本发明公开的技术涉及成膜装置。
背景技术:
专利文献1公开了一种成膜装置,其将溶液的喷雾向基体的表面供给,使膜在基体的表面外延生长。该成膜装置具有:加热炉,其收容并加热基体;喷雾产生槽,其在内部产生溶液的喷雾;喷雾供给路径,其连接喷雾产生槽和加热炉;载气供给路径,其向喷雾产生槽供给载气;以及稀释气供给路径,其向喷雾供给路径供给稀释气。如果向喷雾产生槽供给载气,则喷雾产生槽内的喷雾与载气一起流向喷雾供给路径。如果向喷雾供给路径供给稀释气,则喷雾供给路径内的喷雾与载气和稀释气一起流向加热炉。通过流入加热炉的喷雾附着在基体的表面上,从而膜在基体的表面外延生长。
专利文献1:日本特开2017-162816号公报
技术实现要素:
在专利文献1的成膜装置中,通过改变载气或稀释气的流量,能够改变向加热炉供给的喷雾的浓度。由此,能够改变膜的特性。然而,如果改变载气或稀释气的流量,则加热炉内的喷雾的流速会发生变化,喷雾的流速变化的影响导致膜的特性发生变化。因此,有时难以将膜的特性控制为所希望的特性。此外,如果要将喷雾的浓度控制为特定浓度,则有时导致喷雾的流速偏离适当的成膜条件,使膜无法稳定地生长。在本说明书中,提出了在抑制加热炉内的喷雾的流速变化的同时改变加热炉内的喷雾的浓度的技术。
本说明书所公开的成膜装置,向基体的表面供给溶液的喷雾而使膜在所述基体的所述表面外延生长。该成膜装置具有:加热炉,其收容并加热所述基体;喷雾产生槽,其内部产生所述溶液的所述喷雾;喷雾供给路径,其连接所述喷雾产生槽和所述加热炉;载气供给路径,其向所述喷雾产生槽供给载气;稀释气供给路径,其向所述喷雾供给路径供给稀释气;以及气体流量控制装置,其控制所述载气的流量和所述稀释气的流量。所述喷雾产生槽内的所述喷雾与所述载气一起流向所述喷雾供给路径。所述喷雾供给路径内的所述喷雾与所述载气和所述稀释气一起流向所述加热炉。所述气体流量控制装置在使所述载气的流量增加时,使所述稀释气的流量降低。
在该成膜装置中,喷雾产生槽内的喷雾与载气一起流向喷雾供给路径。因此,载气的流量越多,从喷雾产生槽向喷雾供给路径流动的喷雾的量越多。在喷雾供给路径内,通过稀释气汇入喷雾中而喷雾的浓度降低。因此,稀释气的流量越多,则喷雾的浓度就越低。气体流量控制装置使载气的流量增加时,使稀释气的流量减少。因此,从喷雾产生槽向喷雾供给路径流动的喷雾的量变多,并且喷雾供给路径内的喷雾的浓度降低量减少。因此,向加热炉供给的喷雾的浓度升高。此外,由于在使载气的流量增加时使稀释气的流量减少,因此,向加热炉供给的气体的流量几乎不变。因此,即使向加热炉供给的喷雾的浓度升高,加热炉内的喷雾的流速也基本不变。这样,根据该成膜装置,能够在抑制加热炉内的喷雾的流速的变化的同时,使加热炉内的喷雾的浓度提高。因此,根据该成膜装置,能够准确地控制要生长的膜的特性。
附图说明
图1为实施例1的成膜装置的结构图。
图2为实施例2的成膜装置的结构图。
图3为实施例3的成膜装置的结构图。
具体实施方式
图1所示的成膜装置10是使膜在基板70的表面上外延生长的装置。成膜装置10具备:加热炉12,其配置有基板70;加热器14,其对加热炉12进行加热;喷雾供给装置20,其与加热炉12连接;以及排出管80,其与加热炉12连接。
加热炉12的具体结构并不特别限定。作为一个例子,图1所示的加热炉12是从上游端12a延伸至下游端12b为止的管状炉。加热炉12的垂直于长度方向的剖面为圆形。但加热炉12的剖面不限于圆形。
喷雾供给装置20与加热炉12的上游端12a连接。在加热炉12的下游端12b连接有排出管80。喷雾供给装置20将喷雾62向加热炉12内供给。由喷雾供给装置20供给至加热炉12内的喷雾62,在加热炉12内流动至下游端12b为止后,经由排出管80向加热炉12的外部排出。
