一种高温合金中非金属夹杂物的提取方法与流程

专利2022-06-29  61


【技术领域】

本发明涉及金属材料技术领域,尤其涉及一种高温合金中非金属夹杂物的提取方法。



背景技术:

高温合金具有良好的力学性能和综合的强度、韧性指标,以及良好的抗热疲劳、抗热腐蚀和耐磨蚀性能。因此广泛应用于航空航天、工业燃气轮机、石油化工、船舶舰艇、核动力设备等重工业领域的关键部件。高温合金含有较多的活泼元素al和ti,非常容易与合金熔体和熔炼气氛中的o和n反应,生成al2o3、tio2、tin等氧化物、氮化物夹杂物。

随着研究工作的不断推进,诸多研究结果表明高温合金中存在的非金属夹杂物缺陷显著降低高温合金零件的力学性能和加工性能,成为阻碍其综合性能提升的关键问题。为了研究夹杂物对高温合金力学性能的影响,首先必须研究夹杂物的特征,特别是三维特征。

相对于对钢中非金属夹杂物的研究,对于高温合金中非金属夹杂物的研究并不成熟。而目前对高温合金中非金属夹杂物的研究采用与电解提取钢中非金属夹杂物相同的电解液和电解制度。这样的方法会导致镍基高温合金在电解中出现严重的基体脱落问题。由于高温合金含有较高的ti、nb、mo、w、ta等强碳化物形成元素,因此电解后的萃取物往往是碳化物和非金属夹杂的混合物,而且碳化物占绝大部分,部分碳化物覆盖在非金属夹杂物的表面,严重阻碍了对于非金属夹杂物的观察和分析。因此,针对高温合金而言,有效的去除碳化物的影响,得到原尺寸、原形貌的非金属夹杂物是高温合金中非金属夹杂物观察与分析的重点和难点。

因此,有必要研究一种高温合金中非金属夹杂物的提取方法来应对现有技术的不足,以解决或减轻上述一个或多个问题。



技术实现要素:

有鉴于此,本发明提供了一种高温合金中非金属夹杂物的提取方法,所提取的夹杂物纯度高,掺杂项少,能够实现较好的高温合金中非金属夹杂物定性提取的效果。

一方面,本发明提供一种高温合金中非金属夹杂物的提取方法,其特征在于,所述方法的步骤包括:

s1、对高温合金试样进行非水弱酸溶液电解;电解时在高温合金试样的外周设置用于收集非金属夹杂物的透析膜;

电解时以高温合金试样作为阳极极进行电解;

电解采用直流恒电位法,电流密度为10-60ma/cm2,持续电解8-12h,电解温度为15-25℃;在电解过程中以0.1-0.2l/h的速度向阳极电解槽中注射电解液;

s2、采用盐酸-乙醇溶液对含有非金属夹杂物的溶液进行回流煮沸,实现干扰项的去除;

s3、采用真空抽滤的方式收集非金属夹杂物,再用乙醇溶液去除能够溶于乙醇的杂质离子,得到非金属夹杂物。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,s1中电解时采用的电解液的质量配比为:无水乙醇80%-95%,甲醇1%-8%,丙三醇1%-10%,柠檬酸1%-15%,且无水乙醇、甲醇、丙三醇和柠檬酸的占比之和为100%。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,电解时以0.1-0.3l/min的速度向透析膜内溶液中注入氩气,用于在保护非金属夹杂物原貌的同时促进碳化物与非金属夹杂物的分离。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,s2具体内容包括:对含有夹杂物的溶液进行离心并去除下层悬浊液,再回流煮沸5-8h,使碳化物被溶解。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,s3的具体内容包括:采用滤膜反复进行3-5次真空抽滤,后将附着在滤膜上溶于乙醇溶液的杂质离子洗去,得到最终的非金属夹杂物。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述透析膜在使用前需要进行预处理,所述预处理的过程包括:将透析膜置于预处理液中煮沸10-15min;所述预处理液为ph值为8的edta溶液。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,电解前需要对高温合金试样进行预处理,预处理的过程包括:先对高温合金试样进行表面抛光,再置于丙酮溶液中利用超声波震荡清洗10-15min。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,电解前测量高温合金试样的极化曲线,根据极化曲线确定电解液的配比与电解制度,再根据电解液配比和电解制度对高温合金试样进行电解。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,采用稳态恒电位法测量高温合金的极化曲线。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,电解的高温合金试样在两个以上时,采用串联的方式进行电解。

