本发明涉及对构成为能够切换定子绕组的接线状态的电动机进行驱动的电动机驱动装置。
背景技术:
空调机通过控制压缩机用的电动机的转速来调整制冷和制热能力。空调机要求节能性能的提高,在为家庭用的空调机的情况下,一般来说,针对中间制冷、中间制热、额定制冷、额定制热以及低温制热这五个条件的每一个来计算节能性能。中间制冷和中间制热是电动机进行低速旋转的低负荷区域,额定制冷、额定制热以及低温制热是电动机进行高速旋转的高负荷区域。优选电动机能够在较宽的转速区域内高效率化。
作为空调机的压缩机用的电动机,存在构成为能够切换定子绕组的接线状态的电动机。驱动能够切换定子绕组的接线状态的电动机的电动机驱动装置根据电动机的负荷状态的变化将定子绕组的接线状态切换为适当的状态,由此能够减少功率消耗从而实现高效率的运转(例如,参照专利文献1)。
作为能够切换定子绕组的接线状态的结构的电动机,存在构成为能够切换星形接线和三角形接线的装置、或构成为能够切换并联接线和串联接线的装置等。
例如,优选在对全年功率消耗的贡献度较高的低负荷条件的情况下,具体而言,在中间制冷和中间制热的情况下,空调机的压缩机用的电动机以星形接线的状态驱动,在高负荷条件的情况下,具体而言,在额定制冷、额定制热以及低温制热的情况下,以三角形接线的状态驱动。由此,能够实现可以提高低负荷条件下的效率并且也可以达成在高负荷条件下的高输出化的空调机。
这里,对于使用了永磁铁的电动机而言,若在定子绕组中流动的电流即绕组电流超过预先规定的允许值,则磁铁退磁。因此,驱动使用了永磁铁的电动机的电动机驱动装置具有将绕组电流抑制在允许值以下来防止磁铁退磁的保护功能。在驱动使用了永磁铁的电动机的电动机驱动装置中,大多使用以下控制,即:检测在逆变器中流动的电流,若检测出的电流在阈值以下,则使逆变器的动作继续,若检测出的电流超过了阈值,则使逆变器停止。
在对在逆变器中流动的电流进行检测并将其与阈值进行比较的情况下,检测出的电流与绕组电流之比根据接线状态而不同,因此需要根据接线状态使用不同的阈值。例如,在星形接线中,从逆变器输出的电流与绕组电流的大小相同,但在三角形接线中,从逆变器输出的电流为绕组电流的
在专利文献1中记载有下述电动机驱动装置,即:上述电动机驱动装置具有与定子绕组为三角形接线的情况对应的结构的比较电路、和与定子绕组为星形接线的情况对应的结构的比较电路,并且cpu(centralprocessingunit-中央处理器)使用与定子绕组的状态对应的比较电路中的比较结果来进行异常检测(参照专利文献1的段落0042、图14(b))。另外,在专利文献1还记载有下述电动机驱动装置,即:上述电动机驱动装置具有生成在定子绕组为星形接线的情况下用于与绕组电流进行比较的基准值、和在定子绕组为三角形接线的情况下用于与绕组电流进行比较的基准值的电路,并且cpu使用与定子绕组的状态对应的基准值与绕组电流的比较结果来进行异常检测(参照专利文献1的段落0048、0070、图14(c)、图14(d))。
专利文献1:日本特开2008-228513号公报
在应用专利文献1的图14(b)所记载的结构的情况下,使两个比较电路的各自的比较结果向cpu输入,cpu使用输入来的两个比较结果中的与接线状态对应的比较结果来进行控制。因此,存在需要两个cpu的输入端口的问题。另一方面,专利文献1的图14(c)和图14(d)所记载的电路构成为:通过晶体管使串联连接的两个电阻中的一个电阻短路,由此生成与两个接线状态分别对应的两个阶段的基准值,并将生成的基准值与绕组电流的比较结果向cpu输入,因此cpu的输入端口为一个即可。然而,数字晶体管的内部电阻的偏差较大,需要考虑偏差来设定常数。即,需要增大实际发生磁铁的退磁的绕组电流与基准值之差。因此,保护等级的精度、具体而言是否为在定子绕组中流动有过大的电流的状态的判定精度降低。其结果是,存在以下问题,即:实际上当在定子绕组中没有流动过大的电流的状态时对电动机的动作施加限制,从而不能使电动机运转至能力极限。
技术实现要素:
本发明是鉴于上述问题而完成的,其目的在于获得一种能够防止使用的cpu所需要的输入端口的数量增加,并且能够实现电动机的保护功能的高性能化的电动机驱动装置。
为了解决上述的课题并达成目的,本发明是驱动可切换定子绕组的接线状态的电动机的电动机驱动装置,其具备:接线切换部,其切换定子绕组的接线状态;逆变器,其生成向电动机供给的电力;控制装置,其控制接线切换部和逆变器;以及过电流保护电路,其防止超过预先规定的值的电流在电动机中持续流动。过电流保护电路具备多个判定电路,上述多个判定电路与定子绕组所采取的多个接线状态中的任意一个一对一地建立关联,并判定在逆变器中流动的电流是否为异常的值。并且,过电流保护电路具备:合成电路,其合成多个判定电路的各自的判定结果;和无效化电路,其使多个判定电路的一部分的判定电路的判定处理无效化,并从合成电路输出基于与所选择的定子绕组的接线状态建立了关联的判定电路的判定结果。在从合成电路输出的判定结果表示在逆变器中流动的电流为异常的值情况下,控制装置使逆变器停止。
本发明所涉及的电动机驱动装置起到能够防止使用的cpu所需要的输入端口的数量增加并且能够使电动机的保护功能高性能化的效果。
附图说明
图1是表示实施方式1所涉及的电动机驱动装置的一个例子的示意配线图。
图2是表示实施方式1所涉及的电动机驱动装置的接线切换部与电动机的各绕组的连接关系的一个例子的配线图。
图3是表示实施方式1所涉及的控制装置的示意结构的一个例子的框图。
图4是表示实施方式1所涉及的过电流保护电路的示意结构的一个例子的框图。
图5是表示实施方式1所涉及的过电流保护电路的一个例子的配线图。
图6是表示实施方式1所涉及的过电流保护电路的动作的一个例子的时序图。
图7是表示实施方式2所涉及的过电流保护电路的一个例子的配线图。
图8是表示实施方式3所涉及的过电流保护电路的一个例子的配线图。
图9是表示实施方式4所涉及的过电流保护电路的第二判定电路所具备的阈值生成电路的一个例子的图。
图10是表示实施方式4所涉及的过电流保护电路的动作的一个例子的时序图。
图11是表示实施方式5所涉及的过电流保护电路的示意结构的一个例子的框图。
图12是表示实施方式5所涉及的过电流保护电路的一个例子的配线图。
图13是表示实施方式5所涉及的过电流保护电路的动作的一个例子的时序图。
图14是表示实施方式6所涉及的过电流保护电路的第一判定电路所具备的阈值生成电路的一个例子的图。
图15是表示实施方式6所涉及的过电流保护电路的动作的一个例子的时序图。
图16是表示实施方式7所涉及的电动机驱动装置所具备的接线切换部与电动机的各绕组的连接关系的一个例子的配线图。
图17是表示实施方式8所涉及的电动机驱动装置所具备的接线切换部与电动机的各绕组的连接关系的一个例子的配线图。
具体实施方式
以下,基于附图对本发明的实施方式所涉及的电动机驱动装置详细地进行说明。此外,本发明并不限定于该实施方式。
实施方式1
图1是表示本发明的实施方式1所涉及的电动机驱动装置的一个例子的示意配线图。此外,在图1中,对于由电动机驱动装置驱动的电动机也一并记载。图1所示的实施方式1所涉及的电动机驱动装置2生成用于驱动电动机4的电力。
如图1所示,电动机驱动装置2具备转换器20、逆变器30、逆变器驱动电路32、接线切换部40、控制装置50以及过电流保护电路60。另外,逆变器30和逆变器驱动电路32安装于智能功率模块(ipm:intelligentpowermodule)12。在转换器20的输入侧连接有交流电源6,在逆变器30的输出侧连接有电动机4。电动机4是转子由永磁铁构成的永磁铁同步电动机,并且从逆变器30接受三相交流电的供给来进行驱动。
转换器20从交流电源6经由电抗器7接受交流电,对交流电进行整流、平滑化等并输出直流电力。转换器20作为向逆变器30供给直流电力的直流电源而发挥作用。
逆变器30的输入端子与转换器20的输出端子连接。另外,逆变器30的u相的输出端子经由u相的输出线30u与电动机4的绕组4u的一端连接。逆变器30的v相的输出端子经由v相的输出线30v与电动机4的绕组4v的一端连接。逆变器30的w相的输出端子经由w相的输出线30w与电动机4的绕组4w的一端连接。
逆变器30具备分别设置于六个支路的开关元件,通过使各开关元件进行接通、断开动作来生成三相交流电并向电动机4供给。具体而言,逆变器30根据从逆变器驱动电路32输入的与各支路对应的驱动信号sr#1~sr#6的状态,将六个支路的开关元件设为接通状态或者断开状态,从而生成用于使电动机4驱动的三相交流电。对驱动信号sr#1~sr#6进行后述。
在转换器20与逆变器30之间设置有过电流保护电路60,该过电流保护电路60基于在逆变器30中流动的电流,当在电动机4的定子绕组中流动有过大的电流的情况下,对其进行检查,从而消除在电动机4的定子绕组中流动有过大的电流的状态。即,过电流保护电路60为了保护电动机4,防止超过预先规定的值的过大的电流在电动机4的定子绕组中持续流动而导致构成转子的永磁铁退磁的情况。
逆变器驱动电路32基于后述的从控制装置50输入的控制信号,具体而言,基于指示逆变器30的各支路的开关元件的状态的控制信号sm#1~sm#6,生成向逆变器30输入的上述的驱动信号sr#1~sr#6。控制信号sm#1~sm#6是对逆变器30的各支路的开关元件进行接通断开控制的接通断开控制信号。逆变器驱动电路32生成的控制信号sr#1~sr#6例如是pwm(pulsewidthmodulation-脉冲宽度调制)信号。
电动机4构成为能够在定子绕组的接线状态为多个接线状态中的任一状态下运转,并通过电动机驱动装置2切换接线状态。图1所示的电动机4在定子绕组为三角形接线或星形接线的状态下运转。以下,对多个接线状态为星形接线状态和三角形接线状态的情况的例子进行说明。