在加热炉12内设置有用于支撑基板70的基板台13。基板台13配置为,使基板70相对于加热炉12的长度方向倾斜。由基板台13支撑的基板70,以其朝向为使得在加热炉12内从上游端12a向下游端12b流动的喷雾62正冲基板70的表面的方式被支撑。
如上所述,加热器14对加热炉12加热。加热器14的具体结构并不特别限定。作为一个例子,图1所示的加热器14为电加热器,其沿着加热炉12的外周壁配置。加热器14对加热炉12的外周壁进行加热,从而加热炉12内的基板70被加热。
喷雾供给装置20具有喷雾产生槽22。喷雾产生槽22具有水槽24、溶液储存槽26和超声波振动器28。水槽24是上部开放的容器,内部储存有水58。超声波振动器28设置在水槽24的底面上。超声波振动器28对水槽24内的水58施加超声波振动。溶液储存槽26是密闭型容器。溶液储存槽26储存有含有在基板70的表面外延生长的膜的原料在内的溶液60。例如,在使氧化镓(ga2o3)的膜外延生长的情况下,可以使用溶解有镓的溶液作为溶液60。此外,在溶液60中还可进一步溶解有用于向氧化镓膜添加n型或p型掺杂剂的原料(例如氟化铵等)。溶液储存槽26的底部浸渍在水槽24内的水58中。溶液储存槽26的底表面由薄膜制成。由此,从水槽24内的水58向溶液储存槽26内的溶液60传递超声波振动变得容易。如果超声波振动器28向水槽24内的水58施加超声波振动,则经由水58将超声波振动传递到溶液60。这样,溶液60的表面振动,在溶液60上方的空间(即,溶液储存槽26内的空间)产生溶液60的喷雾62。
喷雾供给装置20还具备:喷雾供给路径40、载气供给路径42、稀释气供给路径44以及气体流量控制装置46。
喷雾供给路径40的上游端与溶液储存槽26的上表面连接。喷雾供给路径40的下游端与加热炉12的上游端12a连接。喷雾供给路径40从溶液储存槽26向加热炉12供给喷雾62。
载气供给路径42的下游端与溶液储存槽26的侧表面的上部连接。载气供给路径42的上游端与未图示的载气供给源连接。载气供给路径42从载气供给源向溶液储存槽26供给载气64。载气64是氮气或其他惰性气体。流入溶液储存槽26内的载气64从溶液储存槽26流向喷雾供给路径40。此时,溶液储存槽26内的喷雾62和载气64一起流向喷雾供给路径40。因此,载气64的流量fx(l/min)越大,从溶液储存槽26流向喷雾供给路径40的喷雾62的量越多。载气供给路径42中插入有流量控制阀42a。流量控制阀42a控制载气供给路径42内的载气64的流量fx。
稀释气供给路径44的下游端与喷雾供给路径40的中间连接。稀释气供给路径44的上游端与未图示的稀释气供给源连接。稀释气供给路径44从稀释气供给源向喷雾供给路径40供给稀释气66。稀释气66为氮气或其他惰性气体。流入喷雾供给路径40的稀释气66与喷雾62以及载气64一起流向加热炉12。喷雾供给路径40内的喷雾62被稀释气66稀释。因此,稀释气66的流量fy(l/min)越大,供给至加热炉12的喷雾62的浓度越低。在稀释气供给路径44中插入有流量控制阀44a。流量控制阀44a控制稀释气供给路径44内的稀释气66的流量fy。
气体流量控制装置46电连接至流量控制阀42a、44a。气体流量控制装置46通过控制流量控制阀42a、44a来控制载气64的流量fx和稀释气66的流量fy。
接下来,对利用成膜装置10的成膜方法进行说明。在此,使用由β型氧化镓(β-ga2o3)的单晶形成的基板作为基板70。此外,使用溶解有氯化镓(gacl3、ga2cl6)和氟化铵(nh4f)的水溶液作为溶液60。此外,使用氮气作为载气64,使用氮气作为稀释气66。
