本发明涉及的是一种钛合金表面处理领域的技术,具体是一种提高钛合金板材硬质耐磨纳米涂层粘附强度的方法。
背景技术:
:在工程
技术领域:
尤其是航空、航天领域使用耐磨、耐高温涂层来提高摩擦产品的使用性能。等离子喷涂法可以方便的控制粉末成分组成,沉积效率高,无需烧结,可制备大尺寸涂层。但是存在涂层与基材及层间的结合强度低,在一定程度上限制了它的应用。与基底的结合的牢固度不能满足实际产品的需求,往往使用不久就产生涂层开裂剥落的现象。技术实现要素:本发明针对现有技术存在的上述不足,提出一种提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,能够实现六倍于现有技术的涂层与基底的结合强度。本发明是通过以下技术方案实现的:本发明涉及一种提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,通过设置可独立控制的射频阴极磁控溅射涂层装置,通过磁控管喷雾的方式获得合成靶ti-b-n、ti-cr-b-n和ti-b-si-c-n,靶用自动扩散高温合成法制造。使用装置ybh-2m在钛合金或其它金属表面沉积衬层,再用ar 离子浸蚀衬层后,再用磁控管溅射并提供高偏压、分段植入高能tin 施加涂层。所述的合成靶以钛粉、铬粉、氮化物、碳化硅、非结晶棕色硼作为原料以高温自动合成法制备得到。所述的合成靶的直径ф125mm,厚8mm。所述的射频阴极磁控溅射涂层装置中设有沉积衬层装置ybh-2m,优选该沉积衬层装置在置于射频阴极磁控溅射涂层装置的真空室内,设置于沉积衬层装置中的基材优选预先在异丙醇中经受超声清洗。所述的基材采用tc4钛合金、钢材或不锈钢。所述的衬层材料包括:单晶硅kaf-4.5(100)、铬钢65cr13和硬质合金yw2,其中:硬质合金yw2粉末,具体为82-83%wc、6%co、6%tic、3-4%tac,其密度为12.4-13.5g/cm3,硬度hra90.5,抗弯强度σbb=1350mpa。所述的沉积衬层装置,通过向衬层上施加偏压250v并设置温度为200-250℃,控制衬层电流密度记录为10ma/cm2,压力0.2pa的环境下沉积60分钟。所述的离子浸蚀方法,通过射频阴极磁控溅射涂层装置中的离子发射源向衬层发射ar 离子以进行离子浸蚀,离子能量为1.5~2.0kev(千电子伏),从而得到凹凸不平起伏表面;然后在衬层上进一步射频阴极磁控溅射涂层装置中的大功率脉冲磁控溅射管通过ti靶提供ti、b组分,同时向射频阴极磁控溅射涂层装置中的真空室内注入压力0.2pa的ar/ar n2混合气体;再通过射频阴极磁控溅射涂层装置中的离子植入器分段植入高能量钛离子tin ,在压力0.07pa的环境下分别生成最大附着强度的ti-b-n涂层、ti-cr-b-n涂层或ti-b-si-c-n复合涂层。所述的离子浸蚀得到的衬层的表面粗糙度与浸蚀时间成正比,一般不大于15分钟。所述的ti-b-n涂层对应非晶形相tib2,ti-cr-b-n涂层对应非晶形相crb2,ti-b-si-c-n涂层为在tib2基材上为六角形相,其图形组织晶粒尺寸依次为3nm、1nm和5nm,其硬度依次为34gpa、33gpa和29gpa,其弹性模量依次为380gpa、370gpa和310gpa,其弹性回复值为58%~60%。所述的衬层及涂层沉积的厚度为50~100nm。所述的磁控管喷雾沉积装置包括:真空室以及设置于磁控管和离子发射源两个缝隙式平面之间的沉积衬层装置、氩离子发射源、高能钛离子植入器、加热器和直流脉冲高能量电源;其中:基材固定设置于球面旋转的旋转支架上并选择性分别面对磁控管喷射口、氩离子发射源和钛离子植入器以及沉积于基材上的衬层、ar 浸蚀和沉积涂层。