度sh到达设定范围内的时间,也可以根据与设定范围之差的大小来调整开度变更。例如可以进行以下等控制:若是阈值与过热度sh之差大的状态,则增大膨胀阀的开度,若是阈值与过热度sh之差小的状态,则减小膨胀阀的开度。
在步骤s307中,控制装置100d判断参数ζ1、ζ2是否为1以上。参数ζ1是根据室内热交换器6-1的中间温度(温度传感器10e1)与室内热交换器6-1的出口温度(温度传感器10d1)的温度差跟室内热交换器6-1的出口温度(温度传感器10d1)与膨胀阀42的出口温度(温度传感器10c)的温度差之比得到的值。参数ζ2是根据室内热交换器6-2的中间温度(温度传感器10e2)与室内热交换器6-2的出口温度(温度传感器10d2)的温度差跟室内热交换器6-2的出口温度(温度传感器10d2)与膨胀阀42的出口温度(温度传感器10c)的温度差之比得到的值。
即,在步骤s307中判定ζ1=(t10d1-t10c)/(t10e1-t10d1)≥1或者ζ2=(t10d2-t10c)/(t10e2-t10d2)≥1是否成立。
另外,关于ζ1、ζ2,也可以与ε同样地判定是否处在考虑了温度传感器的测定误差的设定范围内。
若ζ1或者ζ2为设定阈值以上(s307中为是),则向步骤s309推进处理,若全部都小于设定阈值(ζ1<1且ζ2<1)(s307中为否),则向步骤s308推进处理。
配管111由于在2台室内热交换器中被共用,所以,只要在任意1台室内热交换器中进行判定即可,可以仅对ζ1、ζ2中的一方进行判定。
若至少ζ1或ζ2中的任意一者为设定阈值以下,则向s309推进处理,若为设定阈值外(ζ<1),则向s308推进处理。
在步骤s308中,由于膨胀阀42出口侧的制冷剂是液体制冷剂,所以,控制装置100d将膨胀阀42节流。在步骤s308中将膨胀阀42的开度变更之后,控制装置100d在以适当的时间维持开度之后,再次通过s305实施判定。
在步骤s309中,控制装置100d判断各室内热交换器6-1以及6-2的过冷度(|t10e1-t10d1|以及|t10e2-t10d2|)或者ε是否分别处在设定的阈值的范围内。在此,各室内热交换器的过冷度或者ε的设定值通过以下方式被设定:输出根据室内温度与设定温度的温度差算出的各室内热交换器所必需的能力,根据由各室内热交换器入出口温度以及冷凝温度得到的焓差来计算制冷剂循环流量比。
在步骤s309中,若过冷度或者ε处在设定阈值的范围内,则向s311推进处理,若处在设定阈值范围外,则向s310推进处理。在步骤s310中,在下限值以下的场合,将膨胀阀42-1或者膨胀阀42-2节流,在上限值以上的场合,将膨胀阀42-1或者膨胀阀42-2打开。控制装置100d在变更了膨胀阀42-1或者膨胀阀42-2的场合,以适当的时间维持变更后的开度,之后再次通过s305实施判定。
在步骤s311中,对于控制装置100d,若膨胀阀43的开度为阈值以上,则结束控制,若小于阈值则执行步骤s312的处理。在步骤s312中,将膨胀阀42节流,通过步骤s305再次实施判定。
通过上述控制,在各热交换器中,能够将过冷度sc、过热度sh维持在目标范围内,无论配管111的长短如何都能最大限度地提高配管111的入口干度。
实施方式4的制冷循环装置除了实施方式1~3的制冷循环装置发挥的效果之外还发挥以下的效果。
在多台连接的场合,会出现室内侧的负荷条件或室内温度状态等不同的情形,而通过在制冷时在室内热交换器6-1、6-2的出口侧设置温度传感器10g1、10g2,能够判断单独的热交换器出口侧的状态,能够调整多台室内热交换器的制冷剂循环量比。
另外,在制热时,在各膨胀阀,控制对象与控制目标为1:1,容易进行控制。另外,能够应对在单独的室内机产生的负荷。进而,由于相对于1台室外机设置多台室内机,所以能够降低成本。另外,能够减小室外侧的设置空间。
最后,参照附图来总体概括实施方式1~4所涉及的制冷循环装置。