在电动机4能够在星形接线状态和三角形接线状态的任一状态下运转的情况下,电动机驱动装置2的接线切换部40使用能够向星形接线和三角形接线的任意一个切换的结构。即,接线切换部40在星形接线与三角形接线之间切换电动机4的定子绕组的状态。边参照图2边对接线切换部40的结构、以及电动机4的各绕组与接线切换部40的连接关系详细地进行说明。图2是表示实施方式1所涉及的电动机驱动装置2的接线切换部40与电动机4的各绕组的连接关系的一个例子的配线图。
如图2所示,电动机4具备绕组4u、4v以及4w,绕组4u、4v以及4w分别具有三个相,即u相、v相以及w相。绕组4u、4v以及4w的第一端部4ua、4va以及4wa分别与外部端子4uc、4vc以及4wc连接,另外,绕组4u、4v以及4w的第二端部4ub、4vb以及4wb分别与外部端子41ud、41vd以及41wd连接,从而能够与电动机4的外部进行连接。在外部端子4uc、4vc以及4wc分别连接有逆变器30的输出线30u、30v以及30w。
接线切换部40由三个切换开关41u、41v以及41w构成。三个切换开关41u、41v以及41w分别与三个相对应设置。
使用电磁驱动的机械开关作为切换开关41u、41v以及41w。这样的开关为被称作继电器、接触器等的装置,在未图示的励磁线圈中流动有电流时和未流动有电流时则采取不同的状态。
切换开关41u具备常开接点41ua、常闭接点41ub以及共用接点41uc。切换开关41u的共用接点41uc经由导线44u与外部端子41ud连接,常闭接点41ub与中性点节点42连接。另外,常开接点41ua与逆变器30的v相的输出线30v连接。
切换开关41v具备常开接点41va、常闭接点41vb以及共用接点41vc。切换开关41v的共用接点41vc经由导线44v与外部端子41vd连接,常闭接点41vb与中性点节点42连接。另外,常开接点41va与逆变器30的w相的输出线30w连接。
切换开关41w具备常开接点41wa、常闭接点41wb以及共用接点41wc。切换开关41w的共用接点41wc经由导线44w与外部端子41wd连接,常闭接点41wb与中性点节点42连接。另外,常开接点41wa与逆变器30的u相的输出线30u连接。
切换开关41u、41v以及41w通常为图2所示的状态。通常的状态是指电流不在上述的励磁线圈(未图示)中流动的状态。因此,通常来说,切换开关41u、41v以及41w为切换至常闭接点侧的状态,即共用接点41uc、41vc以及41wc分别与常闭接点41ub、41vb以及41wb连接的状态。在该情况下,电动机4的定子绕组的状态为星形接线。若电流在切换开关41u、41v以及41w各自所具有的励磁线圈中流动,则切换开关41u、41v以及41w变为与图2所示的状态相反的状态,即共用接点41uc、41vc以及41wc分别与常开接点41ua、41va以及41wa连接的状态。在该情况下,电动机4的定子绕组的状态为三角形接线。
接线切换部40的切换开关41u、41v以及41w的状态由控制装置50控制。在由控制装置50生成的接线选择信号sw表示星形接线的状态的情况下,切换开关41u、41v以及41w变为共用接点(41uc、41vc、41wc)与常闭接点(41ub、41vb、41wb)连接的状态。另外,在由控制装置50生成的接线选择信号sw表示三角形接线的状态的情况下,切换开关41u、41v以及41w变为共用接点(41uc、41vc、41wc)与常开接点(41ua、41va、41wa)连接的状态。
控制装置50控制接线切换部40来进行切换电动机4的定子绕组的接线状态的控制,并且对逆变器30进行接通断开控制,从而使交流电供给至电动机4。控制装置50生成控制信号sm#1~sm#6并向逆变器驱动电路32供给,使逆变器驱动电路32生成与控制信号sm#1~sm#6对应的驱动信号sr#1~sr#6,由此控制逆变器30的各开关元件。
以下,对控制装置50对逆变器30进行pwm控制的情况的例子进行说明。在对逆变器30进行pwm控制的情况下,控制装置50将pwm信号作为控制信号sm#1~sm#6向逆变器驱动电路32供给。在该情况下,能够在逆变器30产生频率和电压可变的三相交流电。作为控制装置50对逆变器30进行的接通断开控制的另一个例子,存在矩形波驱动控制。在进行矩形波驱动控制的情况下,控制装置50例如生成用于向各相绕组依次120度通电的控制信号并向逆变器驱动电路32供给。在该情况下,能够在逆变器30产生频率可变的三相交流电。
如图1和图3所示,控制装置50具备微控制器(微型控制器)52。微控制器52构成为包括cpu和存储器。图3是表示控制装置50的结构例的图。如图3所示,控制装置50具备通过微控制器52实现的接线切换控制部521、pwm信号生成部524、强制切断部525以及切换判定部526。强制切断部525以外的接线切换控制部521、pwm信号生成部524以及切换判定部526作为这些各功能部通过微控制器52内的cpu执行用于进行动作的程序来实现。
接线切换控制部521生成接线选择信号sw。该接线选择信号sw是指定应该使电动机4的定子绕组成为星形接线还是成为三角形接线的控制信号。接线切换控制部521控制电动机4的定子绕组的接线状态,使得在电动机4的运转频率为预先规定的频率以下的情况下为星形接线,在电动机4的运转频率高于预先规定的频率的情况下为三角形接线。接线切换控制部521生成接线选择信号sw,上述接线选择信号sw例如在指定星形接线时为低电平,在指定三角形接线时为高电平。利用从逆变器30向电动机4流动的各相的电流的检测值、从逆变器30输出的各相的电压、从电动机驱动装置2的外部输入的频率指令等来求出电动机4的运转频率。电动机4的运转频率可以由接线切换控制部521求出,也可以构成为由省略图示的其他的处理部求出并使其向接线切换控制部521输入。此外,在图3中省略了向接线切换控制部521的输入信号的记载。
将接线选择信号sw向接线切换部40供给,用于切换开关41u、41v以及41w的状态的控制。在形成为接线切换控制部521生成在指定星形接线的情况下电平为低,在指定三角形接线的情况下电平为高的接线选择信号sw的结构的情况下,若接线选择信号sw为低电平,则切换开关41u、41v以及41w为图2所示的状态,即,将共用接点与常闭接点连接的状态。另外,若接线选择信号sw为高电平,则切换开关41u、41v以及41w为与图2所示的状态相反的状态,即,将共用接点与常开接点连接的状态。
接线切换控制部521还将反相接线选择信号ss向过电流保护电路60供给。反相接线选择信号ss采取与接线选择信号sw相反的逻辑值。即,在接线选择信号sw为低电平时,反相接线选择信号ss为高电平,在接线选择信号sw为高电平时,反相接线选择信号ss为低电平。
pwm信号生成部524输出用于对逆变器30进行pwm控制的控制信号sm#1~sm#6。以下,将控制信号sm#1~sm#6称为pwm信号sm#1~sm#6。pwm信号sm#1~sm#6分别用于逆变器30的六个支路的开关元件的接通断开控制。pwm信号sm#1~sm#6在欲将分别对应的开关元件维持在接通状态的期间维持高电平的状态,在欲将分别对应的开关元件维持在断开状态的期间维持低电平的状态。pwm信号生成部524生成的pwm信号sm#1~sm#6经由强制切断部525向逆变器驱动电路32供给。
如上述那样,逆变器驱动电路32基于pwm信号sm#1~sm#6,生成并输出用于使逆变器30的六个支路的开关元件接通或者断开的驱动信号sr#1~sr#6。但是,逆变器驱动电路32与ipm12的过电流切断端口cin连接,若向过电流切断端口cin输入的信号的电平为高,则生成使逆变器30的所有的支路的开关元件断开的信号并作为驱动信号sr#1~sr#6输出,而不受pwm信号sm#1~sm#6的状态的影响。
驱动信号sr#1~sr#6是分别与pwm信号sm#1~sm#6对应生成的信号,并控制对应的开关元件的状态,使得在对应的pwm信号为高电平的期间,对应的开关元件维持接通状态,在对应的pwm信号为低电平的期间,对应开关元件维持断开状态。pwm信号sm#1~sm#6是逻辑电路的信号电平的大小,具体而言是收纳于0~5v的范围的大小。与此相对地,驱动信号sr#1~sr#6是为了控制开关元件所需要的电压电平,例如是在高电平时为15v的大小。
当在电动机4中流动的电流的值为正常的状态下,强制切断部525将从pwm信号生成部524输入的pwm信号sm#1~sm#6保持原样向逆变器驱动电路32输出。另一方面,当在电动机4中流动的电流的值为异常的状态的情况下,具体而言,在电流的值超过了规定的基准值的状态的情况下,强制切断部525不向逆变器驱动电路32输出从pwm信号生成部524输入的pwm信号sm#1~sm#6。
强制切断部525与作为微控制器52的动作切断端口的端口poe连接。向端口poe输入的信号为过电流检测信号se,该过电流检测信号se当在电动机4中流动的电流的值为正常的状态下为低电平,当在电动机4中流动的电流的值为异常的状态下为高电平。针对向端口poe输入的过电流检测信号se的详细情况另行说明。对于强制切断部525而言,若向端口poe的输入信号为高电平,则停止从pwm信号生成部524输入的pwm信号sm#1~sm#6向逆变器驱动电路32的输出。若逆变器驱动电路32不供给pwm信号sm#1~sm#6,则生成使逆变器30的所有的支路的开关元件断开的信号并作为驱动信号sr#1~sr#6输出。其结果是,逆变器30的所有的支路的开关元件断开。所有的支路的开关元件断开的结果是,逆变器30变为停止状态,并停止交流电的输出。
强制切断部525由硬件构成,该硬件根据由微控制器52执行的控制程序独立地动作。根据向动作切断端口(端口poe)输入的信号的状态,而使在pwm信号生成部524生成的pwm信号sm#1~sm#6的输出停止的处理通过由硬件构成的强制切断部525进行,而不经由基于微控制器52的软件的处理,因此会高速地进行。例如,强制切断部525通过向开关插入传送pwm信号sm#1~sm#6的各信号线而实现,上述开关在向端口poe的输入信号为低电平的情况下维持关闭的状态,若向端口poe的输入信号变为高电平,则变为打开的状态。
