一种电池包功率估算方法与流程

专利2022-06-29  146


本发明涉及车用电池技术领域,尤其涉及一种基于脉冲功率的电池包功率估算方法。



背景技术:

动力电池作为电动车的关键零部件,其不但承担着储能作用,还为电动车行驶提供能量,因此动力电池的性能对带有动力电池的电动车非常重要,尤其是纯电动汽车,而动力电池与整车的续驶里程、加速性能等指标密切相关。

而动力电池的功率特性对整车的能量利用率、加速性能起到了关键作用,其可以帮助整车在保证动力电池寿命和性能的前提下,最大限度地提高整车在刹车、下坡路面的回馈功率,从而提高整车能量效率,进而提高车辆的续驶里程;在动力性方面,动力电池为电机提供加速时所需的功率,满足车辆0~100km的加速时间、最高车速维持能力、爬坡能力及各种严苛工况下的功率需求;然而对于动力电池本身,其功率会受到电芯特性的影响,而电芯本身由化学材料组成,因此电芯特性会受化学因素的影响。

基于电芯的外特性主要受温度及soc(stateofcharge,荷电状态)的影响,通常反应为对电芯内阻及静态下的开路电压的影响,由于电芯内阻主要包括欧姆内阻和极化内阻,极化内阻受到时间的影响,故对电池包的功率估算的精度要充分考虑到这些影响因素,且如果功率估算不准确,在能量回馈过程中,当能量回馈过少时,会导致整车的能量效率过低,续驶里程变短,不能发挥电芯的最大能力;当能量回馈过高时,则容易出现电芯过充的现象,可能出现电芯的性能受损,更严重的若不能及时采取措施,容易发生车辆起火等危害,严重危害人身安全。

在电池放电过程中,如果放电功率过大,会导致电芯性能受损,对寿命有影响;而如果放电功率过小,则不能充分发挥电芯能力,可能会出现整车动力不足,影响整车性能,故,动力电池功率的精确估算具有重要意义。

目前,电池包功率计算多为功率map法-由电芯供应商通过试验提供单个电芯的功率map,在电芯成组的过程中,对电芯的功率map先乘以相应的串联数,再相应的扣减掉连接阻抗、传感器采样精度、电芯的功率分布等因素的影响,进而折算成电池包功率,然而该方案只能离线计算出电池包的功率,不能实时的估算出当前电池包功率。



技术实现要素:

有鉴于此,有必要提供一种根据当前电芯的状态实时估算出动力电池功率的估算方法及装置。

本发明提供了一种电池包功率估算方法,用于估算电池包功率,所述电池包包括n个串联的电芯单体,该估算方法包括:

根据0阶欧姆内阻的模型,初步筛选出多个第一电芯单体;

根据一阶电池的等效模型计算筛选出的每一个第一电芯单体的功率,根据计算出的第一电芯单体功率确定出最差电芯单体的功率;

根据最差电芯单体功率估算出整个电池包的功率。

一实施例中,所述第一电芯单体为在放电情况下电压最先达到最低电压阈值vlowlimit或在充电情况下电压最先达到最高电压阈值vupperlimt的若干电芯单体。

一实施例中,根据0阶欧姆内阻的模型,初步筛选出多个第一电芯单体;包括:

根据0阶欧姆内阻的模型,计算出每一个电芯单体的功率;

根据计算出的每一个电芯单体功率筛选出若干个第一电芯单体。

一实施例中,根据0阶欧姆内阻的模型,根据公式powercell=vlowlimit*i计算出每一个电芯单体的功率,其中,vlowlimit为电芯允许最低放电电压,包括:

在考虑soc和温度的影响下,根据公式r=f(soc,温度)计算筛选出每一个电芯单体的电芯内阻;

根据每一个电芯单体的电芯内阻,计算每一个电芯单体的放电/充电电流最大值;

根据计算出的电芯单体的放电/充电电流最大值和第一电芯单体的最低电压阈值vlowlimit计算每一个电芯单体的功率;

根据计算出的每一个电芯单体的功率筛选出的若干个第一电芯单体。。

一实施例中,根据每一个电芯单体的电芯内阻,计算电芯单体的放电/充电电流最大值时,假定脉冲电流不会引起静态下的ocv的变化。

一实施例中,电芯单体的放电/充电电流最大值i=(ocv-vlowlimit)/r或(vupperlimt-ocv)/r,其中,ocv为开路电压,vlowlimit为放电时的最低电压阈值,vupperlimt为充电时的最高电压阈值,r为电芯单体的单体内阻。