图1、图12、图15~图16所示的制冷循环装置200、200a~200c具备:包括压缩机1、第1热交换器(室外热交换器3)和第1膨胀阀41的室外机101;包括第2膨胀阀42和第2热交换器(室内热交换器6)的室内机102;以及连接在室外机101与室内机102之间的第1配管111以及第2配管112。在制冷运转中,从压缩机1排出的制冷剂依次流经第1热交换器(室外热交换器3)、第1膨胀阀41、第1配管111、第2膨胀阀42、第2热交换器(室内热交换器6)、第2配管112而返回压缩机1,在制冷运转中,第1膨胀阀41使液相制冷剂变化成二相制冷剂并将该二相制冷剂送往第1配管111。
根据本构成,能够在制冷时将第1配管111内的制冷剂二相化。通过二相化,能够降低配管内的密度,能够降低制品出厂时的向室外机的封入制冷剂量。另外,通过降低封入制冷剂量,能够降低gwp总量值(制冷剂的gwp×总制冷剂量)。
优选的是,室外机101还包括:在制冷剂回路中配置在第1热交换器(室外热交换器3)与第1膨胀阀41之间的第3膨胀阀43;在制冷剂回路中配置在第1膨胀阀41与第3膨胀阀43之间且对流经将第1膨胀阀41与第3膨胀阀43连结的流路的制冷剂进行冷却的冷却部。冷却部例如是贮液器5。
若制冷剂以二相状态流入膨胀阀,则由于每单位时间的密度变动而导致膨胀阀的控制变困难或是能力(制冷能力)不稳定,但通过设成上述的构成,能够将控制的第1膨胀阀41的入口侧的制冷剂状态设成液体状态。通过将控制的第1膨胀阀41的入口侧的制冷剂状态设成液体状态,运转状态容易稳定,能够容易进行制冷循环装置整体的控制。
更优选的是,制冷循环装置还具备:检测在第1热交换器中流动的制冷剂温度的第1温度传感器10a;检测第1热交换器与第3膨胀阀之间的流路的制冷剂温度的第2温度传感器10b;检测压缩机的吸入制冷剂温度的第3温度传感器10f;检测在第2热交换器中流动的制冷剂温度的第4温度传感器10e;以及控制第1~第3膨胀阀的开度的控制装置100。
在制冷运转中,控制装置控制第1膨胀阀41的开度,以便第4温度传感器10e的检测温度与第3温度传感器10f的检测温度之差变成预先规定的值,在制冷运转中,控制装置控制第3膨胀阀43的开度,以便根据第1温度传感器10a的检测温度与第2温度传感器10b的检测温度之差跟外气温度与第1温度传感器10a的检测温度之差的比得到的值(ε)处在预先规定的设定范围内。
这样,通过根据由运转前的温度检测结果和运转状态得到的比ε和设定的吸入sh来控制各膨胀阀,能够以最佳状态维持运转状态。
另外,通过根据运转状态、温度传感器的检测结果以及低压侧膨胀阀的开度状态来控制高压侧膨胀阀的开度,从而无论配管111的长短如何都能将配管111的入口设成最佳的湿状态。
另外,外气温度既可以根据运转前的温度传感器进行推定,或者也可以另外设置排气温度传感器。
更优选的是,在制热运转中,从压缩机1排出的制冷剂依次流经第2配管112、第2热交换器(室内热交换器6)、第2膨胀阀42、第1配管111、第1膨胀阀41、第1热交换器(室外热交换器3)而返回压缩机1。在制热运转中,第2膨胀阀42使液相制冷剂变化成二相制冷剂并将其送往第1配管111。
更优选的是,制冷循环装置200还具备切换制冷运转和制热运转的四通阀2。
若在膨胀阀为1个的制冷制热切换机种中将膨胀阀设置在室内机侧,则能在制热时将配管111设成二相状态,而在制冷时通过室外机被冷凝的高压液体制冷剂以液体状态在配管111内流动并通过膨胀阀而变成低压二相状态。另一方面,若将膨胀阀设置在室外机侧,则能在制冷时将配管111设成二相状态,而在制热时通过室外机被冷凝的高压液体制冷剂以液体状态在配管111内流动并通过膨胀阀变成低压二相制冷剂。相对于此,在制冷制热切换机种中,通过在室外机设置膨胀阀41,在室内机设置膨胀阀42,从而在制冷制热的任意状态下都能将配管111内的制冷剂二相化。