切换判定部526基于在后述的过电流保护电路60生成的两个基准值vref1与vref2中的基准值vref2、和接线选择信号sw,判定在对在电动机4的定子绕组中流动有过电流的状态进行检查的处理中使用的基准值是否正常地切换为与定子绕组的接线状态对应的值。即,在进行是否为在电动机4的定子绕组中流动有过电流的状态的判定的过电流保护电路60中,切换判定部526判定是否使用与定子绕组的接线状态对应的正确的基准值来进行正确的保护动作。
在基准值vref2为不与由接线选择信号sw表示的定子绕组的接线状态对应的值的情况下,切换判定部526对pwm信号生成部524指示pwm信号的输出停止,并使来自pwm信号生成部524的pwm信号sm#1~sm#6的输出停止。若逆变器驱动电路32不供给pwm信号sm#1~sm#6,则使逆变器30的所有的支路的开关元件断开。开关元件断开的结果是,逆变器30变为停止状态,从而停止交流电的输出。也可以构成为:在从切换判定部526接受了pwm信号的输出停止的指示的情况下,pwm信号生成部524将所有pwm信号sm#1~sm#6设为低电平,从而使逆变器30的所有的支路的开关元件断开。
像以上这样控制装置50重复进行用于使逆变器30停止的处理是为了在产生异常的情况下更高速并且更可靠地进行逆变器30的动作。
接下来,边参照图4和图5边对过电流保护电路60进行说明。图4是表示实施方式1所涉及的过电流保护电路60的示意结构的一个例子的框图,图5是表示实施方式1所涉及的过电流保护电路60的一个例子的配线图。
如图4所示,过电流保护电路60具备电流检测电路61、第一判定电路62、第二判定电路63、无效化电路65以及合成电路66。第一判定电路62具备阈值生成电路621和比较器622,第二判定电路63具备阈值生成电路631和比较器632。比较器622和632例如由运算放大器构成。
(电流检测电路61)
电流检测电路61对在连结图1所示的转换器20与逆变器30的直流母线中流动的电流进行检测,并将表示检测结果的电流值信号sc向第一判定电路62的比较器622和第二判定电路63的比较器632输出。
电流检测电路61由图5所示的电阻r611和平滑电路612构成。
电阻r611插入将转换器20的输出端子与逆变器30的输入端子连结的母线,并且第一端部与地线连接。
如图5所示,平滑电路612具备电阻r613和r614、以及电容器c615。电阻r613的第一端部与电阻r611的第二端部连接。电阻r614的第一端部与输出控制电压vd的控制电源连接,电阻r614的第二端部与电阻r613的第二端部连接。电容器c615的第一端子与电阻r613的第二端部连接,电容器c615的第二端子与地线连接。
在电流检测电路61中,将电阻r611的两端间的电压平滑化后的电压呈现在电容器c615的两端子间,电容器c615的两端子间的电压作为表示电流检测值的信号即电流值信号sc被供给至第一判定电路62的比较器622和第二判定电路63的比较器632。
(第一判定电路62)
第一判定电路62判定在图1所示的电动机4的定子绕组为三角形接线的情况下在定子绕组中是否流动有过大的电流,并向合成电路66输出判定结果。
第一判定电路62的阈值生成电路621由图5所示的电阻r623和r624、以及平滑用的电容器c625构成。电阻r623和r624串联连接从而形成分压电路。
电阻r623的第一端部与输出控制电压vd的控制电源连接,电阻r624的第一端部与电阻r623的第二端部连接,电阻r624的第二端部与地线连接。电容器c625与电阻r624并联连接。
在阈值生成电路621中,从控制电源输出的控制电压vd在由电阻r623和r624构成的分压电路中被分压,与分压电路的分压比相应的电压vtδ呈现在电阻r623与电阻r624的连接点,即呈现在分压电路的分压节点。电压vtδ为三角形接线用的阈值。将电压vtδ作为第一基准值即基准值vref1向作为比较器622的非反相输入端子的 端子输入。将三角形接线用的阈值设为第一阈值。呈现在电阻r623与电阻r624的连接点的电压vtδ由以下的公式(1)表示。
vtδ=vd×r624/(r623 r624)…(1)
此外,在公式(1)中,“r○○○”表示电阻值。例如,公式(1)的“r624”表示电阻r624的电阻值。在后述的公式(2)以后的各数学表达式中也相同。
从电流检测电路61向作为比较器622的反相输入端子的-端子输入电流值信号sc。比较器622将电流值信号sc与基准值vref1进行比较,若电流值信号sc大于基准值vref1,则将向合成电路66输出的信号设为低电平,若电流值信号sc在基准值vref1以下,则将向合成电路66输出的信号设为高电平。比较器622向合成电路66输出的信号是表示基于第一判定电路62的判定结果的信号。
(第二判定电路63)
第二判定电路63判定在图1所示的电动机4的定子绕组为星形接线的情况下在定子绕组中是否流动有过大的电流,并将判定结果向合成电路66输出。
第二判定电路63的阈值生成电路631由图5所示的电阻r633和r634、以及平滑用的电容器c635构成。电阻r633和r634串联连接而形成分压电路。
电阻r633的第一端部与输出控制电压vd的控制电源连接,电阻r634的第一端部与电阻r633的第二端部连接,电阻r634的第二端部与地线连接。电容器c635与电阻r634并联连接。
在阈值生成电路631中,从控制电源输出的控制电压vd在由电阻r633和r634构成的分压电路中被分压,与分压电路的分压比相应的电压vty呈现在电阻r633与电阻r634的连接点,即呈现在分压电路的分压节点。电压vty为星形接线用的阈值。将电压vty作为第二基准值即基准值vref2向作为比较器632的非反相输入端子即 端子输入。将星形接线用的阈值设为第二阈值。呈现在电阻r633与电阻r634的连接点的电压vty由以下的公式(2)表示。
vty=vd×r634/(r633 r634)…(2)
从电流检测电路61向作为比较器632的反相输入端子的-端子输入电流值信号sc。比较器632将电流值信号sc与基准值vref2进行比较,若电流值信号sc大于基准值vref2,则将向合成电路66输出的信号设为低电平,若电流值信号sc在基准值vref2以下,则将向合成电路66输出的信号设为高电平。比较器632向合成电路66输出的信号是表示基于第二判定电路63的判定结果的信号。
这里,对上述的vtδ与vty的关系进行说明。使vtδ与vty满足以下的公式(3)的关系。
即,将电阻r623、r624、r633以及r634的各自的电阻值设定为满足公式(3)。
此外,也可以构成为vtδ为小于vty的
(无效化电路65)
在上述的反相接线选择信号ss为高电平的情况下,无效化电路65使第二判定电路63中的判定结果无效化。无效化电路65由图5所示的npn型的数字晶体管q651构成。数字晶体管q651的发射极和集电极分别与构成第二判定电路63的阈值生成电路631的电阻r633的两端连接,即与电阻r633的第一端部和第二端部连接。
向数字晶体管q651的基极输入从控制装置50输出的反相接线选择信号ss。在反相接线选择信号ss为高电平的情况下,即在电动机4的定子绕组为星形接线的情况下,数字晶体管q651为断开状态。另外,在反相接线选择信号ss为低电平的情况下,即在电动机4的定子绕组为三角形接线的情况下,数字晶体管q651为接通状态。
在数字晶体管q651为断开状态的情况下,第二判定电路63的阈值生成电路631生成由上述的公式(2)表示的阈值vty,并作为基准值vref2使其向比较器632的 端子输入。
另一方面,在数字晶体管q651为接通状态的情况下,对于阈值生成电路631而言,电阻r633通过数字晶体管q651而短路,因此生成与控制电压vd相近的电位,具体而言生成与控制电压vd相比仅降低了相当于数字晶体管q651接通时的发射极-集电极间的电压下降量的量的电压。若将数字晶体管q651为接通状态时的发射极-集电极间的电压下降量设为von,并将此时阈值生成电路631生成的电压设为vp,则为vp=vd-von。即,对于阈值生成电路631而言,若数字晶体管q651变为接通状态,则代替由上述的公式(2)表示的阈值vty而生成vp=vd-von,将该vp作为基准值vref2并使其向比较器632的 端子输入。在该情况下,比较器632对从 端子输入的vp=vd-von与从-端子输入的电流值信号sc进行比较,并向合成电路66输出比较结果。
如以上这样,在数字晶体管q651为断开状态时,使用阈值vty作为基准值vref2,在数字晶体管q651为接通状态时,使用vp=vd-von作为基准值vref2。
将阈值生成电路631输出的基准值vref2也向图3所示的控制装置50的切换判定部526输入,并在切换判定部526的判定处理中使用。如上述那样,切换判定部526进行的判定处理是对在进行在电动机4的定子绕组中是否流动有过电流的状态的判定的过电流保护电路60中,是否使用与定子绕组的接线状态对应的正确的基准值进行判定的处理。
(合成电路66)
合成电路66合成第一判定电路62中的判定结果与第二判定电路63中的判定结果,并生成过电流检测信号se。
合成电路66由图5所示的线联或门电路661和反相电路662构成。
线联或门电路661由电阻r663构成。电阻r633的第一端部与输出控制电压vd的控制电源连接,第二端部与比较器622的输出端子和比较器632的输出端子连接。