首先,在加热炉12内的基板台13上设置基板70。接着,由加热器14对基板70进行加热。在此,将基板70的温度控制在大约750℃。基板70的温度稳定后,使喷雾供给装置20工作。即,通过使超声波振动器28动作,使得溶液储存槽26内产生溶液60的喷雾62。同时,将载气64从载气供给路径42导入溶液储存槽26,将稀释气66从稀释气供给路径44导入喷雾供给路径40。在此,利用气体流量控制装置46将载气64的流量fx和稀释气66的流量fy控制为恒定值。此外,在此,将流量fx和流量fy的总流量ft设为约5l/min。载气64通过溶液储存槽26,如箭头50所示流入喷雾供给路径40内。此时,溶液储存槽26内的喷雾62和载气64一起流入喷雾供给路径40内。此外,稀释气66在喷雾供给路径40内与喷雾62混合。由此,喷雾62被稀释。喷雾62与氮气(即载气64和稀释气66)一起在喷雾供给路径40内向下游侧流动,如箭头52所示,从喷雾供给路径40流入加热炉12内。在加热炉12内,喷雾62与氮气一起流向下游端12b侧,并向排出管80排出。
在加热炉12内流动的喷雾62的一部分附着在已加热的基板70的表面上。由此,喷雾62(即溶液60)在基板70上引起化学反应。其结果,在基板70上生成β型氧化镓(β-ga2o3)。由于喷雾62被持续向基板70的表面供给,因此β型氧化镓膜在基板70的表面上生长。单晶的β型氧化镓膜在基板70的表面上生长。在溶液60含有掺杂剂的原料的情况下,掺杂剂被引入到β型氧化镓膜中。例如,在溶液60含有氟化铵的情况下,形成掺杂有氟的β型氧化镓膜。
氧化镓膜的膜品质根据向基板70的表面供给的喷雾62的浓度和加热炉12内的喷雾62的流速(m/sec)不同而变化。如果喷雾62的浓度较低,则氧化镓膜的生长速度变慢,如果喷雾62的浓度较高,则氧化镓膜的生长速度变快。喷雾62的浓度(即氧化镓膜的生长速度)会影响氧化镓膜的膜品质。此外,如果喷雾62的流速较快,则喷雾62会高速碰撞基板70的表面,因此,根据喷雾62的流速不同而氧化镓膜的生长条件发生变化。因此,喷雾62的流速会影响氧化镓膜的膜品质。成膜装置10可以在成膜处理的中途改变加热炉12内的喷雾62的浓度。此时,如以下说明所述,成膜装置10使加热炉12内的喷雾62的流速基本不变而改变喷雾62的浓度。
当使向加热炉12供给的喷雾62的浓度上升时,气体流量控制装置46控制流量控制阀42a、44a,使载气64的流量fx增加,并且使稀释气66的流量fy减少。如果载气64的流量fx增加,则从喷雾产生槽22向喷雾供给路径40流动的喷雾62的量增加。如果稀释气66的流量fy减少,则喷雾供给路径40内的喷雾62的浓度降低量变少。因此,如果载气64的流量fx增加、稀释气66的流量fy减少,则向加热炉12供给的喷雾62的浓度上升。此外,由于载气64的流量fx增加且稀释气66的流量fy减少,因此,载气64和稀释气66的总流量ft(=fx fy)基本不变。例如,以使得流量fx增加前后的总流量ft的变化为-10%~ 10%的方式进行控制。这样,通过减小总流量ft的变化,能够减小加热炉12内的喷雾62的流速的变化。如此,成膜装置10能够在抑制加热炉12内的喷雾62的流速变化的同时,使向加热炉12供给的喷雾62的浓度上升。由此,能够在抑制喷雾62的流速变化对膜品质的影响的同时,通过喷雾62的浓度上升而使膜品质发生变化。因此,能够准确地控制氧化镓膜的膜品质。特别地,优选使流量fx的增加量和流量fy的减少量成为相同的量,以使得在使喷雾62的浓度上升的处理前后,总流量ft不发生变化。如果总流量ft不发生变化,则加热炉12内的喷雾62的流速不发生变化,因此,能够使喷雾62的流速变化对膜品质的影响最小化。由此,能够更准确地控制氧化镓膜的膜品质。