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述提取方法适用于镍基高温合金和钴基高温合金。

另一方面,本发明提供一种高温合金中非金属夹杂物的提取装置,其特征在于,所述装置能够实现如上任一所述的高温合金中非金属夹杂物的提取方法。

与现有技术相比,本发明可以获得包括以下技术效果:本发明所提取的夹杂物纯度高,掺杂项少,能够实现较好的高温合金中非金属夹杂物定性提取的效果;相对大样电解长达数天的电解过程,本发明仅采用数小时即可完成对于各种夹杂物的提取,制备方法流程短、效率高;相对于现有技术中大部分采用强酸溶液进行电解的小样电解,本制备方法采用有机弱酸电解液,较弱的酸解性既能保留夹杂物的原貌同时也充分保障实验安全性、环境友好性,采用强酸溶液进行电解对于夹杂物的原貌提取极其不利,虽有夹杂物的获得,但试验后所得的电解废液,对于环境不利,且实验过程存在危险性。

当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。

【附图说明】

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1是本发明一个实施例提供的高温合金中非金属夹杂物提取过程中电解装置结构示意图;

图2是本发明一个实施例提供的电解后收集到的混合萃取物图,基本为骨架状的碳化物;

图3是本发明一个实施例提供的化学分离后氧化物的扫描电镜形貌图,为al-mg-o组成的复合氧化物夹杂物颗粒;

图4是本发明一个实施例提供的化学分离后氧化物的扫描电镜形貌图,为氧化铝夹杂物颗粒;

图5是本发明一个实施例提供的化学分离后氧化物的扫描电镜形貌图,为复合型氮氧化物夹杂物颗粒;

图6是本发明一个实施例提供的高温合金中非金属夹杂物的提取方法流程图。

其中,图中:

1-电解工件,2-电解槽,3-透析膜,4-温度计,5-废液槽,6-盐桥,7-铂电极8-电解液,9-直流电源,10-电解液自动注射器,11-氩气注射泵。

【具体实施方式】

为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。

应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。

针对现有技术的不足,本发明提供一种高温合金中非金属夹杂物的提取方法,该方法通过选择合适的电解液,以高温合金作为阳极,以金属铂或不锈钢作为阴极,对高温合金试样进行电解;电解完成后将收集到的混合物,采取合适的分离方法,无损提取了高温合金中的非金属夹杂物;将得到的非金属夹杂物在扫描电镜下观察,颗粒状形貌明显,x射线衍射与能谱分析得出夹杂物含有氧化物、氮化物及氮氧碳复合型夹杂物。

具体步骤包括:

(1)试样制备

采用机加工将合金锭加工为尺寸适当的试样并将其表面抛光,将试样放在丙酮溶液中利用超声波震荡清洗10-15min。

(2)测定电化学曲线

采用稳态恒电位法测定高温合金的极化曲线,根据极化曲线确定合适的电解液与电解制度。电化学曲线采用cs电化学工作站来完成测定。测定出待测金属的极化曲线,从而得出其活性电解范围,将电流和电压控制在活性电解范围内有利于待检测样的快速电解制得夹杂物,这是确定电解制度和电解液配比的依据。

(3)透析膜预处理

选取孔隙小于20nm的透析膜,确保离子交换的同时能够充分保留从合金锭上解离出的非金属夹杂物。为了确保透析膜活性,需对其进行预处理。预处理过程为:称取0.292gedta溶在1000ml蒸馏水当中,再称取适量nahco3将上述溶液ph调节为8,将透析膜置于沸腾的上述溶液中煮沸10-15min。

(4)配制电解液

采用非水溶液电解,电解液按重量具体配比为:无水乙醇80%-95%,甲醇1%-8%,丙三醇1%-10%,柠檬酸1%-15%;无水乙醇、甲醇、丙三醇和柠檬酸的占比之和为100%。