技术效果本发明整体解决了使用沉积硬化的、耐磨的涂层来提高合理摩擦产品涂层的附着强度的技术问题;与现有技术相比,本发明用等离子等浸蚀方法,增加衬层粗糙度;并分段植入高能量钛离子来提高涂层的附着强度;同时还改善了涂层密度。与现有技术相比,本发明的涂层粘附强度提高6倍以上;同时在沉积涂层时,分段植入高能量ti和ti3离子对提高涂层粘附强度有积极影响,出现第一道划痕载荷比没有离子植入的要高近1倍;推荐涂层厚度在50-100nm,高于该厚度,涂层粘附强度将降低。附图说明图1为本发明采用的获得涂层设备配置原理结构图;图中:磁控管喷射口1、7、ar 离子发射源2、加热器3、tin 离子植入器4、节流门5、基材6、排出口8、直流脉冲电源9;图2为本发明的涂层示意图;图3为硬质合金衬层经离子浸蚀后的示意图;图4为预先无离子浸蚀的涂层ti-cr-b-n的示意图;图中:a为显微镜下图;b为数据曲线图;图5为预先离子浸蚀15min的涂层ti-cr-b-n的示意图;图中:a为l=98n的显微镜下图;b为l=110n的显微镜下图;c为数据曲线图;图6为磁控管喷涂和离子分段植入过程的时间图;图7为无离子植入的涂层ti-b-n的示意图;图中:a为l=35n的显微镜下图;b为数据曲线图;图8为涂层ti-b-n的划痕示意图;图中:a为l=48n和l=51n的显微镜下图;b为数据曲线图;图9为涂层ti-b-n的缺陷图;图中:a为l=67n的显微镜下图;b为l=50n的显微镜下图;c为l=38n的显微镜下图;图10为涂层ti-b-n的划痕示意图;图中:a为l=90n的显微镜下图;b为数据曲线图。具体实施方式实施例1用a 离子注入浸蚀衬层,本实施例采用图1所示的可独立控制的射频阴极磁控溅射涂层装置进行,具体步骤为:步骤1)在真空室内布置高纯度钛靶并注入ar/ar n2混合气体;步骤2)磁控管喷射口7用高温合成法获得ti-b-n、ti-cr-b-n和ti-b-si-c-n合成靶,即用磁控管喷雾方法沉积涂层:打开直流脉冲电源9并启动沉积衬层装置(图中未示出)进行衬层沉积,该沉积衬层装置在置于真空室之前,基材tc4要在异丙醇中经受超声清洗。在真空室,装置处在磁控管和ar 发射源两个缝隙式平面之间,可喷射溅射到基材上形成衬层6。作为衬层使用的原料具体为:单晶硅kaf-4.5(100)、铬钢65cr13和硬质合金yw2,其中:硬质合金yw2粉末为82-83%wc、6%co、6%tic、3-4%tac,密度为12.4-13.5g/cm3,硬度hra90.5,抗弯强度σbb=1350mpa。所述的沉积,通过设置偏压直流脉冲电源9=250v并通过加热器3加热基材温度到200-250℃且衬层电流密度记录为10ma/cm2,沉积60分钟,压力0.2pa。步骤3)由射频阴极磁控溅射涂层装置中离子发射源2发射ar 离子对衬层进行离子浸蚀,离子能量为1.5~2.0kev(千电子伏),衬层电流密度记录为10ma/cm2以得到凹凸不平起伏表面。所述的离子侵蚀的时间小于15分钟,离子浸蚀后沉积表面如图3所示。如图可见指针指明氩离子浸蚀后游离碳wc粒子(-1μkm)和(ti、ta、w)c(2~3μkm)。整个衬层起伏表面增加了离子浸蚀时间(τi),与衬层表面粗糙度成正比。粗糙度变化特征间隔5μkm,如表1所示。步骤4)在衬层的凹凸不平起伏表面上采用大功率脉冲磁控溅射管1通过ti靶提供ti、b组分,向真空室内通入压力0.2pa的ar/ar n2混合气体,同时通过离子植入器4分段以压力0.07pa植入高能量钛离子tin ,从而分别生成ti-b-n、ti-cr-b-n或ti-b-si-c-n涂层。