在来自比较器622的输出信号与来自比较器632的输出信号的至少一方为低电平的情况下,线联或门电路661将向反相电路662的输入设为低电平。另外,在来自比较器622的输出信号和来自比较器632的输出信号两者均为高电平的情况下,线联或门电路661将向反相电路662的输入设为高电平。此外,线联或门电路661的输出部是电阻r633的第二端部。
反相电路662由数字晶体管q664和电阻r665构成。数字晶体管q664的发射极端子与输出控制电压vd的控制电源连接,数字晶体管q664的基极端子与作为线联或门电路661的输出部的电阻r663的第二端部连接。数字晶体管q664的集电极端子与电阻r665的第一端部连接。电阻r665的第二端部与地线连接。
在数字晶体管q664的集电极端子呈现有使从线联或门电路661向基极端子输入的信号的逻辑状态反相后的信号,该信号是过电流检测信号se。
如图1和图3所示,将作为过电流保护电路60的输出的过电流检测信号se向ipm12的过电流切断端口cin和以及控制器52的动作切断端口(端口poe)输入。
若向ipm12的过电流切断端口cin输入的过电流检测信号se变为高电平,则逆变器驱动电路32将所有向逆变器30输出的驱动信号sr#1~sr#6设为低状态,并使逆变器30的所有的支路的开关元件断开。
另外,若向微控制器52的动作切断端口(端口poe)输入的过电流检测信号se变为高电平,则控制装置50的强制切断部525停止向逆变器驱动电路32输出在pwm信号生成部524生成的pwm信号sm#1~sm#6。其结果是,不向逆变器驱动电路32供给pwm信号,逆变器驱动电路32使逆变器30的所有的支路的开关元件断开。
这样,在本实施方式所涉及的电动机驱动装置2中,若从过电流保护电路60输出的过电流检测信号se变为高电平,则重复进行使逆变器30停止的处理。
以下,边参照图6边对过电流保护电路60的第一判定电路62、第二判定电路63以及合成电路66的动作进行说明。
向作为无效化电路65的数字晶体管q651的基极供给的反相接线选择信号ss如上述那样从控制装置50的接线切换控制部521输出。对于该反相接线选择信号ss而言,在电动机4的定子绕组为星形接线的情况下,如图6的(a)所示为高电平,在三角形接线的情况下,如图6的(b)所示为低电平。因此,对于数字晶体管q651而言,在电动机4的定子绕组为星形接线的情况下如图6的(a)所示为断开,在三角形接线时的情况下如图6的(b)所示为接通。
因此,对于构成第二判定电路63的比较器632的 端子而言,在电动机4的定子绕组为星形接线的情况下向其输入上述的vty作为基准值vref2(参照图6的(a)),在三角形接线的情况下向其输入上述的vp(=vd-von)作为基准值vref2(参照图6的(b))。
另一方面,不受电动机4的定子绕组的状态的影响,即无论电动机4的定子绕组是星形接线与三角形接线的哪一种,都向构成第一判定电路62的比较器622的 端子输出上述的vtδ作为基准值vref1(参照图6的(a)和(b))。
在电动机4的定子绕组为星形接线的情况下,如上述那样,向比较器632的 端子输入的基准值vref2为vty(参照图6的(a))。另外,存在vty<vtδ的关系。因此,若逆变器30的输入电流逐渐增大,随之电流值信号sc也逐渐增大,则在某个时刻,比较器632判定为电流值信号sc大于基准值vref2,使输出信号从高电平变化为低电平。因此,在该时刻,线联或门电路661的输出变为低电平。其结果是,作为反相电路662的输出、即合成电路66的输出的过电流检测信号se变为高电平。此外,在比较器632使输出信号从高电平变化为低电平的时刻,电流值信号sc小于基准值vref1(=vtδ),因此比较器622的输出信号维持高电平。
这样,在电动机4的定子绕组为星形接线的情况下,在电流值信号sc超过了星形接线用所规定的阈值vty的时刻,过电流保护电路60使过电流检测信号se从低电平变化为高电平。
在电动机4的定子绕组为三角形接线的情况下,如上述那样,向比较器632的 端子输入的基准值vref2为vp(=vd-von)(参照图6的(b))。电流值信号sc构成为不超过vp,比较器632的输出信号维持高电平。另外,存在vtδ<vp的关系。因此,若逆变器30的输入电流逐渐增大,随之电流值信号sc逐渐增大,则在某个时刻,比较器622判定为电流值信号sc大于基准值vref1,使输出信号从高电平变化为低电平。因此,在该时刻,线联或门电路661的输出为低电平。其结果是,作为反相电路662的输出、即合成电路66的输出的过电流检测信号se为高电平。
这样,在电动机4的定子绕组为三角形接线的情况下,在电流值信号sc超过了三角形接线用所规定的阈值vtδ的时刻,过电流保护电路60使过电流检测信号se从低电平变化为高电平。
如以上这样,在电动机4的定子绕组为三角形接线的情况下,使第二判定电路63中的使用了作为与星形接线对应的基准值vref2的阈值vty的比较处理无效化。因此,在电动机4的定子绕组为星形接线与三角形接线的任意一个的情况下,都能够基于适合于各个情况的阈值与电流值信号sc的比较结果进行过电流检查,从而保护电动机4。“适合于各个情况的阈值”为“与各个接线状态对应的阈值”。
此外,若过电流检测信号se变为高电平,则如上述那样逆变器30停止,其结果是,电流值信号sc降低,但在图6中,为了易于理解比较器622和632的动作,使电流值信号sc不降低。对于后述的图10、图13以及图15也相同。
如上述那样,用于使第二判定电路63中的比较处理无效化的无效化电路65能够由数字晶体管构成。数字晶体管价格低廉,因此能够抑制成本。并且,判定电路62和63能够由比较器、电阻等构成,而上述比较器由价格相对低廉的运算放大器构成,因此能够抑制成本。
另外,判定电路62和63中的阈值vtδ和vty的生成不受数字晶体管的电路常数的影响。因此,能够准确地进行阈值的生成和使用了阈值的比较。因此,能够高精度地进行过电流保护。由于能够高精度地进行过电流保护,因此能够针对退磁电流尽可能高地设定过电流保护水平,能够实现高输出化。
在设置有多个判定电路的情况下,若欲向微控制器和ipm输入上述多个判定电路的输出,则在微控制器和ipm需要多个输入端口。但是,一般的微控制器、即通用产品的微控制器只具备一个相当于上述的动作切断端口(端口poe)的输入端口。另外,通用产品的ipm只具备一个相当于上述的过电流切断端口cin的输入端口。因此,若构成为将多个判定电路的输出保持原样地向微控制器和ipm输入,则存在不能使用通用产品的微控制器和ipm的问题。与此相对地,在本实施方式所涉及的电动机驱动装置2中,合成在多个判定电路中的判定结果并使其向微控制器52和ipm12输入,因此作为微控制器能够使用只具备一个相当于动作切断端口(端口poe)的输入端口的微控制器,且作为ipm能够使用只具备一个相当于过电流切断端口cin的输入端口的ipm。
另外,过电流保护电路60特别是第一判定电路62和第二判定电路63由硬件构成,因此能够高速地进行用于保护的动作。
并且,控制装置50的强制切断部525由硬件构成,根据微控制器52的控制程序独立地动作,因此能够高速地进行动作。另外,即使在微控制器52失控的情况下,强制切断部525也能够使pwm信号sm#1~sm#6向逆变器驱动电路32的供给可靠地停止。
并且,控制装置50的切换判定部526基于在过电流保护电路60的第二判定电路63生成的基准值vref2,检查在过电流保护电路60中是否正进行与电动机4的定子绕组的接线状态对应的正确的保护动作,在未进行正确的保护动作的情况下,停止驱动信号sr#1~sr#6向逆变器驱动电路32的供给。因此,能够实现可靠性较高的系统。
如以上这样,本实施方式所涉及的电动机驱动装置具备:第一判定电路,其在驱动的电动机的定子绕组为作为第一接线状态的三角形接线的情况下,判定在定子绕组中是否流动有过大的电流;和第二判定电路,其在驱动的电动机的定子绕组为作为第二接线状态的星形接线的情况下,判定在定子绕组中是否流动有过大的电流。电动机驱动装置还具备:合成电路,其对第一判定电路中的判定结果与第二判定电路中的判定结果进行合成;和无效化电路,其在驱动的电动机的定子绕组为三角形接线的情况下,使基于第二判定电路的判定处理无效化。电动机驱动装置还具备控制装置,该控制装置当在合成电路中生成的信号表示在电动机的定子绕组中流动有过大的电流的状态的情况下,控制逆变器,使得用于驱动电动机的电力的生成停止。根据本实施方式所涉及的电动机驱动装置,使用与定子绕组的状态对应的适当的阈值来进行对在定子绕组中是否流动有过大的电流的判定处理,因此能够实现防止构成电动机的转子的永磁铁退磁的保护功能的高性能化。另外,具备合成多个判定结果并作为一个信号输出的合成电路,因此构成控制装置的微控制器的cpu能够使判定结果输入的输入端口的数量为一个即可。因此,能够防止使用的cpu所需要的输入端口的数量增加,并且可实现能够实现保护电动机的保护功能的高性能化的电动机驱动装置。
实施方式2
接下来,对实施方式2所涉及的电动机驱动装置进行说明。实施方式2所涉及的电动机驱动装置的整体结构与实施方式1所涉及的电动机驱动装置2相同(参照图1)。以下,为了便于说明,将实施方式2所涉及的电动机驱动装置称作电动机驱动装置2a。实施方式2所涉及的电动机驱动装置2a与实施方式1所涉及的电动机驱动装置1的差异在于过电流保护电路。
图7是表示实施方式2所涉及的电动机驱动装置2a的过电流保护电路60a的结构例的图。过电流保护电路60a具备电流检测电路61、第一判定电路62a、第二判定电路63a、无效化电路65以及合成电路66a。过电流保护电路60a的电流检测电路61以及无效化电路65与图5所示的实施方式1所涉及的过电流保护电路60的电流检测电路61以及无效化电路65相同。因此,对于电流检测电路61和无效化电路65省略说明。
