使用开路电压斜率估算电池的健康状态的制作方法

专利2022-06-29  105




背景技术:

电池的健康状态(soh)可以是一种用于确定电池的原始容量有多少在该电池中当前可用的有效度量。随着时间的流逝,可以预期电池的性能会退化。这种退化归因于以下因素:反复的充电和放电循环;暴露于变化的温度;电池的物理损坏;等等。电池的soh可用于确定电池可存储多少能量、电池可输出的电量或以上两者。



技术实现要素:

描述了与一种确定电动车辆的电池的健康状态(soh)的方法有关的多个实施例。在一些实施例中,描述了一种确定电动车辆的电池的健康状态(soh)的方法。该方法可以包括:确定电动车辆的当前状态可以适格于开路电压(ocv)确定。该方法可以包括:响应于确定电动车辆的当前状态可以适格于ocv确定,确定电动车辆的电池的第一ocv。该方法可以包括:响应于确定第一ocv,对电动车辆的电池进行库仑计数以确定累积容量值。该方法可以包括:在进行库仑计数之后,确定电动车辆的电池的第二ocv。该方法可以包括:使用已确定的第一ocv和已确定的第二ocv,计算ocv变化值。该方法可以包括:通过将累积容量值除以ocv变化值确定斜率值。该方法可以包括:使用斜率值确定电池的soh。

这样的方法的实施例可以包括以下特征中的一个或多个:使用斜率值确定电池的soh,可以包括将斜率值除以预设的斜率值。预设的斜率值可以指示电池在新的时候的健康状态。该方法可以包括:确定第一ocv可以在第一荷电状态(soc)范围内。响应于确定第一ocv和确定第一ocv可以在第一soc范围内,执行库仑计数。确定第一ocv可以在第一荷电状态范围内,可以包括使用第一ocv与ocv值和soc值之间的预设关系的结合。该方法可以包括确定第二ocv可以在第二soc范围内。确定斜率值可以在确定第二ocv可以在第二soc范围内之后进行。确定第二ocv可以在第二soc范围内,可以包括使用第二ocv与ocv值和soc值之间的预设关系的结合。第一soc范围和第二soc范围分别可以为至少15%,并且第一soc范围和第二soc范围被分隔开至少15%。在确定第一ocv之后,但在确定第二ocv之前进行库仑计数的同时,可以对电池进行充电和放电。该方法可以包括至少部分地基于已确定的soh值操作电动车辆。确定电动车辆的电池的第一ocv可以包括估计第一ocv。确定电动车辆的电池的第一ocv包括测量第一ocv。确定电动车辆的当前状态可以适格于ocv确定,可以包括:确定电动车辆可能已被关闭了至少预设的时间段。

在一些实施例中,描述了一种用于确定电动车辆的电池的健康状态(soh)的电动车辆系统。该系统可以包括安装在电动车辆上的车辆电池系统。该系统可以包括电压和电流测量系统,该电压和电流测量系统测量车辆电池系统的瞬时电压和电流测量值。该系统可以包括安装在电动车辆上的车载处理系统。车载处理系统可以包括一个或多个处理器,该处理器可以被配置为确定电动车辆的当前状态可以适格于开路电压(ocv)确定。该系统可以响应于确定电动车辆的当前状态可以适格于ocv确定,确定电动车辆的电池的第一ocv。该系统可以响应于确定第一ocv,对电动车辆的电池进行库仑计数以确定累积容量值。该系统可以在进行库仑计数之后,确定电动车辆的电池的第二ocv。该系统可以使用已确定的第一ocv和已确定的第二ocv,计算ocv变化值。该系统可以通过将累积容量值除以ocv变化值确定斜率值。系统可以使用斜率值确定电池的soh。