一实施例中,根据计算出的电芯单体的放电/充电电流最大值和电芯单体的最低电压计算每一个电芯单体的功率时用到的公式为:powercell=vlowlimit*(ocv-vlowlimit)/r或ocv*(vupperlimt-ocv)/r。

一实施例中,根据0阶欧姆内阻的模型计算出的每一个电芯单体的功率筛选出若干个第一电芯单体,进一步根据一阶电池的等效模型计算出的第一电芯单体功率确定出功率最小的电芯单体功率的步骤,进一步包括:

对筛选出的若干个第一电芯单体,进一步考虑时间常数t对电芯内阻的影响,计算筛选出第一电芯单体的内阻;

根据算出的第一电芯单体的功率,由筛选出的第一电芯单体中确定出唯一的最差电芯单体的功率powercelllimit。

一实施例中,计算若干个第一电芯单体的功率时用到的公式为:powercell=vlowlimit*(ocv-vlowlimit)/rt或powercell=ocv*(vupperlimt-ocv)/rt。

一实施例中,根据确定出的最差电芯单体功率计算整个电池包功率时用到的公式为:

powerpack=n*powercelllimit,其中,n表示电池包中串联电芯单体的个数,且当有多个电芯单体并联时,将多个并联的电芯单体看作一个完整的电芯单体;powercelllimit为最差电芯单体功率。

综上,本发明通过0阶欧姆内阻的模型和一阶电池的等效模型确定出最差电芯单体的功率,并通过最差电芯单体的功率实时估算出整个电池包的电池包功率,从而提高电芯特性。

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。

附图说明

图1所示为本发明提供电池包功率估算方法的一具体实施例的原理框图;

图2所示为考虑soc和温度对电芯内阻影响的情况下电芯单体的单体内阻等效电路模型;

图3所示为考虑soc和温度对电芯内阻影响的基础上、进一步考虑时间常数t的电芯单体的单体内阻等效电路模型;

图4所示为电池包内单体电压随脉冲放电电流下降示意图。

具体实施方式

为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明详细说明如下。

电池仿真模型是为验证模型中参数设置的正确性,故其输入为电流,输出端为电压;(实际电池管理系统中,电流和端电压都为输入量);建立电池仿真模型的步骤为:选定模型→确定输入、输出及状态变量→列写状态方程→matlab建模→通过实验进行参数辨识→根据温度、充电状态(soc,stateofcharge)等变量实时修正参数→仿真。

如图1所示,本发明提供了一种电池包功率估算方法,其中,电池包包括n个串联的电芯单体,若电池包中存在有多个并联的单体,则将该多个并联的单体作为一个串联的电芯单体,该估算方法包括:

步骤s10:根据0阶欧姆内阻的模型,由n个电芯单体中初步筛选出n1个第一电芯单体;

步骤s20:根据一阶电池的等效模型,对筛选出的n1个第一电芯单体中的每一个进行功率估算,根据计算出的第一电芯单体功率确定出n1个第一电芯单体中功率最小的最差电芯单体的功率;

步骤s30:根据最差电芯单体功率估算出整个电池包的功率。

本发明根据筛选出的最差电芯单体的当前状态,实现动力电池真实情况下电池包功率的实时预估,提高电池的功率特性。

具体地,本发明初步筛选的第一电芯单体的定义为:在放电情况下电压最先达到最低电压阈值vlowlimit(通常为电芯制造商提供的电芯允许最低放电电压,若超过此电压电芯会发生不可逆损坏,寿命严重衰减,起火等危险)的若干个电芯单体,或者在充电情况下电压最先达到最高电压阈值vupperlimt(通常为电芯制造商提供的电芯允许最高充电电压,若超过此电压电芯会发生不可逆损坏,寿命严重衰减,起火等危险)的若干个电芯单体。在步骤s10中,根据0阶欧姆内阻的模型估算法,由n个电芯单体中初步筛选出n1个第一电芯单体时用到的公式为:

powercell=vlowlimit*i①

式中,powercell为电芯单体的功率,vlowlimit为最低电压阈值,i为流过电芯单体的电流;

利用0阶欧姆内阻的模型估算电芯单体功率包括:

根据计算式①计算电池包中每一个电芯单体的功率,对计算出的电芯单体的功率进行排序,根据经验和实际单体功率的大小初步筛选出n1个功率较低的第一电芯单体,在本步骤中,筛选出的第一电芯单体的数量n1远小于电池包内串联的电芯单体的数量n,筛选出的第一电芯单体的实际功率与其他正常单体的实际功率相差较大,也就是说,本步骤筛选出的第一电芯单体为处于异常状态的电芯单体。

具体地,利用0阶电池的等效模型估算电池包电芯单体功率的步骤具体包括:

首先,请参照图2在考虑soc和温度影响因素情况下,根据公式②计算第一电芯单体的电芯内阻;

r=f(soc,温度)②

式中r表示电芯内阻,f表示r是soc和温度的函数。由于ocv(开路电压,opencircuitvoltage)不仅可以是静态的,也可是动态的,且在动态下可以算出当前时刻对应的静态下的ocv;且实际情况下ocv是变化的,然而由于电芯单体内阻的存在,流过电芯单体的电流会在内阻上产生分压;当该电流为脉冲电流时,由于脉冲时间较短,造成实际的ocv变化不大,因此实际应用中近似的认为脉冲电流前后ocv不变化,此时,在放电/充电时,第一电芯单体的放电/充电电流最大值为:

放电时,i=(ocv-vlowlimit)/r

充电池,i=(vupperlimt-ocv)/r③

根据计算式①、②和③,得出在放电/充电情况下第一电芯单体功率的计算式为:

放电时,powercell=vlowlimit*(ocv-vlowlimit)/r

充电时,powercell=ocv*(vupperlimt-ocv)/r④

由于每一个电芯单体的ocv和内阻不尽相同,因此根据计算式④计算出的每一个电芯单体的功率也不相同,根据计算出的电芯单体的功率初步筛选出的n1个第一电芯单体,缩小最差电芯单体的范围。且在充电时,ocv相对于vupperlimit较低,为了保证功率不会估算的过高,超过电池实际能力,因此充电时功率的计算式中的电压选取电压较小的ocv。

由上面的0阶欧姆内阻的模型估算法可知,0阶欧姆内阻的模型相对简单,对单片机占用的资源较少。本发明在在考虑影响单体内阻的soc和温度的因素下使用0阶欧姆内阻的模型进行初步筛选后,同时在进一步考虑影响单体内阻的时间因素的情况下,对初步挑选出的第一电芯单体进行一阶电池的等效模型的计算,精确选择出具有最小功率单体的最差电芯单体。

其次,请参考图3,在考虑soc和温度对电芯内阻影响的基础上,进一步考虑时间常数t,根据公式⑤计算出的每一个第一电芯单体的内阻;

r=f(soc,温度,t)⑤

根据计算式①、③和⑤,得出第一电芯单体功率的计算式为:

放电时,powercell=vlowlimit*(ocv-vlowlimit)/rt

充电时,powercell=ocv*(vupperlimt-ocv)/rt⑥

其中,f(soc,温度,t)表示r是soc、温度和时间常数t的函数,rt为考虑soc、温度和时间因素的单体内阻。

最后,根据公式⑥计算出的每一个第一电芯单体的功率,确定出唯一的最差电芯单体功率powercelllimit。

由于在电池包中,所有流经串联的电芯单体的电流i相同(可以将并联的单体视为一个单体),如果最差的电芯单体电压达到限值(阈值),则其他的电芯单体也不能够进一步放电或充电。

如图4所示,以放电为例:当最差的电芯单体到达最低电压阈值vlowlimit时,由于电池包内各个电芯单体的充放电能力不一致,其他电芯单体均还未能够触及最低电压阈值vlowlimit,而理论上电池包实时功率的计算方法为:每个电芯单体放电时达到的最低电压阈值vlowlimit之和×放电时流经串联电芯单体的电流idischgmax,即powerpact=(vcell1 vcell2 … vlowlimit vcelln)*idischgmax,其中,powerpact表示电池包功率,vcell1表示第1个串联电芯单体的电压,vcell2表示第2个串联电芯单体的电压,vlowlimit表示最坏串联电芯单体的电压,vcelln表示第n个串联电芯单体的电压,idischgmax表示放电时流经串联电芯单体的电流。

在实际的工程应用中,电池包功率估算方法可根据本发明确定出的最差电芯单体功率powercelllimit,从而计算出整个电池包功率:

powerpack=n*vlowlimit*idischgmax=n*powercelllimit,其中,n表示电池包中串联电芯单体的个数,且当有多个电芯单体并联时,将多个并联的电芯单体看作一个完整的电芯单体;powercelllimit为最差电芯单体功率。

综上所述,本发明通过0阶欧姆内阻的模型和一阶电池的等效模型确定出最差电芯单体的功率,并通过最差电芯单体的功率实时估算出整个电池包的电池包功率,从而提高电芯特性。

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。


技术特征:

1.一种电池包功率估算方法,用于估算电池包功率,所述电池包包括n个串联的电芯单体,其特征在于,该估算方法包括:

根据0阶欧姆内阻的模型,初步筛选出多个第一电芯单体;