第一判定电路62a与实施方式1所涉及的过电流保护电路60的第一判定电路62相同,具备阈值生成电路621和比较器622。实施方式1所涉及的第一判定电路62与第一判定电路62a的差异在于阈值生成电路621与比较器622的连接关系。具体而言,在实施方式1所涉及的第一判定电路62中,构成为使阈值生成电路621生成的基准值vref1向比较器622的 端子输入,并使来自电流检测电路61的电流值信号sc向比较器622的-端子输入,但在第一判定电路62a中,使基准值vref1向比较器622的-端子输入,并使电流值信号sc向比较器622的 端子输入。
第二判定电路63a与实施方式1所涉及的过电流保护电路60的第二判定电路63相同,具备阈值生成电路631和比较器632。实施方式1所涉及的第二判定电路63与第二判定电路63a的差异在于阈值生成电路631与比较器632的连接关系。具体而言,在实施方式1所涉及的第二判定电路63中,构成为使阈值生成电路631生成的基准值vref2向比较器632的 端子输入,并使来自电流检测电路61的电流值信号sc向比较器632的-端子输入,但在第二判定电路63a中,使基准值vref2向比较器632的-端子输入,并使电流值信号sc向比较器632的 端子输入输入。
合成电路66a由二极管或门电路671构成。二极管或门电路671具备电阻r672和r673、二极管d674和d675、以及电阻r676。对于电阻r672而言,第一端部与输出控制电压vd的控制电源连接,第二端部与比较器622的输出端子以及二极管d674的阳极连接。对于二极管d674而言,阳极与比较器622的输出端子以及电阻r672的第二端部连接,阴极与电阻r676的第一端部以及二极管d675的阴极连接。对于电阻r673而言,第一端部与输出控制电压vd的控制电源连接,第二端部与比较器632的输出端子以及二极管d675的阳极连接。对于二极管d675而言,阳极与比较器632的输出端子以及电阻r673的第二端部连接,阴极与电阻r676的第一端部以及二极管d674的阴极连接。电阻r676的第二端部与地线连接。
对于二极管或门电路671而言,在来自比较器622的输出信号与来自比较器632的输出信号的至少一方为高电平的情况下,将高电平的信号作为过电流检测信号se输出,在来自比较器622的输出信号与来自比较器632的输出信号两者均为低电平的情况下,将低电平的信号作为过电流检测信号se输出。
逆变器30的输入电流逐渐变大时的过电流保护电路60a的动作与在实施方式1中参照图6进行说明的动作相同。但是,比较器622和632的输出信号的逻辑值与图6的从下数第二层和第三层所示的逻辑值相反。
过电流保护电路60a以与实施方式1所涉及的过电流保护电路60相同的动作来生成过电流检测信号se,因此本实施方式所涉及的电动机驱动装置2a能够获得与实施方式1所涉及的电动机驱动装置2相同的效果。
实施方式3
实施方式2所涉及的电动机驱动装置2a通过二极管或门电路671实现过电流保护电路60a的合成电路66a,但也可以通过组合mos(metal-oxide-semiconductor:金属-氧化物-半导体)晶体管等晶体管来实现进行与二极管或门电路671相同的动作的或门电路。在图8中表示该情况下的过电流保护电路的结构。图8所示的实施方式3所涉及的电动机驱动装置的过电流保护电路60b是将图7所示的过电流保护电路60a的合成电路66a替换为合成电路66b而得的电路。合成电路66b是通过组合晶体管而构成的或门电路681。
过电流保护电路60b的动作与过电流保护电路60a相同,因此省略说明。
本实施方式所涉及的电动机驱动装置进行与实施方式2所涉及的电动机驱动装置2a相同的动作,从而能够获得与实施方式1、2所涉及的电动机驱动装置相同的效果。
实施方式4
在实施方式1~3中说明的电动机驱动装置中,构成为:在将使用了与电动机4的定子绕组为星形接线的情况对应的第二判定电路中的阈值vty的比较处理无效化时,在第二判定电路的阈值生成电路631的分压节点呈现vp(=vd-von)。但是,该结构并不是必须的。总之,只要是以下结构即可,即:比从第一判定电路的阈值生成电路621输出的基准值vref1(=vtδ)高的电位vp呈现在第二判定电路的阈值生成电路631的分压节点,并作为基准值vref2向比较器632输入。
例如,也可以代替在实施方式1中说明的第二判定电路63的阈值生成电路631(参照图5),而使用图9所示的阈值生成电路631c,并将无效化电路65以图9所示的方式与该阈值生成电路631c连接。
图9所示的阈值生成电路631c是将图5等所示的阈值生成电路631的电阻r633替换为串联连接的电阻r633a和电阻r633b而得的电路。因此,对于阈值生成电路631c而言,由彼此串联连接的电阻r633a、r633b以及r634构成分压电路,并设置有数字晶体管q651,以便使电阻r633a的两端短路。
将阈值生成电路631c的电阻r633a和r633b的电阻值规定为与阈值生成电路631的电阻r633的关系满足公式(4)。
r633a r633b=r633…(4)
在应用了图9所示的阈值生成电路631c的情况下,在数字晶体管q651断开时的过电流保护电路的动作、即电动机4的定子绕组为星形接线时的过电流保护电路的动作,与参照图6的(a)进行说明的过电流保护电路60(参照图5)的动作相同。
另外,在应用了图9所示的阈值生成电路631c的过电流保护电路中,在数字晶体管q651接通时的过电流保护电路的动作、即在电动机4的定子绕组为三角形接线时的过电流保护电路的动作为图10所示的动作。
在应用了图9所示的阈值生成电路631c的过电流保护电路中,在数字晶体管q651为接通状态的情况下,由公式(5)表示的电压vp呈现在阈值生成电路631c的分压节点,该电压vp作为基准值vref2向比较器632输入。此外,这里的分压节点为电阻r633b与电阻r634的连接点。在公式(5)中,von表示数字晶体管q651的接通状态时的发射极-集电极间的电压下降量。
vp=(vd-von)×r634/(r633b r634)…(5)
如图10所示,vp(=vref2)大于vtδ(=vref1),因此在电动机4的定子绕组为三角形接线时,在通过比较器632完成对电流值信号sc超过了vp的判定之前,通过比较器622完成对sc超过了vtδ的判定。因此,在电流值信号sc超过了vtδ的时刻,过电流检测信号se变为高电平。这样,过电流检测信号se变为高电平的时刻与参照图6的(b)进行说明的过电流保护电路60的动作相同,是sc超过了vtδ的时刻。
在进行设计时,优选考虑元件的常数的偏差,并以vp充分大于vtδ的方式规定元件的常数。即,优选以用公式(5)表示的vp比在vtδ的基础上加上余量而得的值大的方式规定电阻r633b和r634的电阻值。
实施方式5
接下来,对实施方式5所涉及的电动机驱动装置进行说明。实施方式5所涉及的电动机驱动装置的整体结构与实施方式1所涉及的电动机驱动装置2相同(参照图1)。以下,为了便于说明,将实施方式5所涉及的电动机驱动装置称作电动机驱动装置2d。实施方式5所涉及的电动机驱动装置2d与实施方式1所涉及的电动机驱动装置2的差异在于过电流保护电路。将电动机驱动装置2d的过电流保护电路称作过电流保护电路60d。虽然过电流保护电路60d是与电动机驱动装置2的过电流保护电路60相同的电路结构,但局部的电路的动作不同。
图11是表示实施方式5所涉及的过电流保护电路60d的示意结构的一个例子的框图。如图11所示,过电流保护电路60d具备电流检测电路61、第一判定电路62a、第二判定电路63a、无效化电路65d以及合成电路66d。图11所示的电流检测电路61与在实施方式1中说明的过电流保护电路60的电流检测电路61相同。图11所示的第一判定电路62a以及第二判定电路63a与在实施方式2中说明的过电流保护电路60a的第一判定电路62a以及第二判定电路63a相同。对于电流检测电路61、第一判定电路62a以及第二判定电路63a的详细内容省略说明。
在实施方式1~4中说明的过电流保护电路60、60a以及60b是在电动机4的定子绕组为三角形接线的情况下使第二判定电路63、63a中的电流值信号sc与星形接线用的阈值vty的比较处理无效化的电路。与此相对,本实施方式所涉及的过电流保护电路60d在定子绕组为星形接线的情况下使第一判定电路62a中的电流值信号sc与三角形接线用的阈值vtδ的比较处理无效化。对于过电流保护电路60d而言,例如在电动机4的定子绕组为星形接线的情况下,无效化电路65d使在第一判定电路62a中与电流值信号sc比较的基准值vref1极小,由此使得能够始终获得“电流值信号sc超过基准值vref1”的判定结果。而且,合成电路66d对在第一判定电路62a中的判定结果与在第二判定电路63a中的判定结果进行“与”合成。
另外,在实施方式1~4中说明的电动机驱动装置中,使在过电流保护电路中生成的两个基准值中的基准值vref2向控制装置50的切换判定部526输入,但在本实施方式所涉及的电动机驱动装置2d中,使基准值vref1向控制装置50的切换判定部526输入。即,在电动机驱动装置2d的切换判定部526中,使用基准值vref1来判定是否在过电流保护电路60d中使用与定子绕组的接线状态对应的正确的基准值来进行正确的保护动作。
即使在应用了在本实施方式中说明的电动机驱动装置2d的结构的情况下,也能够获得与在实施方式1~4中说明的电动机驱动装置相同的效果。
图12是表示实施方式5所涉及的过电流保护电路60d的一个例子的配线图。在图12中,将电流检测电路61和第一判定电路62a的阈值生成电路621的配置与图7更换,但过电流保护电路60d的电流检测电路61以及第一判定电路62a与图7所示的过电流保护电路60a的电流检测电路61以及第一判定电路62a相同。
在第二判定电路63a中,阈值生成电路631生成由公式(6)表示的电压vty,并使该电压vty作为基准值vref2向比较器632的-端子输入。
vty=vd×r634/(r633 r634)…(6)