这样的系统的实施例可以包括以下特征中的一个或多个:车载处理系统,其被配置为确定电动车辆的电池的第一ocv,可以包括:车载处理系统,其被配置为估计第一ocv。车载处理系统被配置为确定电动车辆的电池的第一ocv可以包括车载处理系统被配置为测量第一ocv。车载处理系统被配置为使用斜率值确定电池的soh可以包括车载处理系统被配置为将斜率值除以预设的斜率值。预设的斜率值可以指示电池在新的时候的健康状态。车载处理系统可以进一步被配置为确定第一ocv可以在第一荷电状态(soc)范围内。响应于确定第一ocv和确定第一ocv在第一soc范围内,可以执行库仑计数。车载处理系统被配置为确定第一ocv可以在第一soc范围内可以包括车载处理系统被配置为使用第一ocv与ocv值和soc值之间的预设关系的结合。车载处理系统可以进一步被配置为确定第二ocv可以在第二soc范围内。车载处理系统被配置为确定斜率值可以在确定第二ocv可以在第二soc范围内之后进行。

在一些实施例中,描述了一种用于确定电动车辆的电池的健康状态(soh)的非暂时性处理器可读介质。该介质可以包括处理器可读指令,该处理器可读指令被配置为使一个或多个处理器确定电动车辆的当前状态可以适格于开路电压(ocv)确定。响应于电动车辆的当前状态可以适格于ocv确定,该介质可以使该一个或多个处理器确定电动车辆的电池的第一ocv。响应于确定第一ocv,该介质可以使该一个或多个处理器对电动车辆的电池进行库仑计数以确定累积容量值。该介质可以使该一个或多个处理器在进行库仑计数之后,确定电动车辆的电池的第二ocv。该介质可以使该一个或多个处理器使用已确定的第一ocv和已确定的第二ocv计算ocv变化值。该介质可以使该一个或多个处理器通过将累积容量值除以ocv变化值确定斜率值。该介质可以使该一个或多个处理器使用斜率值确定电池的soh。

附图说明

图1为示出使用ocv估计或测量确定电池的soh的电动车辆的一个实施例的框图。

图2为示出在不同温度下电池的开路电压(ocv)与电池的充电状态(soc)相比较的一个实施例的曲线图。

图3为示出使用电池的估计ocv或测量的ocv确定电池的soh的方法的一个实施例的示意图。

图4a和图4b为示出使用电池的ocv确定电池的soh的方法的另一个实施例的示意图。

具体实施方式

在电动车辆(ev)的情况下,电动车辆的一个或多个电池的soh可能特别重要。具体来说,电池的soh可用于估算电动车辆的行程、电动车辆的最大功率或其某种组合。通常,对于电动车辆,一旦用于车辆驱动的电动车辆的电池达到(电池原始容量的)80%soh,则建议更换电池。在80%时,电动车辆的行程量和用户体验的总体性能可能会降低到电池被认为是电动车辆有效运行的主要障碍的程度。

此外,对于电动车辆电池,对电池进行完全充电和完全放电以执行常规soh测量可能特别不方便且是不期望的。尽管这样的循环可以是一种确定电池的soh的准确方法,但这样的循环可能很难在预期已充电且可用于为车辆供电的电池上执行。此外,这样的完全充电和放电循环可能会导致电池的寿命过度下降。

相比于执行完全充电和完全放电循环确定电池的soh,电池的开路电压(ocv)可用于估计电池的soh。更具体地说,通过将计算出的斜率与指示电池的理想性能或新电池性能的存储的斜率进行比较,可以将所测量的电池的累计电荷随ocv变化的斜率用于确定电池的soh。

与通过执行从完全充电到完全放电循环的测量方法相比,使用所测得的电池的累计容量随ocv变化的斜率可能具有明显的优势。具体而言,对于电动汽车和混合电动汽车,使用ocv测量或估算可能更为实用,包括不要求将电池完全放电,此时如果车辆正在运行,可能会很危险,可能加剧电池退化,或者两者兼而有之。此外,依赖于电池内阻的soh测量可能不准确,因为电池的内阻会因温度、soc、电池寿命和电池充放电电流而变化。其他方法(例如,增量容量分析(ica))可能会遇到诸如噪声、需要大量硬件内存或两者兼有的问题。