在使向加热炉12供给的喷雾62的浓度降低时,气体流量控制装置46控制流量控制阀42a、44a,使载气64的流量fx减少,并且使稀释气66的流量fy增加。如果载气64的流量fx减少,则从喷雾产生槽22向喷雾供给路径40流动的喷雾62的量减少。如果稀释气66的流量fy增加,则喷雾供给路径40内的喷雾62的浓度降低量增加。因此,如果载气64的流量fx减少、稀释气66的流量fy增加,则供给到加热炉12的喷雾62的浓度降低。此外,由于载气64的流量fx减少且稀释气66的流量fy增加,因此,载气64和稀释气66的总流量ft(=fx fy)基本不变。例如,以使得流量fx减少前后的总流量ft的变化为-10%~ 10%的方式进行控制。这样,通过减小总流量ft的变化,能够减小加热炉12内的喷雾62的流速的变化。这样,成膜装置10能够在抑制加热炉12内的喷雾62的流速变化的同时,使向加热炉12供给的喷雾62的浓度降低。由此,能够在抑制喷雾62的流速的变化对膜品质的影响的同时,通过喷雾62的浓度降低而使膜品质发生变化。因此,能够准确地控制氧化镓膜的膜品质。特别地,优选使流量fx的减少量和流量fy的增加量成为相同的量,以使得在使喷雾62的浓度降低的处理前后,总流量ft不发生变化。如果总流量ft不发生变化,则加热炉12内的喷雾62的流速不发生变化,因此,能够使喷雾62的流速变化对膜品质的影响最小化。由此,能够更准确地控制氧化镓膜的膜品质。
如以上说明所示,根据实施例1的成膜装置10,能够在抑制加热炉12内的喷雾62的流速变化的同时,使加热炉12内的喷雾62的浓度发生变化。由此,能够准确地控制要生长的膜的特性。例如,如果喷雾62的流速变化,则氧化镓膜的生长速率变化,向氧化镓膜掺杂的掺杂剂的浓度变化。通过抑制喷雾62的流速变化,能够抑制掺杂剂的浓度的变化。此外,能够防止在改变喷雾62的浓度时,喷雾62的流速偏离适当的成膜条件。例如,如果喷雾62的流速过快,则氧化镓膜不再外延生长。通过抑制喷雾62的流速的变化,能够防止这种问题。
另外,在上述实施例中,以使氧化镓膜生长的情况作为例子进行了说明。然而,要生长的膜可任意选择。此外,溶液60和基板70的材料可以与要生长的膜对应得任意选择。
【实施例2】
接下来,对实施例2的成膜装置进行说明。在实施例2中,喷雾供给装置20具有多个超声波振动器28。实施例2的成膜装置的其他结构与实施例1的成膜装置10的结构相同。
实施例2的多个超声波振动器28分为第1组超声波振动器28a和第2组超声波振动器28b。超声波振动器28以组为单位被控制。
接下来,对利用实施例2的成膜装置的成膜方法进行说明。首先,与实施例1相同地,在加热炉12内的基板台13上设置基板70,通过加热器14对基板70进行加热。在基板70的温度稳定后,使喷雾供给装置20工作,开始外延生长工序。在此,不使第2组超声波振动器28b动作,而仅使第1组超声波振动器28a动作。通过使第1组超声波振动器28a动作,使溶液储存槽26内产生溶液60的喷雾62。同时,将载气64从载气供给路径42导入溶液储存槽26内,将稀释气66从稀释气供给路径44导入喷雾供给路径40。因此,如箭头52所示,喷雾62与载气64和稀释气66一起被供给至加热炉12。在使第1组超声波振动器28a动作后经过一定时间后,追加第2组超声波振动器28b进行动作。即,一边使第1组超声波振动器28a继续动作,一边使第2组超声波振动器28b进行动作。由此,向溶液储存槽26内的溶液60施加的超声波振动的能量增加,溶液储存槽26内产生的喷雾62增加。因此,加热炉12内的喷雾62的浓度上升。这样,通过使两组超声波振动器28a、28b分阶段动作,能够在外延生长工序开始时,使加热炉12内的喷雾62的浓度平缓上升。