无效化电路65d由npn型的数字晶体管q653构成。数字晶体管q653的集电极和发射极分别与构成第一判定电路62a的阈值生成电路621的电阻r624的两端、即电阻r624的第一端部和第二端部连接。
将从控制装置50输出的反相接线选择信号ss向数字晶体管q653的基极输入。在反相接线选择信号ss为低电平的情况下,即在电动机4的定子绕组为三角形接线的情况下,数字晶体管q653为断开状态。另外,在反相接线选择信号ss为高电平的情况下,即在电动机4的定子绕组为星形接线的情况下,数字晶体管q653为接通状态。
在数字晶体管q653为断开状态的情况下,第一判定电路62a的阈值生成电路621生成由公式(7)表示的电压vtδ,并使其作为基准值vref1向比较器622的-端子输入。
vtδ=vd×r624/(r623 r624)…(7)
即,在电动机4的定子绕组为三角形接线并且数字晶体管q653为断开状态的情况下,在阈值生成电路621中生成电压vtδ,并将其作为第一基准值即基准值vref1向比较器622的-端子输入。电压vtδ为三角形接线用的阈值。
将构成第一判定电路62a的阈值生成部621的电阻r623和r624的电阻值、以及构成第二判定电路63a的阈值生成部631的电阻r633和r634的电阻值规定为:由公式(7)表示的vtδ和由公式(6)表示的vty满足上述的公式(3)的关系,或满足
在数字晶体管q653为接通状态的情况下,对于第一判定电路62a的阈值生成电路621而言,电阻r624通过数字晶体管q653而短路,因此生成与地线的电位0v接近的电位,具体而言生成仅比地线的电位0v高出相当于数字晶体管q653的接通时的集电极-发射极间的电压下降量的量的电压。若将数字晶体管q653为接通状态时的集电极-发射极间的电压下降量设为von,并将此时阈值生成电路621生成的电压设为vq,则vq=von。即,若数字晶体管q653为接通状态,则阈值生成电路621生成vq=von来代替由上述的公式(7)表示的阈值vtδ,并使该vq作为基准值vref1向比较器622的-端子输入。在该情况下,比较器622比较从-端子输入的vq=von与从 端子输入的电流值信号sc,并向合成电路66d输出比较结果。
另一方面,在数字晶体管q653为断开状态的情况下,第一判定电路62a的阈值生成电路621生成由上述的公式(7)表示的阈值vtδ,并使其作为基准值vref1向比较器622的-端子输入。
比较器622将电流值信号sc与基准值vref1比较,若电流值信号sc大于基准值vref1,则将向合成电路66d输出的信号设为高电平,若电流值信号sc在基准值vref1以下,则将向合成电路66d输出的信号设为低电平。
合成电路66由与门电路683构成。在从第一判定电路62a的比较器622输出的信号以及从第二判定电路63a的比较器632输出的信号两者均为高电平的情况下,与门电路683输出高电平的过电流检测信号se。另外,在从第一判定电路62a的比较器622输出的信号与从第二判定电路63a的比较器632输出的信号的至少一方为低电平的情况下,与门电路683输出低电平的过电流检测信号se。
以下,参照图13对过电流保护电路60d的第一判定电路62a、第二判定电路63a以及合成电路66d的动作进行说明。
将向作为无效化电路65d的数字晶体管q653的基极供给的反相接线选择信号ss如上述那样从控制装置50的接线切换控制部521输出。对于该反相接线选择信号ss而言,在电动机4的定子绕组为星形接线的情况下,如图13的(a)所示为高电平,在为三角形接线的情况下,如图13的(b)所示为低电平。因此,对于数字晶体管q653而言,在电动机4的定子绕组为星形接线的情况下如图13的(a)所示为接通,在为三角形接线的情况下如图13的(b)所示为断开。
因此,在电动机4的定子绕组为三角形接线的情况下,向构成第一判定电路62a的比较器622的-端子输入上述的vtδ作为基准值vref1(参照图13的(b)),在为星形接线的情况下,向其输入上述的vq(=von)作为基准值vref1(参照图13的(a))。
另一方面,不论电动机4的定子绕组的状态如何,即不论电动机4的定子绕组是星形接线与三角形接线的哪一种,都向构成第二判定电路63a的比较器632的-端子输入上述的vty作为基准值vref2(参照图13的(a)和(b))。
在电动机4的定子绕组为三角形接线的情况下,如上述那样,向比较器622的-端子输入的基准值vref1为vtδ(参照图13的(b))。另外,存在vty<vtδ的关系。因此,若逆变器30的输入电流逐渐变大,随之电流值信号sc也逐渐增强,则在某个时刻,比较器632判定为电流值信号sc大于基准值vref2(=vty),使输出信号从低电平变化为高电平。其后,若电流值信号sc进一步变大,则比较器622判定为电流值信号sc大于基准值vref1(=vtδ),使输出信号从低电平变化为高电平。其结果是,作为与门电路683的输出、即合成电路66d的输出的过电流检测信号se变为高电平。
这样,在电动机4的定子绕组为三角形接线的情况下,在电流值信号sc超过了三角形接线用所规定的阈值vtδ的时刻,过电流保护电路60d使过电流检测信号se从低电平变化为高电平。
在电动机4的定子绕组为星形接线的情况下,如上述这样,向比较器622的-端子输入的基准值vref1为vq(=von)(参照图13的(a))。电流值信号sc构成为不会变为vq以下,比较器622的输出信号维持高电平。因此,若逆变器30的输入电流逐渐变大,随之电流值信号sc逐渐增强,则在某个时刻,比较器632判定为电流值信号sc大于基准值vref2,使输出信号从低电平变化为高电平。其结果是,作为与门电路683的输出、即合成电路66d的输出的过电流检测信号se变为高电平。
这样,在电动机4的定子绕组为星形接线的情况下,在电流值信号sc超过了星形接线用所规定的阈值vty的时刻,过电流保护电路60d使过电流检测信号se从低电平变化为高电平。
如以上这样,在电动机4的定子绕组为星形接线的情况下,使第一判定电路62a中的使用了作为与三角形接线对应的基准值vref1的阈值vtδ的比较处理无效化。因此,在电动机4的定子绕组为星形接线与三角形接线的任意一个的情况下,都能够基于适合于各个情况的阈值与电流值信号sc的比较结果进行过电流检查,从而保护电动机4。
实施方式6
在实施方式5中说明的电动机驱动装置2d中,构成为:在将使用了与电动机4的定子绕组为三角形接线的情况对应的第一判定电路62a中的阈值vtδ的比较处理无效化时,在第一判定电路62a的阈值生成电路621的分压节点呈现vq(=von)。但是,该结构并不是必须的。总之,只要是以下结构即可,即:比从第二判定电路63a的阈值生成电路631输出的基准值vref2(=vty)低的电位vq呈现在第一判定电路62a的阈值生成电路621的分压节点,并将其作为基准值vref1向比较器622输入。
例如,也可以代替第一判定电路62a的阈值生成电路621(参照图12),而使用图14所示的阈值生成电路621e,将无效化电路65e以图14所示的方式与该阈值生成电路621e连接。无效化电路65e与图12所示的无效化电路65d相同地由npn型的数字晶体管q653构成。
图14所示的阈值生成电路621e是将阈值生成电路621的电阻r624替换为串联连接的电阻r624a和电阻r624b而得的电路。因此,对于阈值生成电路621e而言,由彼此串联连接的电阻r623、r624a以及r624b构成分压电路,并设置有数字晶体管q653,以便使电阻r624b的两端短路。
将阈值生成电路621e的电阻r624a和r624b的电阻值规定为与阈值生成电路621的电阻r624的关系满足公式(8)。
r624a r624b=r624…(8)
在应用了图14所示的阈值生成电路621e的情况下,在数字晶体管q653断开时的过电流保护电路的动作、即电动机4的定子绕组为三角形接线时的过电流保护电路的动作与参照图13的(b)进行说明的过电流保护电路60d(参照图12)的动作相同。
另外,在应用了图14所示的阈值生成电路621e的过电流保护电路中,在数字晶体管q653接通时的过电流保护电路的动作、即在电动机4的定子绕组为星形接线时的过电流保护电路的动作为图15所示的动作。
在应用了图14所示的阈值生成电路621e的过电流保护电路中,在数字晶体管q653为接通状态的情况下,由公式(9)表示的电压vq呈现在阈值生成电路621e的分压节点,并将该电压vq作为基准值vref1向比较器622输入。此外,这里的分压节点为电阻r624a与电阻r624b的连接点。在公式(9)中,von表示数字晶体管q653的接通状态时的集电极-发射极间的电压下降量。
vq={(vd-von)×r624a/(r623 r624a)} von…(9)
如图15所示,vq(=vref1)小于vty(=vref2),因此在电动机4的定子绕组为星形接线时,在通过比较器622完成了对电流值信号sc超过了vq的判定后,通过比较器632完成对sc超过了vty的判定。因此,在电流值信号sc超过了vty的时刻,过电流检测信号se为高电平。这样,过电流检测信号se变为高电平的时刻与参照图13的(a)进行说明的过电流保护电路60d的动作相同,是sc超过了vty的时刻。
在进行设计时,优选考虑元件的常数的偏差并以vq充分小于vty的方式规定元件的常数。即,优选以由公式(9)表示的vq小于从vty中减去余量而得的值的方式规定电阻r623和r624a的电阻值。
实施方式7
接下来,对实施方式7所涉及的电动机驱动装置进行说明。实施方式7所涉及的电动机驱动装置的整体结构与实施方式1所涉及的电动机驱动装置2相同(参照图1)。以下,为了便于说明,将实施方式7所涉及的电动机驱动装置称作电动机驱动装置2f。