通过将第1配管111内的制冷剂二相化,能够降低配管内的密度,能够降低制品出厂时的向室外机的封入制冷剂量。另外,通过降低封入制冷剂量,能够降低gwp总量值(制冷剂的gwp×总制冷剂量)。
更优选的是,制冷循环装置200还具备:检测在第1热交换器中流动的制冷剂温度的第1温度传感器10a;检测第1热交换器与第3膨胀阀之间的流路的制冷剂温度的第2温度传感器10b;检测压缩机的吸入制冷剂温度的第3温度传感器10f;检测在第2热交换器中流动的制冷剂温度的第4温度传感器10e;检测第2热交换器与第2膨胀阀之间的流路的制冷剂温度的第5温度传感器10d;检测第2膨胀阀42的与第1配管111连接的那侧的制冷剂温度的第6温度传感器10c;以及控制第1~第3膨胀阀的开度的控制装置100。在制热运转中,控制装置控制第3膨胀阀43的开度,以便第1温度传感器10a的检测温度与第3温度传感器10f的检测温度之差变成预先规定的值。在制热运转中,控制装置控制第2膨胀阀42的开度,以便根据第4温度传感器10e的检测温度与第5温度传感器10d的检测温度之差跟第4温度传感器10e的检测温度与第5温度传感器10c的检测温度之差的比得到的值变成预先规定的值。
如上所述,通过根据由冷凝温度与膨胀阀入口温度的温度差和膨胀阀入出口的温度差得到的比ζ和设定吸入sh来控制各膨胀阀的控制,能够以最佳状态维持运转状态。
另外,通过根据运转状态、温度传感器的检测结果以及低压侧膨胀阀的开度状态来控制高压侧膨胀阀的开度,无论配管111的长短如何,都能将配管111的入口设成最佳的湿状态。
更优选的是,第3膨胀阀43使液相制冷剂变化成二相制冷剂。
更优选的是,冷却部具备贮液器5,该贮液器5构成为使压缩机1吸入的制冷剂与流经将第1膨胀阀41和第3膨胀阀43连结的流路的制冷剂进行热交换。
如图17所示那样,制冷循环装置200d具备:包括压缩机1、第1热交换器(室外热交换器3)和第1膨胀阀41的室外机101;包括第2膨胀阀42和第2热交换器(室内热交换器6-1)的室内机102;以及连接在室外机101与室内机102之间的第1配管111以及第2配管112。在制冷运转中,从压缩机1排出的制冷剂流经第1热交换器(室外热交换器3)、第1膨胀阀41、第1配管111、第2膨胀阀42、第2热交换器(室内热交换器6-1)、第2配管112而返回压缩机1,在制冷运转中,第1膨胀阀41使液相制冷剂变化成二相制冷剂并将该二相制冷剂送往第1配管111。优选的是,室内机102d还包括第3热交换器(室内热交换器6-2)、第4膨胀阀42-1和第5膨胀阀42-2。第2热交换器(室内热交换器6-1)与第4膨胀阀42-1串联地连接而构成第1流路,第3热交换器(室内热交换器6-2)与第5膨胀阀42-2串联地连接而构成第2流路。第1流路以及第2流路并联地连接在第2膨胀阀42和第2配管112之间。
通过形成上述的构成,即便在室内侧存在多个热交换器且它们的负荷不同的场合,也能够将第1配管111的制冷剂形成为二相状态,并且使室内热交换器的能力与负荷相匹配。
应认为此次公开的实施方式在所有方面均为例示,而并非限制性的构成。本发明的范围由权利要求书示出,而非由上述的实施方式的说明示出,意在包括处在与权利要求书等同的意思以及范围内的所有变更。
附图标记的说明
1压缩机;2四通阀;3室外热交换器;5贮液器;6室内热交换器;7、71、72止回阀;10a、10b、10c、10d、10d1、10d2、10e、10e1、10e2、10f、10g1、10g2、10j温度传感器;41、42、43膨胀阀;100、100a、100b、100d控制装置;101、101a~101c室外机;102、102a~102d室内机;200、200a~200d制冷循环装置;111、112配管。
1.一种制冷循环装置,其中,该制冷循环装置具备:
室外机,该室外机包括压缩机、第1热交换器和第1膨胀阀;