(5)非水溶液电解

将步骤1所得的试样和电解装置连接好进行电解;电解时采用直流恒电位法,电流密度为10-60ma/cm2,持续电解8-12h,在水浴中控制电解温度为15-25℃,在电解过程中采用电解液自动注射泵以0.1-0.2l/h的速度向阳极电解槽中注射电解液,同时采用氩气注射泵以0.1-0.3l/min的速度向透析膜内溶液中通入氩气。本发明主要是对于待检测样中的夹杂物定性分析,故提取出夹杂物即可,不需大量提取进行定量分析,故而电解时间短,优点是流程简短、高效快捷。在电解过程中主要包括高温合金中的基体元素(ni、cr、co、w、mo等)的酸解过程。

采用非水溶液进行电解,能够充分保留夹杂物的原始形貌,防止其酸解,且根据合金的成分和含量不同,所采取的电解液中电解质的氧化性和还原性、溶液的酸度都不尽相同。

向透析膜内溶液通以0.1-0.3l/min的氩气,此过程可以将阳极泥中密度较轻的悬浮物和碳化物带到溶液表面,保护夹杂物原貌的同时,促进碳化物与非金属夹杂物的分离。

采用电解液自动注射泵以0.1-0.2l/h向阳极电解槽中注射电解液,确保电解槽在长时间电解过程中保持恒定的离子浓度,避免在电极反应的过程中带电离子参与反应导致反应中止,同时多余的电解液被收集到移液槽当中。

如果电解的试样在两个以上,可以采用串联的方式进行电解,控制变量,高效电解。

(6)提取物收集

电解完成后,取出透析膜,用吸管去除溶液上层的悬浊液,将其余溶液转移到1l的烧杯中,并对电解工件在乙醇溶液中进行超声震荡,将其表面阳极沉淀连同溶液全部收集于烧杯中。最后收集的夹杂物溶液包括两部分,一部分是透析膜内的夹杂物,另一部分是去除上层悬浊液并超声震荡后的溶液,两部分混合构成步骤7中的含夹杂物的溶液。

去除的上层悬浊液是金属中密度较小的一次碳化物以及除了非金属氧化物外的合金中的杂质。

(7)去除干扰项

将电解提取得到的含夹杂物溶液,经离心分离后将下层悬浊液(即非金属夹杂物)转移至250ml的三角瓶中,添加100ml、10%-30%的盐酸-乙醇溶液后在三角瓶上接回流冷凝器置于低温电炉上或沸水浴锅中,回流煮沸5-8h,这时mc(即一次碳化物)与部分基体被溶解,al2o3、mgo、tic、tin等被保留。

盐酸-乙醇溶液具体为:盐酸为溶质、乙醇为溶剂,盐酸占总溶液的质量分数为10%-30%;100ml该盐酸-乙醇溶液对应200ml-300ml上述离心后的溶液。

(8)夹杂物收集

将步骤7得到的含夹杂物的乙醇溶液采用直径60mm、孔径0.2μm的nylon(尼龙)材质有机滤膜进行真空抽滤,反复抽滤3-5次,后用酒精清洗滤膜,将附着在滤膜上溶于乙醇溶液的杂质离子洗去,最终得到的全部夹杂物均附着在有机滤膜上。

得到的非金属夹杂物为细小氧化物夹杂,高温合金中的非金属夹杂物主要为氧化物、氮化物及氮氧碳复合型夹杂物。

(9)扫描电镜分析

用sem与eds观测分析附着有夹杂物的有机滤膜,并利用能谱对其成分分析,从而确定电解所得到的非金属夹杂物的尺寸以及成分。

本发明通过采用非水弱酸溶液对于试样进行在微电流环境下进行电解提取,能够完全避免集体脱落问题从很大程度上去除干扰项,无损保留高温合金中的非金属夹杂物,实现高温合金中夹杂物的定性提取,为以后的高温合金非金属夹杂物的分析提供基础。

实施例1

本实施例以镍基高温合金gh4169为例,gh4169合金通过真空感应熔炼(vim)工艺生产。以下采用本发明实施例提供的镍基高温合金中非金属夹杂物的分离方法对gh4169合金中非金属夹杂物进行分离提取,具体步骤如下:

(1)试样制备:

采用机加工将合金锭加工为10×100mm(直径×高)的试样,将试样,放在丙酮溶液中利用超声波震荡清洗10min;

(2)测定电化学曲线

采用稳态恒电位法测定gh4169的极化曲线,确定其电解液中柠檬酸重量比为5%,电流密度为30ma/cm2

(3)透析膜预处理:

选取孔隙小于20nm的透析膜,确保能够充分保留从合金锭上解离出的非金属夹杂物。为了确保透析膜活性,需将其进行预处理。称取0.292gedta溶在1000ml蒸馏水当中,称取适量nahco3将上述溶液ph调节为8,将透析膜置于沸腾的上述溶液中煮沸15min。

(4)配制电解液

采用非水溶液电解,电解液按重量具体配比为:无水乙醇88%,丙三醇2%,甲醇5%,柠檬酸5%;

(5)非水溶液电解:

将步骤1所得的试样和电解装置连接好进行电解;电解时采用恒电位法,电流密度为30ma/cm2,电解8h,在水浴中控制电解温度在30℃,在电解过程中采用电解液自动注射泵以0.1l/h的速度向阳极电解槽中注射电解液,同时采用氩气注射泵以0.2l/min的速度向透析膜内溶液中通入氩气;

(6)提取物收集

电解完成后,取出透析膜,用吸管去除溶液上层的悬浊液,将其余溶液转移到1l的烧杯中,并对电解工件在乙醇溶液中进行超声震荡,将其表面阳极沉淀连同溶液全部收集于烧杯中;

(7)去除干扰项

将电解提取得到的含夹杂物溶液,经离心分离后将下层悬浊液转移至250ml的三角瓶中,添加100ml、质量浓度为20%的盐酸-乙醇溶液后在三角瓶上接回流冷凝器置于低温电炉上或沸水浴锅中,回流煮沸5h,这时mc与部分基体被溶解,al2o3、mgo、tic、tin被保留。

(8)夹杂物收集

将步骤7得到的含夹杂物的乙醇溶液采用直径60mm、孔径0.2μm的尼龙材质有机滤膜进行真空抽滤,反复抽滤5次,后用酒精清洗滤膜,洗去附着在滤膜上溶于乙醇溶液的杂质离子,最终得到的全部夹杂物均附着在有机滤膜上。

(9)扫描电镜分析:

用sem与eds观测分析附着有夹杂物的有机滤膜,如图2、图3所示,并利用能谱对其成分分析。从而确定电解所得到的非金属夹杂物尺寸在5-10μm,是由si-al-mg-o组成的颗粒状复合氧化物。

实施例2

本实施例以镍基高温合金gh4738为例,gh4738合金通过真空感应熔炼(vim)和电渣重熔(esr)工艺生产。以下采用本发明实施例提供的镍基高温合金中非金属夹杂物的分离方法对gh4738合金中非金属夹杂物进行分离提取,具体步骤如下:

(1)试样制备:

采用机加工将合金锭加工为10×100mm(直径×高)的试样,将试样,放在丙酮溶液中利用超声波震荡清洗10min;

(2)测定电化学曲线

采用稳态恒电位法测定gh4738的极化曲线,确定其电解液中柠檬酸重量比为15%,电流密度为60ma/cm2

(3)透析膜预处理:

选取孔隙小于20nm的透析膜,确保能够充分保留从合金锭上解离出的非金属夹杂物。为了确保透析膜活性,需将其进行预处理。称取0.292gedta溶在1000ml蒸馏水当中,称取适量nahco3将上述溶液ph调节为8,将透析膜置于沸腾的上述溶液中煮沸15min。

(4)配制电解液

采用非水溶液电解,电解液按重量具体配比为:无水乙醇80%,丙三醇2%,甲醇3%,柠檬酸15%;

(5)非水溶液电解:

将步骤1所得的试样和电解装置连接好进行电解;电解时采用恒电位法,电流密度为60ma/cm2,电解4h,在水浴中控制电解温度在30℃,在电解过程中采用电解液自动注射泵以0.1l/h的速度向阳极电解槽中注射电解液,同时采用氩气注射泵以0.2l/min的速度向透析膜内溶液中通入氩气;