在实施方式1~6中说明的电动机驱动装置通过切换开关来实现切换电动机4的定子绕组的接线状态的接线切换部40,但也可以代替切换开关而使用常闭开关和常开开关来实现。
参照图16对电动机驱动装置2f所具备的接线切换部进行说明。图16是表示实施方式7所涉及的电动机驱动装置2f所具备的接线切换部与电动机的各绕组的连接关系的一个例子的配线图。
图16所示的接线切换部40f构成为:代替在实施方式1说明的接线切换部40(参照图2)的切换开关41u而使用常闭开关46u与常开开关47u的组合,代替切换开关41v而使用常闭开关46v与常开开关47v的组合,代替切换开关41w而使用常闭开关46w与常开开关47w的组合。
如图16所示,在常闭开关46u、46v以及46w关闭并且常开开关47u、47v以及47w打开的状态下,电动机4的定子绕组为星形接线。与此相反地,在常闭开关46u、46v以及46w打开并且常开开关47u、47v以及47w关闭的状态下,电动机4的定子绕组为三角形接线。
作为图2所示的接线切换部40和图16所示的接线切换部40f之类的用于实现切换电动机4的定子绕组的接线状态的单元的开关,优选接通时的导通损耗较小的开关,优选继电器、接触器等机械开关。
然而,在为图16所示的那样的使用常闭开关与常开开关的组合来切换接线状态的结构的情况下,也可以使用sic(碳化硅)、gan(氮化镓)等宽禁带(wbg:widebandgap)半导体来实现常闭开关和常开开关。wbg半导体的接通电阻较小,低损耗且元件发热也较少。另外,wbg半导体能够高速地进行切换动作。因此,当在电动机4的驱动中切换接线状态的情况下,优选由wbg半导体构成开关。
另外,在电动机4用于对空调机的压缩机的驱动时,在使用图16所示的结构的接线切换部40f的情况下,优选使用常开型的半导体开关作为在选择了用于压缩机的负荷较小时的接线状态(例如星形接线状态)时接通的开关。这是因为,通过这样,能够减少轻负荷时的损耗,在应用于运转时间中的在轻负荷下的运转所占的比例较高的空调机的压缩机的驱动所使用的电动机的情况下,综合效率较高。
电动机驱动装置2f的接线切换部40f以外的结构与在实施方式1~6中说明的电动机驱动装置的任意一个相同。即,电动机驱动装置2f是将在实施方式1~6中说明的电动机驱动装置的接线切换部40替换为接线切换部40f而得的装置。
实施方式8
在实施方式1~7中,对使能够将定子绕组的状态切换为星形接线或者三角形接线的结构的电动机进行驱动的电动机驱动装置进行了说明,但本发明所涉及的电动机驱动装置所驱动的电动机的结构并不限定于此。
本发明所涉及的电动机驱动装置例如也能够应用于以下电动机,即:使用各相的绕组由两个以上的多个绕组部分构成的结构,并能够将多个绕组部分的接线在并联接线与串联接线之间切换。在该情况下,电动机能够将构成各相的绕组的两个以上的绕组部分的各自的两端部与电动机的外部连接,并且电动机驱动装置切换接线状态。将本实施方式所涉及的电动机驱动装置称作电动机驱动装置2g。
图17是表示实施方式8所涉及的电动机驱动装置2g所具备的接线切换部与电动机的各绕组的连接关系的一个例子的配线图。如图17所示,将实施方式8所涉及的电动机驱动装置2g所具备的接线切换部设为接线切换部40g。另外,将电动机驱动装置2g驱动的电动机设为电动机4g。
电动机驱动装置2g的接线切换部40g由六个切换开关48u、48v、48w、49u、49v以及49w构成。切换开关48u和49u与u相对应设置。另外,切换开关48v和49v与v相对应设置,切换开关48w和49w与w相对应设置。
电动机4g的定子绕组构成为包括u相的绕组4u、v相的绕组4v以及w相的绕组4w。绕组4u由两个绕组部分4ue和4uf构成,绕组4v由两个绕组部分4ve和4vf构成,绕组4w由两个绕组部分4we和4wf构成。
绕组部分4ue、4ve、4we的第一端部分别经由外部端子4uc、4vc、4wc与逆变器30的输出线30u、30v、30w连接。
绕组部分4ue、4ve、4we的第二端部分别经由外部端子4ug、4vg、4wg与切换开关48u、48v、48w的共用接点连接。
绕组部分4uf、4vf、4wf的第一端部分别经由外部端子4uh、4vh、4wh与切换开关49u、49v、49w的共用接点连接。
绕组部分4uf、4vf、4wf的第二端部分别经由外部端子4ud、4vd、4wd与中性点节点42连接。
切换开关48u、48v、48w的常闭接点分别与切换开关49u、49、49w的常闭接点连接。
切换开关48u、48v、48w的常开接点分别与中性点节点42连接。
切换开关49u、49v、49w的常开接点分别与逆变器30的输出线30u、30v、30w连接。
即使在应用图17所示的接线切换部40g和电动机4g的情况下,也能够应用在实施方式1~7中说明的过电流保护电路来防止变为在电动机4g的定子绕组中流动有过大的电流的状态。但是,在构成过电流保护电路的第一判定电路和第二判定电路中生成的阈值的设定如下。
在图17所示的结构的情况下,在切换开关48u、48v、48w、49u、49v以及49w为如图示那样的被切换至常闭接点侧的状态下,电动机4g的定子绕组为串联接线状态。另一方面,在切换开关48u、48v、48w、49u、49v以及49w被切换至与图示的状态相反的常开接点侧的状态下,电动机4g的定子绕组为并联接线状态。在串联接线状态和并联接线状态下,在电动机4g的绕组中流动的电流与逆变器电流之比不同。即,在串联接线状态下,在电动机4g的绕组中流动的电流与逆变器30的输出电流相等,但在并联接线状态下,逆变器30的输出电流相对于在电动机4g的绕组中流动的电流为两倍。
因此,以防止构成转子的磁铁的退磁为目的,在以逆变器电流的检测值不超过一定的阈值的方式控制逆变器30的情况下,需要将并联接线时的阈值相对于串联接线时的阈值设为两倍。即,在设置有与各个接线状态对应的合计两个判定电路的情况下,需要将在与并联接线对应的判定电路中使用的阈值相对于在与串联接线对应的判定电路中使用的阈值设为两倍。
此外,也可以如在实施方式7中说明的那样,代替切换开关而组合常闭开关与常开开关来实现接线切换部40g。
在本实施方式中,对在定子的绕组为星形接线的电动机4g中,将各相的两个绕组部分在串联连接与并联连接之间切换的情况进行了说明,但这是一个例子。也可以在定子的绕组为三角形接线的电动机中,对将各相的两个绕组部分在串联连接与并联连接之间切换的结构,应用上述的过电流保护电路。
这样,即使是对构成为能够将各相的定子绕组的状态在将两个绕组部分直接连接的状态、与将两个绕组部分并联连接的状态之间切换的电动机进行驱动的电动机驱动装置,也能够使用与各接线状态对应的适当的阈值来进行对在绕组中是否流动有过大的电流的判定。因此,能够实现防止构成转子的永磁铁退磁的保护功能的高性能化。
(变形例1)
在实施方式1~8中说明的电动机驱动装置的过电流保护电路检测逆变器30的输入电流,并基于检测结果,判定在电动机中流动的电流值是否正常,在电流值异常的情况下,使逆变器30停止从而保护电动机。但是,也可以代替逆变器30的输入电流而检测逆变器30的输出电流,并使用输出电流来进行控制。
在构成为检测逆变器30的输出电流的情况下,也可以仅在一个相设置电流检测元件,例如设置变流器,并基于一个相的电流来进行过电流的检测。另外,也可以在三个相分别设置电流检测元件,并使用在三个相中分别检测出的电流的平均值或者瞬时值来进行过电流的检测。再者,也可以在任意的两个相分别设置电流检测元件,并使用在两个相分别检测出的电流的平均值或者瞬时值来进行过电流的检测。
(变形例2)
另外,上述的各实施方式的电动机驱动装置为驱动的电动机的定子绕组可采取两个接线状态中的任意一个的装置。即,电动机驱动装置的过电流保护电路具备分别使用与两个接线状态分别对应的两个阈值来进行判定的两个判定电路,并根据需要将使用了与接线状态对应的阈值以外的阈值的判定处理无效化。但是,可切换的接线状态并不限定于两个。本发明也能够应用于电动机可采取的接线状态为三个以上的情况。即,一般来说,本发明能够应用于电动机可以选择多个接线状态中的任意一个的情况。例如,在电动机可采取的接线状态为三个以上的情况下,电动机驱动装置的过电流保护电路具备与三个以上的多个接线状态中的任意一个一对一地建立关联的、与多个接线状态数量相同的多个判定电路,在各判定电路中,使用与对应的接线状态相应的阈值,判定是否为在电动机的定子绕组中流动的电流过大的状态。该过电流保护电路还具备:合成电路,其合成并输出多个判定电路的各自的判定结果;以及无效化电路,其使多个判定电路的各自的判定处理的一部分无效化,并从合成电路输出与接线状态对应的判定电路的判定结果。
在该情况下,过电流保护电路将逆变器的输入电流或者输出电流作为逆变器电流来检测,在检测出的逆变器电流变得过大时使逆变器停止。过电流保护电路的多个判定电路与多个接线状态分别对应设置,各判定电路将根据建立关联的接线状态而设定的阈值作为基准值使用,并进行基准值与检测出的逆变器电流的比较。无效化电路根据需要使多个判定电路的各自的比较处理中的、与所选择的接线状态建立关联的判定电路以外的判定电路中的比较处理无效化,使得合成电路的输出与同所选择的接线状态建立关联的判定电路的输出一致。
在上述的实施方式1~4所示的结构(参照图1~图10)中,在将接线状态的数量从两个泛化为多个(n个,n>2)的情况下,使用具有采取多个判定电路的输出的逻辑和的或门电路的电路作为合成电路即可。另外,在将与所选择的接线状态对应的判定电路作为第一判定电路并将第一判定电路以外的判定电路作为第二判定电路的情况下,作为无效化电路,使用以下电路即可,即:在第二判定电路的每一个中,使用比在第一判定电路中的比较处理所使用的基准值大的值的基准值来进行比较处理。