在外延生长工序开始时,基板70暴露于喷雾62中,基板70的热量被喷雾62带走。其结果,基板70的温度降低。如果加热炉12内的喷雾62的浓度急速上升,则基板70的温度急剧降低,有可能要生长的膜的特性无法成为所期望的特性。与此相对,如上所述,如果在外延生长工序开始时,加热炉12内的喷雾62的浓度平缓上升,则使得基板70的温度平缓降低,膜的特性稳定。
在外延生长工序中,实施例2的成膜装置也与实施例1的成膜装置相同地,能够利用气体流量控制装置46来改变加热炉12内的喷雾62的浓度。
当完成外延生长工序时,使超声波振动器28a和超声波振动器28b的其中一组先停止。于是,溶液储存槽26内产生的喷雾62减少,加热炉12内的喷雾62的浓度降低。然后,从上述情况开始经过一定时间后,使超声波振动器28a和超声波振动器28b的另一组停止。于是,溶液储存槽26内不再产生喷雾62,加热炉12内的喷雾62的浓度降低到基本为零。这样,通过使两组超声波振动器28分阶段停止,能够在外延生长工序完成时,使加热炉12内的喷雾62的浓度缓慢降低。
在外延生长工序完成时,由于喷雾62不再向基板70供给,因此基板70的热量不会被喷雾62带走。其结果,基板70的温度上升。即使喷雾62的供给停止,基板70的表面上仍然附着有溶液60,膜的生长继续进行至该溶液60固化为止。当加热炉12内的喷雾62的浓度突然降低时,基板70的温度突然上升,生长膜的特性可能不会变为期望的特性。相反,如上所述,当在外延生长工序完成时加热炉12内的喷雾62的浓度缓慢降低时,基板70的温度缓慢上升,膜的特性稳定。另外,可以当外延生长工序完成时,使超声波振动器28a和超声波振动器28b的其中一组先停止。
如以上说明所示,通过在外延生长工序开始及完成时,使加热炉12内的喷雾62的浓度平缓变化,从而能够使基板70的温度变化平缓,能够形成更高品质的膜。
【实施例3】
如图3所示,实施例3的成膜装置具有3个喷雾供给装置20a~20c。各个喷雾供给装置20a~20c的结构与实施例1的喷雾供给装置20相同。各个喷雾供给装置20a~20c的喷雾供给路径40的下游部分汇合成一个并与加热炉12连接。在实施例3中,各个气体流量控制装置46进行动作,以使得在喷雾供给装置20a的喷雾供给路径40内流动的气体的流量fa、在喷雾供给装置20b的喷雾供给路径40内流动的气体的流量fb、以及在喷雾供给装置20c的喷雾供给路径40内流动的气体的流量fc的总流量fd(即向加热炉12供给的气体的流量)恒定。也可以通过进行控制以使得流量fa、fb、fc各自恒定,从而使总流量fd恒定。此外,也可以以使得外延生长工序中总流量fd恒定的状态下流量fa、流量fb、流量fc的比率变化的方式进行控制。通过使总流量fd恒定,从而加热炉12内的喷雾62的流速恒定,能够准确地控制要生长的膜的特性。
下面列出了本说明书中公开的技术要素。另外,以下各技术要素能够各自独立地应用。
在本说明书公开的一个例子的成膜装置中,气体流量控制装置可以在使载气的流量减少时,使稀释气的流量增加。
根据该结构,能够在抑制加热炉内的喷雾的流速变化的同时,使加热炉内的喷雾的浓度降低。
在本说明书公开的一个例子的成膜装置中,喷雾产生槽可以具备:储存槽,其储存溶液;第1超声波振动器,其通过对储存槽内的溶液施加超声波振动而使储存槽内产生溶液的喷雾;以及第2超声波振动器,其通过对储存槽内的溶液施加超声波振动而使储存槽内产生溶液的喷雾。可以在膜的外延生长开始时,使第1超声波振动器动作后,追加第2超声波振动器使其动作。