(6)提取物收集

电解完成后,取出透析膜,用吸管去除溶液上层的悬浊液,将其余溶液转移到1l的烧杯中,并对电解工件在乙醇溶液中进行超声震荡,将其表面阳极沉淀连同溶液全部收集于烧杯中;

(7)去除干扰项

将电解提取得到的含夹杂物溶液,经离心分离后将下层悬浊液转移至250ml的三角瓶中,添加100ml、质量浓度为10%的盐酸-乙醇溶液后在三角瓶上接回流冷凝器置于低温电炉上或沸水浴锅中,回流煮沸5h,这时mc与部分基体被溶解,al2o3、mgo、tic、tin被保留。

(8)夹杂物收集

将步骤7得到的含夹杂物的乙醇溶液采用直径60mm、孔径0.2μm的尼龙材质有机滤膜进行真空抽滤,反复抽滤5次,后用酒精清洗滤膜,洗去附着在滤膜上溶于乙醇溶液的杂质离子,最终得到的全部夹杂物均附着在有机滤膜上。

(9)扫描电镜分析:

用sem与eds观测分析附着有夹杂物的有机滤膜,如图4、图5所示,并利用能谱对其成分分析。从而确定电解所得到的非金属夹杂物尺寸在3-7μm,其中包括氧化物、氮化物及其复合型夹杂物。

实施例3

本实施例以钴基高温合金gh159为例,gh159合金通过真空感应熔炼(vim)工艺生产。以下采用本发明实施例提供的钴基高温合金中非金属夹杂物的分离方法对gh159合金中非金属夹杂物进行分离提取,具体步骤如下:

(1)试样制备:

采用机加工将合金锭加工为10×100mm(直径×高)的试样,将试样,放在丙酮溶液中利用超声波震荡清洗10min;

(2)测定电化学曲线

采用稳态恒电位法测定gh159的极化曲线,确定其电解液中柠檬酸重量比为10%,电流密度为30ma/cm2

(3)透析膜预处理:

选取孔隙小于20nm的透析膜,确保能够充分保留从合金锭上解离出的非金属夹杂物。为了确保透析膜活性,需将其进行预处理。称取0.292gedta溶在1000ml蒸馏水当中,称取适量nahco3将上述溶液ph调节为8,将透析膜置于沸腾的上述溶液中煮沸15min。

(4)配制电解液

采用非水溶液电解,电解液按重量具体配比为:无水乙醇85%,丙三醇2%,甲醇3%,柠檬酸10%;

(5)非水溶液电解:

将步骤1所得的试样和电解装置连接好进行电解;电解时采用恒电位法,电流密度为30ma/cm2,电解10h,在水浴中控制电解温度在30℃,在电解过程中采用电解液自动注射泵以0.1l/h的速度向阳极电解槽中注射电解液,同时采用氩气注射泵以0.2l/min的速度向透析膜内溶液中通入氩气;

(6)提取物收集

电解完成后,取出透析膜,用吸管去除溶液上层的悬浊液,将其余溶液转移到1l的烧杯中,并对电解工件在乙醇溶液中进行超声震荡,将其表面阳极沉淀连同溶液全部收集于烧杯中;

(7)去除干扰项

将电解提取得到的含夹杂物溶液,经离心分离后将下层悬浊液转移至250ml的三角瓶中,添加100ml、质量浓度为10%的盐酸-乙醇溶液后在三角瓶上接回流冷凝器置于低温电炉上或沸水浴锅中,回流煮沸5h,这时mc与部分基体被溶解,al2o3、mgo、tic、tin被保留。

(8)夹杂物收集

将步骤7得到的含夹杂物的乙醇溶液采用直径60mm、孔径0.2μm的尼龙材质有机滤膜进行真空抽滤,反复抽滤5次,后用酒精清洗滤膜,洗去附着在滤膜上溶于乙醇溶液的杂质离子,最终得到的全部夹杂物均附着在有机滤膜上。

(9)扫描电镜分析:

用sem与eds观测分析附着有夹杂物的有机滤膜,并利用能谱对其成分分析。从而确定电解所得到的非金属夹杂物尺寸与类型。

以上对本申请实施例所提供的一种高温合金中非金属夹杂物的提取方法,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。

还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。

应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。

上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。


技术特征:

1.一种高温合金中非金属夹杂物的提取方法,其特征在于,所述方法的步骤包括:

s1、对高温合金试样进行非水弱酸溶液电解;电解时在高温合金试样的外周设置用于收集非金属夹杂物的透析膜;

电解时以高温合金试样作为阳极极进行电解;

电解采用直流恒电位法,电流密度为10-60ma/cm2,持续电解8-12h,电解温度为15-25℃;在电解过程中以0.1-0.2l/h的速度向阳极电解槽中注射电解液;

s2、采用盐酸-乙醇溶液对含有非金属夹杂物的溶液进行回流煮沸,实现干扰项的去除;

s3、采用真空抽滤的方式收集非金属夹杂物,再用乙醇溶液去除能够溶于乙醇的杂质离子,得到非金属夹杂物。

2.根据权利要求1所述的高温合金中非金属夹杂物的提取方法,其特征在于,s1中电解时采用的电解液的质量配比为:无水乙醇80%-95%,甲醇1%-8%,丙三醇1%-10%,柠檬酸1%-15%,且无水乙醇、甲醇、丙三醇和柠檬酸的占比之和为100%。

3.根据权利要求1所述的高温合金中非金属夹杂物的提取方法,其特征在于,电解时以0.1-0.3l/min的速度向透析膜内溶液中注入氩气,用于在保护非金属夹杂物原貌的同时促进碳化物与非金属夹杂物的分离。

4.根据权利要求1所述的高温合金中非金属夹杂物的提取方法,其特征在于,s2具体内容包括:对含有夹杂物的溶液进行离心并去除下层悬浊液,再回流煮沸5-8h,使碳化物被溶解。

5.根据权利要求1所述的高温合金中非金属夹杂物的提取方法,其特征在于,s3的具体内容包括:采用滤膜反复进行3-5次真空抽滤,后将附着在滤膜上溶于乙醇溶液的杂质离子洗去,得到最终的非金属夹杂物。

6.根据权利要求1所述的高温合金中非金属夹杂物的提取方法,其特征在于,所述透析膜在使用前需要进行预处理,所述预处理的过程包括:将透析膜置于预处理液中煮沸10-15min;所述预处理液为ph值为8的edta溶液。

7.根据权利要求1所述的高温合金中非金属夹杂物的提取方法,其特征在于,电解前需要对高温合金试样进行预处理,预处理的过程包括:先对高温合金试样进行表面抛光,再置于丙酮溶液中利用超声波震荡清洗10-15min。

8.根据权利要求1所述的高温合金中非金属夹杂物的提取方法,其特征在于,电解前测量高温合金试样的极化曲线,根据极化曲线确定电解液的配比与电解制度,再根据电解液配比和电解制度对高温合金试样进行电解。

9.根据权利要求8所述的高温合金中非金属夹杂物的提取方法,其特征在于,采用稳态恒电位法测量高温合金的极化曲线。

10.一种高温合金中非金属夹杂物的提取装置,其特征在于,所述装置能够实现如权利要求1-9任一所述的高温合金中非金属夹杂物的提取方法。

技术总结
本发明提供了一种高温合金中非金属夹杂物的提取方法,涉及金属材料技术领域,所提取的夹杂物纯度高,掺杂项少,能够实现较好的高温合金中非金属夹杂物定性提取的效果;该方法步骤包括:根据高温合金的极化曲线确定电解液的配比与电解制度;采用该电解液和电解制度对高温合金试样进行非水弱酸溶液电解;电解时在高温合金试样的外周设置用于收集非金属夹杂物的透析膜;采用盐酸‑乙醇溶液对含有非金属夹杂物的溶液进行回流煮沸,实现干扰项的去除;采用真空抽滤的方式收集非金属夹杂物,再用乙醇溶液去除能够溶于乙醇的杂志离子,得到非金属夹杂物。本发明提供的技术方案适用于高温合金非金属夹杂物提取的过程中。

技术研发人员:曲选辉;栾益锋;高小勇;章林;陈晓玮;徐浩然
受保护的技术使用者:北京科技大学
技术研发日:2020.02.12
技术公布日:2020.06.05

转载请注明原文地址: https://bbs.8miu.com/read-48052.html

最新回复(0)