在该情况下,多个判定电路分别具备:阈值生成电路,其具备将从控制电源供给的控制电压进行分压的分压电路,并将在分压电路的分压节点呈现的电压作为阈值进行输出;以及比较器,其将从阈值生成电路输出的阈值作为基准值,并判定所检测出的逆变器电流是否大于基准值,各分压电路构成为在控制电源与地线之间具有串联连接的多个电阻。而且,无效化电路针对相当于第二判定电路的各判定电路的分压电路,使串联连接的多个电阻中的一个短路,并代替在各判定电路为第一判定电路时使用的阈值而使大于在相当于第一判定电路的判定电路中所使用的阈值的值从分压节点输出。分压电路具有的电阻中的被无效化电路短路的电阻例如为连接在分压节点与控制电源之间的电阻。
在实施方式5、6中示出的结构(参照图11~图15)中,在将接线状态的数量从两个泛化为多个(n个,n>2)的情况下,使用具有采取多个判定电路的输出的逻辑积的与门电路的电路作为合成电路即可。另外,在将与所选择的接线状态对应的判定电路作为第一判定电路并将第一判定电路以外的判定电路作为第二判定电路的情况下,作为无效化电路,使用以下电路即可,即:在第二判定电路的每一个中,使用比在第一判定电路中的比较处理所使用的基准值小的值的基准值来进行比较处理。
在该情况下,多个判定电路分别具备:阈值生成电路,其具备将从控制电源供给的控制电压进行分压的分压电路,并将在分压电路的分压节点呈现的电压作为阈值进行输出;以及比较器,其将从阈值生成电路输出的阈值作为基准值,并判定所检测出的逆变器电流是否大于基准值,各分压电路构成为在控制电源与地线之间具有串联连接的多个电阻。而且,无效化电路针对相当于第二判定电路的各判定电路的分压电路,使串联连接的多个电阻中的一个短路,并代替在各判定电路为第一判定电路时使用的阈值而使小于在相当于第一判定电路的判定电路中所使用的阈值的值从分压节点输出。分压电路具有的电阻中的被无效化电路短路的电阻例如为连接在分压节点与地线之间的电阻。
以上的实施方式所示的结构是表示本发明的内容的一个例子,也能够与其它的公知的技术组合,在不脱离本发明的主旨的范围内,也能够省略、变更结构的一部分。
附图标记说明
2...电动机驱动装置;4、4g...电动机;4u、4v、4w...绕组;6...交流电源;7...电抗器;12...智能功率模块(ipm);20...转换器;30...逆变器;32...逆变器驱动电路;40、40f、40g...接线切换部;41u、41v、41w、48u、48v、48w、49u、49v、49w...切换开关;42...中性点节点;46u、46v、46w...常闭开关;47u、47v、47w...常开开关;50...控制装置;52...微控制器;60、60a、60b、60d...过电流保护电路;61...电流检测电路;62、62a...第一判定电路;63、63a...第二判定电路;65、65d、65e...无效化电路;66、66a、66b、66d...合成电路;612...平滑电路;621、631、631c、621e...阈值生成电路;622、632...比较器;661...线联或门电路;662...反相电路;671...二极管或门电路;681...或门电路;683...与门电路。
1.一种电动机驱动装置,对能够切换定子绕组的接线状态的电动机进行驱动,
所述电动机驱动装置特征在于,具备:
接线切换部,其切换所述定子绕组的接线状态;
逆变器,其生成向所述电动机供给的电力;
控制装置,其控制所述接线切换部和所述逆变器;以及
过电流保护电路,其防止超过预先规定的值的电流在所述电动机中持续流动,
所述过电流保护电路具备:
多个判定电路,所述多个判定电路与所述定子绕组能够采取的多个接线状态中的任意一个一对一地建立关联,判定在所述逆变器中流动的电流是否为异常的值;
合成电路,其对所述多个判定电路的各自的判定结果进行合成;以及
无效化电路,其使所述多个判定电路的一部分的判定电路的判定处理无效化,并从所述合成电路输出与所选择的定子绕组的接线状态建立关联的判定电路的判定结果,
在从所述合成电路输出的判定结果表示在所述逆变器中流动的电流为异常的值的情况下,所述控制装置使所述逆变器停止。
2.根据权利要求1所述的电动机驱动装置,其特征在于,
所述逆变器向所述电动机供给频率可变的交流电,从而使所述电动机可变速运转,
所述控制装置控制所述接线切换部来进行所述接线状态的选择,并且控制所述逆变器使所述交流电向所述电动机供给。
3.根据权利要求1或2所述的电动机驱动装置,其特征在于,
所述过电流保护电路具备电流检测电路,所述电流检测电路检测所述逆变器的输入电流或者输出电流,并将作为检测结果的电流检测值分别向所述多个判定电路输出,
所述多个判定电路分别使用基于建立关联的接线状态而决定的、根据每个判定电路而不同的阈值,对所述电流检测值是否超过阈值进行判定,
所述无效化电路根据需要而使与所选择的接线状态对应的判定电路以外的判定电路的判定处理无效化,从而使所述合成电路的输出与同所选择的接线状态对应的判定电路的输出一致。
4.根据权利要求3所述的电动机驱动装置,其特征在于,
所述合成电路由采取所述多个判定电路的输出的逻辑和的或门电路构成,
所述无效化电路在与所选择的接线状态对应的判定电路以外的判定电路中,使用比与所选择的接线状态对应的判定电路使用的阈值大的值的阈值来进行判定处理。
5.根据权利要求4所述的电动机驱动装置,其特征在于,
所述判定电路具备:
阈值生成电路,其包含分压电路,该分压电路将从控制电源供给的控制电压进行分压,由在所述控制电源与地线之间串联连接的多个电阻构成,所述阈值生成电路将在所述分压电路的分压节点处呈现的电压作为基于建立关联的接线状态而决定的所述阈值进行输出;以及
比较器,其对从所述阈值生成电路输出的所述阈值与所述电流检测值进行比较,
在将与所选择的接线状态对应的判定电路作为第一判定电路,并将所述第一判定电路以外的判定电路作为第二判定电路时,
所述无效化电路使第二判定电路各自所具备的所述分压电路的所述串联连接的多个电阻中的一个短路,并使比所述第一判定电路使用的阈值大的值的电压从第二判定电路的各个所述分压节点输出。
6.根据权利要求5所述的电动机驱动装置,其特征在于,
所述无效化电路使连接在所述第二判定电路的所述分压节点与所述控制电源之间的电阻短路。
7.根据权利要求3所述的电动机驱动装置,其特征在于,
所述合成电路由采取所述多个判定电路的输出的逻辑积的与门电路构成,
所述无效化电路在与所选择的接线状态对应的判定电路以外的判定电路中,使用比与所选择的接线状态对应的判定电路使用的阈值小的值的阈值来进行判定处理。
8.根据权利要求7所述的电动机驱动装置,其特征在于,
所述判定电路具备:
阈值生成电路,其包含分压电路,该分压电路将从控制电源供给的控制电压进行分压,由在所述控制电源与地线之间串联连接的多个电阻构成,所述阈值生成电路将在所述分压电路的分压节点处呈现的电压作为基于建立关联的接线状态而决定的所述阈值进行输出;以及
比较器,其对从所述阈值生成电路输出的所述阈值与所述电流检测值进行比较,
在将与所选择的接线状态对应的判定电路作为第一判定电路,并将所述第一判定电路以外的判定电路作为第二判定电路时,
所述无效化电路使第二判定电路各自所具备的所述分压电路的所述串联连接的多个电阻中的一个短路,并使比所述第一判定电路使用的阈值小的值的电压从第二判定电路的各个所述分压节点输出。
9.根据权利要求8所述的电动机驱动装置,其特征在于,
所述无效化电路使连接在所述第二判定电路的所述分压节点与所述地线之间的电阻短路。
10.根据权利要求5、6、8或9所述的电动机驱动装置,其特征在于,
所述无效化电路具有用于进行所述电阻的短路的晶体管。
11.根据权利要求10所述的电动机驱动装置,其特征在于,
所述晶体管为数字晶体管。
12.根据权利要求1~11中任一项所述的电动机驱动装置,其特征在于,
所述多个接线状态为星形接线状态和三角形接线状态。
13.根据权利要求12所述的电动机驱动装置,其特征在于,
将在与所述三角形接线状态对应的判定电路中的判定处理所使用的阈值设为在与所述星形接线状态对应的判定电路中的判定处理所使用的阈值的
14.根据权利要求1~13中任一项所述的电动机驱动装置,其特征在于,
所述接线切换部由半导体开关构成。
15.根据权利要求14所述的电动机驱动装置,其特征在于,
所述半导体开关由宽禁带半导体形成。
16.根据权利要求1~15中任一项所述的电动机驱动装置,其特征在于,
所述电动机驱动装置具备逆变器驱动电路,所述逆变器驱动电路向所述逆变器供给驱动信号,
所述逆变器和所述逆变器驱动电路通过智能功率模块实现,
将所述合成电路的输出向所述智能功率模块的过电流切断端口输入,
在输入至所述过电流切断端口的信号表示在所述逆变器中流动的电流为异常的值的情况下,所述逆变器驱动电路使所述逆变器停止。
17.根据权利要求16所述的电动机驱动装置,其特征在于,
所述控制装置具备微型控制器,所述微型控制器生成用于对逆变器进行接通断开控制的接通断开控制信号,并向所述逆变器驱动电路供给,
将所述合成电路的输出向所述微型控制器输入,
在从所述合成电路输入的信号表示在所述逆变器中流动的电流为异常的值的情况下,所述微型控制器停止所述接通断开控制信号的输出。
18.根据权利要求1~15中任一项所述的电动机驱动装置,其特征在于,
所述电动机驱动装置具备:
逆变器驱动电路,其向所述逆变器供给驱动信号;以及
微型控制器,其生成用于对逆变器进行接通断开控制的接通断开控制信号,并向所述逆变器驱动电路供给,
将在所述判定电路中的判定处理所使用的阈值中的、在被所述无效化电路无效化后的判定电路中的判定处理所使用的阈值向所述微型控制器供给,
所述微型控制器基于所述被供给的阈值,对所述过电流保护电路是否正常地动作进行判定,在所述过电流保护电路没有正常地动作的情况下,所述微型控制器使所述逆变器停止。
19.根据权利要求18所述的电动机驱动装置,其特征在于,
在所述过电流保护电路没有正常地动作的情况下,所述微型控制器停止所述接通断开控制信号的输出,并使所述逆变器停止。
技术总结