优选地,设置过射频阴极磁控溅射涂层装置的磁控管1、大功率脉冲磁控溅射管2和ar 离子发射源2联合有序动作,控制磁控管喷雾过程和离子浸蚀过程。本实施例对上述涂层进行检测:用x荧光光电分光镜在仪器phi5500上激发光谱射线进行分析,将其与现有涂层的检测数据比较,具体如图2及表1所示。所述的涂层ti-b-n、涂层ti-cr-b-n和涂层ti-b-si-c-n的图形组织晶粒尺寸依次为3nm、1nm和5nm,其硬度依次为34gpa、33gpa和29gpa,其弹性模量依次为380gpa、370gpa和310gpa,其弹性回复值为58%~60%。所述的涂层ti-b-n和涂层ti-cr-b-n的摩擦系数依次为0.6和0.45,其磨损速度依次为3×10-7mm3n-1m-1和7×10-7mm3n-1m-1。所述的涂层ti-b-n和涂层ti-cr-b-n在tin在基体上据x射线荧光分析和压电法数据分析为面心立方点阵相。表1涂层ti-cr-b-n的粗糙度和临界载荷由表1得出:涂层ti-cr-b-n产生划痕时,衬层没有离子腐蚀,载荷27n,涂层在划痕处发生剥落,如图4所示;当离子浸蚀5min,载荷l>70n观察到划痕,直至载荷l=107n还未观察到片状剥落;当离子浸蚀15min,载荷达到98n,观察到第一条划痕,如图5a所示,在载荷达到110n,涂层仍没有剥落,如图5b所示;在载荷为93n时开始龟裂,如图5c所示;在载荷~60n时,可见到硬质合金衬层起皱。由此可见,在离子浸蚀时间、粗糙度大小和开始破坏时的临界载荷存在相关性。因此,为了获得最大附着强度应该在实施涂层之前保证有良好的充分起伏衬层表面并用独立的离子束组织成分浸蚀。可见要在衬层上沉积涂层ti-cr-b-n之前,为了增加附着强度,用氩离子预先浸蚀硬质合金衬层。离子浸蚀后沉积表面图像示于图3。由表1可见,用氩离子浸蚀衬层5~15min后,涂层出现第一道划痕载荷是没有浸蚀过的3~4倍。实施例2离子注入对涂层粘附强度影响评测:本实施例以涂层ti-b-n为例。在涂层沉积之前使用氩离子对衬层浸蚀3min。在沉积涂层同时分段植入钛离子tin ,与实施例1相比,本实施例采用ar 离子发射源2,发射ar 离子浸蚀硬质合金衬层并设置真空室内压力0.2pa,同时通过tin 离子植入器4分段植入高能钛离子tin 制备得到ti-b-n复合涂层。高能钛离子由离子植入器4在不同工艺阶段植入,如图6所示。提供高偏压为30kv,流量密度1×1014离子/(cm2·s),平均离子电荷等于2,在离子束中参加离子有ti和ti3 ,表2列出观察到出现第一道划痕载荷值。表2涂层ti-b-n出现第一道划痕的临界载荷序号№出现第一道划痕临界载荷lae(n)134-372~483~38427-29538-45如表2所示,1号涂层没有离子植入,在l=35n开始破坏,如图7a所示,在该载荷下,在涂层表面记录第一片剥落。再增加载荷时除了剥落外还出现人字形裂纹。进一步试验下去,在序号2离子植入沉积涂层组,交互层出现剥落或开裂。对划痕测试曲线评价,如图7b所示,载荷达到l=73~76n得到2号最好结果。因此在沉积涂层时同时植入高能量钛离子tin 。在损伤测试中,第一条人字形裂纹是在载荷l=48n,第一片剥落在载荷l=51n,如图8所示。然后,如试样1的情况,交互层部位剥落和出现开裂,直到载荷l=110n衬底仍没有破坏,如图8b所示。其余使用离子植入涂层,得到与试样1近似载荷达到破坏。除了2号外,衬层的优势在l≤75n,在所有情况下都是肯定的。涂层1号~4号厚度为2.5~2.8μkm,涂层5号的厚度为1.4~1.5μkm,因为5号涂层最薄致其在较高临界载荷下的破坏。