室内机,该室内机包括第2膨胀阀和第2热交换器;以及
第1配管以及第2配管,该第1配管以及第2配管连接在上述室外机与上述室内机之间,
在制冷运转中,从上述压缩机排出的制冷剂依次流经上述第1热交换器、上述第1膨胀阀、上述第1配管、上述第2膨胀阀、上述第2热交换器、上述第2配管而返回上述压缩机,
在上述制冷运转中,上述第1膨胀阀使液相制冷剂变化成二相制冷剂并将该二相制冷剂送往上述第1配管。
2.如权利要求1所述的制冷循环装置,其中,
上述室外机还包括:
第3膨胀阀,该第3膨胀阀在制冷剂回路中配置在上述第1热交换器与上述第1膨胀阀之间;以及
冷却部,该冷却部在上述制冷剂回路中配置在上述第1膨胀阀与上述第3膨胀阀之间,对流经将上述第1膨胀阀和上述第3膨胀阀连结的流路的制冷剂进行冷却。
3.如权利要求2所述的制冷循环装置,其中,
上述制冷循环装置还具备:
第1温度传感器,该第1温度传感器检测在上述第1热交换器中流动的制冷剂温度;
第2温度传感器,该第2温度传感器检测上述第1热交换器与上述第3膨胀阀之间的流路的制冷剂温度;
第3温度传感器,该第3温度传感器检测上述压缩机的吸入制冷剂温度;
第4温度传感器,该第4温度传感器检测在上述第2热交换器中流动的制冷剂温度;以及
控制装置,该控制装置控制上述第1~第3膨胀阀的开度,
在上述制冷运转中,上述控制装置控制上述第1膨胀阀的开度,以便上述第4温度传感器的检测温度与上述第3温度传感器的检测温度之差变成预先规定的值,
在上述制冷运转中,上述控制装置控制上述第3膨胀阀的开度,以便根据上述第1温度传感器的检测温度与上述第2温度传感器的检测温度之差跟外气温度与上述第1温度传感器的检测温度之差的比得到的值处在预先规定的设定范围内。
4.如权利要求2所述的制冷循环装置,其中,
在制热运转中,从上述压缩机排出的制冷剂依次流经上述第2配管、上述第2热交换器、上述第2膨胀阀、上述第1配管、上述第1膨胀、上述第1热交换器而返回上述压缩机,
在上述制热运转中,上述第2膨胀阀使液相制冷剂变化成二相制冷剂并将该二相制冷剂送往上述第1配管。
5.如权利要求4所述的制冷循环装置,其中,
上述制冷循环装置还具备切换上述制冷运转和上述制热运转的四通阀。
6.如权利要求4所述的制冷循环装置,其中,
上述制冷循环装置还具备:
第1温度传感器,该第1温度传感器检测在上述第1热交换器中流动的制冷剂温度;
第2温度传感器,该第2温度传感器检测上述第1热交换器与上述第3膨胀阀之间的流路的制冷剂温度;
第3温度传感器,该第3温度传感器检测上述压缩机的吸入制冷剂温度;
第4温度传感器,该第4温度传感器检测在上述第2热交换器中流动的制冷剂温度;
第5温度传感器,该第5温度传感器检测上述第2热交换器与上述第2膨胀阀之间的流路的制冷剂温度;
第6温度传感器,该第6温度传感器检测上述第2膨胀阀的与上述第1配管连接的那侧的制冷剂温度;以及
控制装置,该控制装置控制上述第1~第3膨胀阀的开度,
在上述制热运转中,上述控制装置控制上述第3膨胀阀的开度,以便上述第1温度传感器的检测温度与上述第3温度传感器的检测温度之差变成预先规定的值,
在上述制热运转中,上述控制装置控制上述第2膨胀阀的开度,以便根据上述第4温度传感器的检测温度与上述第5温度传感器的检测温度之差跟上述第4温度传感器的检测温度与上述第5温度传感器的检测温度之差的比得到的值变成预先规定的值。
7.如权利要求6所述的制冷循环装置,其中,
上述冷却部构成为使上述压缩机吸入的制冷剂与流经将上述第1膨胀阀与上述第3膨胀阀连结的流路的制冷剂进行热交换。
8.如权利要求1所述的制冷循环装置,其中,
上述室内机还包括第3热交换器、第4膨胀阀和第5膨胀阀,
上述第2热交换器与上述第4膨胀阀串联地连接而构成第1流路,
上述第3热交换器与上述第5膨胀阀串联地连接而构成第2流路,
上述第1流路以及上述第2流路在上述第2膨胀阀与上述第2配管之间并联地连接。
技术总结