根据该结构,能够在膜的外延生长开始时,使向加热炉供给的喷雾的浓度逐渐上升。由此,能够准确地控制外延生长开始时的膜的特性。
在本说明书公开的一个例子的成膜装置中,可以在膜的外延生长完成时,在使第1超声波振动器和第2超声波振动器的其中一个停止后,追加第1超声波振动器和第2超声波振动器的另一个使其停止。
根据该结构,能够在膜的外延生长完成时,使向加热炉供给的喷雾的浓度逐渐降低。由此,能够准确地控制外延生长完成时的膜的特性。
本说明书公开的一个例子的成膜装置可以具备多个喷雾产生槽。气体流量控制装置可以以使得从多个喷雾产生槽向加热炉供给的气体的总流量恒定的方式,控制从各个喷雾产生槽向加热炉流动的气体的流量。
根据该结构,能够使膜稳定地进行外延生长。
以上对实施方式进行了详细说明,但其仅为例示,并不限定权利要求保护的范围。权利要求书所记载的技术包括将以上所例示的具体例子进行各种变形、变更后的内容。本说明书或说明书附图中所说明的技术要素能够单独或者通过各种组合而发挥其技术效用,并不限定于申请时权利要求记载的组合。另外,本说明书或说明书附图所例示的技术同时实现了多个目的,但对于仅实现其中一个目的这一点而言也具有技术效果。
标号的说明
10:成膜装置
12:加热炉
13:基板台
14:加热器
20:喷雾供给装置
22:喷雾产生槽
24:水槽
26:溶液储存槽
28:超声波振动器
40:喷雾供给路径
42:载气供给路径
42a:流量控制阀
44:稀释气供给路径
44a:流量控制阀
46:气体流量控制装置
58:水
60:溶液
62:喷雾
64:载气
66:稀释气
70:基板
80:排出管
1.一种成膜装置,其向基体的表面供给溶液的喷雾而使膜在所述基体的所述表面外延生长,
该成膜装置的特征在于,
具有:加热炉,其收容并加热所述基板基体;
喷雾产生槽,其内部产生所述溶液的所述喷雾;
喷雾供给路径,其连接所述喷雾产生槽和所述加热炉;
载气供给路径,其向所述喷雾产生槽供给载气;
稀释气供给路径,其向所述喷雾供给路径供给稀释气;以及
气体流量控制装置,其控制所述载气的流量和所述稀释气的流量,
所述喷雾产生槽内的所述喷雾与所述载气一起流向所述喷雾供给路径,
所述喷雾供给路径内的所述喷雾与所述载气和所述稀释气一起流向所述加热炉,
所述气体流量控制装置在使所述载气的流量增加时,使所述稀释气的流量降低。
2.根据权利要求1所述的成膜装置,其中,
所述气体流量控制装置在使所述载气的流量减少时,使所述稀释气的流量增加。
3.根据权利要求1或2所述的成膜装置,其中,
所述喷雾产生槽具备:
储存槽,其储存所述溶液;
第1超声波振动器,其通过对所述储存槽内的所述溶液施加超声波振动而使所述储存槽内产生所述溶液的所述喷雾;以及
第2超声波振动器,其通过对所述储存槽内的所述溶液施加超声波振动而使所述储存槽内产生所述溶液的所述喷雾,
在所述膜的外延生长开始时,使所述第1超声波振动器动作后,追加所述第2超声波振动器使其动作。
4.根据权利要求3所述的成膜装置,其中,
在所述膜的外延生长完成时,在使所述第1超声波振动器和所述第2超声波振动器的其中一个停止后,追加所述第1超声波振动器和所述第2超声波振动器的另一个使其停止。
5.根据权利要求1至4中任一项所述的成膜装置,其中,
所述成膜装置具有多个所述喷雾产生槽,
所述气体流量控制装置以使得从多个所述喷雾产生槽向所述加热炉供给的气体的总流量恒定的方式,控制从各个所述喷雾产生槽向所述加热炉流动的气体的流量。
技术总结