根据一阶电池的等效模型计算筛选出的每一个第一电芯单体的功率,根据计算出的第一电芯单体功率确定出最差电芯单体的功率;

根据最差电芯单体功率估算出整个电池包的功率。

2.根据权利要求1所述的电池包功率估算方法,其特征在于,所述第一电芯单体为在放电情况下电压最先达到最低电压阈值vlowlimit或在充电情况下电压最先达到最高电压阈值vupperlimt的若干电芯单体。

3.根据权利要求2所述的电池包功率估算方法,其特征在于,根据0阶欧姆内阻的模型,初步筛选出多个第一电芯单体;包括:

根据0阶欧姆内阻的模型,计算出每一个电芯单体的功率;

根据计算出的每一个电芯单体功率筛选出若干个第一电芯单体。

4.根据权利要求3所述的电池包功率估算方法,其特征在于,根据0阶欧姆内阻的模型,根据公式为powercell=vlowlimit*i计算出每一个电芯单体的功率,其中,vlowlimit为电芯允许最低放电电压,包括:

在考虑soc和温度的影响下,根据公式r=f(soc,温度)计算筛选出每一个电芯单体的电芯内阻;

根据每一个电芯单体的电芯内阻,计算每一个电芯单体的放电/充电电流最大值;

根据计算出的电芯单体的放电/充电电流最大值和第一电芯单体的最低电压阈值vlowlimit计算每一个电芯单体的功率;

根据计算出的每一个电芯单体的功率筛选出的若干个第一电芯单体。

5.根据权利要求4所述的电池包功率估算方法,其特征在于,根据每一个电芯单体的电芯内阻,计算电芯单体的放电/充电电流最大值时,且假定脉冲电流不会引起静态下的ocv的变化。

6.根据权利要求4所述的电池包功率估算方法,其特征在于,电芯单体的放电/充电电流最大值i=(ocv-vlowlimit)/r或(vupperlimt-ocv)/r,其中,ocv为开路电压,vlowlimit为放电时的最低电压阈值,vupperlimt为充电时的最高电压阈值,r为电芯单体的单体内阻。

7.根据权利要求4所述的电池包功率估算方法,其特征在于,根据计算出的电芯单体的放电/充电电流最大值和电芯单体的最低电压计算每一个电芯单体的功率时用到的公式为:powercell=vlowlimit*(ocv-vlowlimit)/r或ocv*(vupperlimt-ocv)/r。

8.根据权利要求4所述的电池包功率估算方法,其特征在于,根据0阶欧姆内阻的模型计算出的每一个电芯单体的功率筛选出若干个第一电芯单体,进一步根据一阶电池的等效模型计算出的第一电芯单体功率确定出功率最小的电芯单体功率的步骤,进一步包括:

对筛选出的若干个第一电芯单体,进一步考虑时间常数t对电芯内阻的影响,计算筛选出第一电芯单体的内阻;

根据算出的第一电芯单体的功率,由筛选出的第一电芯单体中确定出唯一的最差电芯单体的功率powercelllimit。

9.根据权利要求8所述的电池包功率估算方法,其特征在于,计算若干个第一电芯单体的功率时用到的公式为:powercell=vlowlimit*(ocv-vlowlimit)/rt或powercell=ocv*(vupperlimt-ocv)/rt。

10.根据权利要求1所述的电池包功率估算方法,其特征在于,根据确定出的最差电芯单体功率计算整个电池包功率时用到的公式为:

powerpack=n*powercelllimit,其中,n表示电池包中串联电芯单体的个数,且当有多个电芯单体并联时,将多个并联的电芯单体看作一个完整的电芯单体;powercelllimit为最差电芯单体功率。

技术总结
本发明提供了一种电池包功率估算方法,用于估算电池包功率,所述电池包包括N个串联的电芯单体,该估算方法包括:根据0阶欧姆内阻的模型,初步筛选出多个第一电芯单体;根据一阶电池的等效模型计算筛选出的每一个第一电芯单体的功率,根据计算出的第一电芯单体功率确定出最差电芯单体的功率;根据最差电芯单体功率估算出整个电池包的功率。本发明还涉及一种装置,通过0阶欧姆内阻的模型和一阶电池的等效模型确定出最差电芯单体的功率,并通过最差电芯单体的功率实时估算出整个电池包的电池包功率,从而提高电芯特性。

技术研发人员:翟一明;王芳芳;张俊杰;霍艳红;陈玉星;岳翔;张鲁宁;王路;周放;刘刚;邬学建;潘福中
受保护的技术使用者:宁波吉利汽车研究开发有限公司;浙江吉利控股集团有限公司
技术研发日:2020.02.18
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-37000.html

最新回复(0)