通过本实施说明衬层通过离子浸蚀后,在涂层沉积时在规定条件下分段植入高能量ti和ti3离子对提高涂层粘附强度有积极影响,出现第一道划痕载荷比没有离子植入的要高近1倍。涂层厚度h对划痕试验结果影响评测临界载荷值的波动:在使用离子对衬层预浸蚀情况下,对涂层ti-cr-b-nl~70-100n,对涂层ti-si-b-c-nl~5-15n,对涂层ti-b-nl~30-50n涂层ti-cr-b-n载荷l=70-100n,涂层ti-si-b-c-n载荷l=5~15n,涂层ti-b-n载荷l=30~50n。研究临界载荷值的波动,使用自动高温合成法(cbc)制出-靶子喷雾速度是不同的,则波动能够用各种厚度涂层解释。为了检查涂层厚度h对划痕-测试结果的影响,对涂层ti-b-n和涂层ti-cr-b-n在不同沉积时长下进行研究,其余条件相同。对涂层ti-cr-b-n使用氢离子浸蚀5min,对涂层ti-b-n用氢离子浸蚀3min并在沉积第一个10min注入ti离子,得出表3的结果。表3涂层ti-b-n和涂层ti-cr-b-n各种厚度涂层的临界载荷如表3所示,破坏特征还取决于涂层厚度。涂层1的破坏特征如图9a所示,在增加载荷l条件下,划痕底部出现人字形裂纹和涂层磨损痕迹。涂层2的情况,在临界载荷达到50n时,围绕着损坏边缘出现网状细小裂纹,如图9b所示。在l=62-64n时,观察到割断擦伤划痕,如图9c所示。增加厚度,观察涂层ti-cr-b-n变化特征,在有划痕条件下,厚度为0.5的涂层4号,分布擦伤横向细小缺陷网状物,如图10所示。对涂层ti-cr-b-n第6号破坏始于涂层破损边界细小裂纹,如涂层2号。因此,提高涂层厚度将导致降低实际载荷。总结:由磁控高温合成方法获得ti-b-n、ti-cr-b-n和ti-si-b-c-n靶;再由磁控管溅射方法获得涂层。研究了涂层相-力学和摩擦学性能。研究了提高涂层粘附强度的各种工艺得出:①提高涂层粘附强度最有效方法是本发明硬质合金衬层预先离子浸蚀后,再在衬层表面由磁控管喷雾溅射形成涂层,一般与离子未浸蚀衬层或无衬层而施加涂层与基底粘附强度提高6倍;②在上述工艺过程中,在衬层经受离子浸蚀后,在施加涂层时,分阶段植入高能量钛离子tin ,出现第一道划痕载荷比没有离子植入的要高近1倍。③根据涂层厚度在划痕-测试时对涂层状态的影响,推荐涂层厚度一般在0.5~1.0μkm。上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,不仅使用钛合金板材,也适用于钢、铜等合金板材、棒材和工具表面。本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。当前第1页1 2 3 
技术特征:1.一种提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征在于,通过设置可独立控制的磁控管溅射施加涂层方法获得合成靶ti-b-n、ti-cr-b-n和ti-si-b-c-n,靶用自动扩散高温合成法制造。使用装置ybh-2m在钛合金或其它金属表面沉积衬层,再用ar 离子浸蚀衬层后,再用磁控管溅射提供高偏压、分段植入高能tin 施加涂层。
2.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的合成靶通过射频阴极磁控溅射涂层装置中的磁控管,以钛粉、铬粉、氮化物、碳化硅、非结晶棕色硼作为原料以高温自动合成法沉积制备得到。
3.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的合成靶的直径ф125mm,厚8mm。
4.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的射频阴极磁控溅射涂层装置中设有沉积衬层装置,该装置置于射频阴极磁控溅射涂层装置的真空室内,作为基材的tc4在异丙醇中经受超声清洗后再沉积衬层。
5.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的衬层包括:单晶硅kaf-4.5(100)、铬钢65cr13和硬质合金yw2,其中:硬质合金yw2粉末,具体为82-83%wc、6%co、6%tic、3-4%tac,其密度为12.4-13.5g/cm3,硬度hra90.5,抗弯强度σbb=1350mpa。
6.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的衬层喷涂装置,通过向衬层上施加高偏压250v并设置温度为200-250℃,控制衬层电流密度记录为10ma/cm2,压力0.2pa的环境下沉积60分钟。
7.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的离子浸蚀方法,通过射频阴极磁控溅射涂层装置中的离子发射源向衬层发射ar 离子以进行离子浸蚀,离子能量为1.5~2.0kev,从而得到凹凸不平起伏表面;然后在衬层上进一步射频阴极磁控溅射涂层装置中的大功率脉冲磁控溅射管通过ti靶提供ti、b组分,同时向射频阴极磁控溅射涂层装置中的真空室内注入压力0.2pa的ar/ar n2混合气体;再通过射频阴极磁控溅射涂层装置中的离子植入器分段植入高能量钛离子tin 在压力0.07pa的环境下生成最大附着强度的ti-b-n涂层、ti-cr-b-n涂层或ti-b-si-c-n涂层。
8.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的离子浸蚀得到的衬层的表面粗糙度与浸蚀时间成正比。
9.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的ti-b-n涂层对应非晶形相tib2,ti-cr-b-n涂层对应非晶形相crb2,ti-b-si-c-n涂层为在tib2基材上为六角形相,其图形组织晶粒尺寸依次为3nm、1nm和5nm,其硬度依次为34gpa、33gpa和29gpa,其弹性模量依次为380gpa、370gpa和310gpa,其弹性回复值为58%~60%。
10.根据权利要求1所述的提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,其特征是,所述的磁控管喷雾沉积装置包括:真空室以及设置于磁控管和离子发射源两个缝隙式平面之间的沉积衬层装置、氩离子发射源、高能钛离子植入器、加热器和直流脉冲高能量电源;其中:基材固定设置于球面旋转的旋转支架上并选择性分别面对磁控管喷射口、氩离子发射源和钛离子植入器以沉积于基材上的衬层、ar 浸蚀和沉积涂层。
技术总结一提高钛合金板材硬质耐磨纳米涂层粘附强度的方法,通过设置可独立控制的射频阴极磁控溅射涂层装置,通过磁控管喷雾的方式获得合成靶TiB2 TiN、TiBe Ti9Cr4B Cr2Ti或TiB2 SiC后进一步通过离子浸蚀方法在合成靶表面得到复合涂层。本发明的涂层粘附强度提高六倍以上。用等离子浸蚀方法,增加衬层粗糙度;增加偏压不仅增加粘合力,还改善了涂层密度;通过调节沉积温度来提高涂层的附着强度。
技术研发人员:袁秦峰;梁必成;贺鹏;王以华
受保护的技术使用者:浙江申吉钛业股份有限公司
技术研发日:2020.03.09
技术公布日:2020.06.09