尽管本文的实施例集中于电动车辆和用于驱动电动车辆的电池系统,但是类似的技术和系统可以适于在将从soh计算中受益的其他系统中使用。例如,各种其他情况可能受益于无需电池完全充电和完全放电就可以计算出的准确soh。

图1示出了使用估计或测量的ocv确定电池的soh的电动车辆的实施例100的框图。电动车辆101可具有各种车载系统和组件,包括:车辆电池系统105;电压和电流测量系统110;车载处理系统120;以及自主驾驶(ad)和/或导航系统130。车辆电池系统105可以包括一个或多个电池,这些电池用于存储用于车辆驱动的动力。车辆电池系统105可以是可充电的。然而,可以预期的是,随着时间的流逝,车辆电池系统105的性能将退化。作为一般准则,一旦车辆电池系统105已经退化到其原始容量的80%,则可以认为车辆电池系统105准备进行更换。除了确定车辆电池系统105是否准备进行更换之外,准确地确定车辆电池系统105的soh可以用来提供对剩余多少电池寿命的准确估计。这样的soh值可用于确定电动车辆101是否具有足够的存储能量来行驶至特定目的地、采取特定路线、操作特定辅助系统(例如车厢加热器、空调、娱乐系统)、在特定模式(例如运动模式,经济模式)下操作驾驶系统、或者以其他方式更改电动车辆的运行特性。尽管在实施例100中未示出,但是车辆电池系统105可以电连接到实施例100的整个车辆中的许多系统,例如为一个或多个驱动马达和/或一个或多个辅助系统供电。

电压和电流测量系统110,可以包括电流表和电压表,并且可以与车辆电池系统105电连接。电压和电流测量系统110能够测量车辆电池系统105输出的电压。电压和电流测量系统110可以测量输入到车辆电池系统105或从车辆电池系统105输出的瞬时电流。一般来说,ocv是当车辆电池系统105与所有负载断开连接,以使车辆电池系统105不输出电流时,车辆电池系统105的正负极之间的电位差。为了测量车辆电池系统105的ocv,可能需要使电动车辆101处于“关闭”状态。即,车辆电池系统105可能不在用于为电动车辆101提供推进力的过程中,并且可能没有为电动车辆101的辅助系统提供动力或只提供有限量的动力。实际上,车辆电池系统105可能正输出少量电流,例如为车载处理系统120,以及电压和电流测量系统110供电。然而,正在输出的少量电流对所测得的ocv的影响可忽略不计。电压和电流测量系统110可以在车辆已经“关闭”了一段预设的时间(例如一小时或两小时)后测量车辆电池系统105的电压。“关闭”可指电动车辆101依靠车辆电池系统105提供推进力,或者可指车辆的“点火”或电源开关设置为“关闭”设置设定的时间段。电压和电流测量系统110之后就可以测量车辆电池系统105的正极端子和负极端子之间的电压以进行ocv测量。在一些实施例中,电压和电流测量系统110可以暂时断开车辆电池系统105的连接以免输出任何电流,从而实现更准确的ocv测量。

另外地或替代地,电压和电流测量系统110可以用于ocv的估计。为了准确地测量ocv,电池可能需要处于空闲状态且没有明显的电流输出或输入到电池。对于电动车辆,这种情况可能仅在电动车辆关闭时才会发生,因此可能不会在长时间段内发生。因此,对ocv进行估计很重要。为此,在一些实施例中,可以使用一阶等效电路模型,并且可以估计3或4个参数(例如,ocv,欧姆电阻,rc对)。参数识别需要信号丰富度(估计n个参数,至少需要n/2个不同的频率),以便参数识别收敛。更精确地,如果输入信号对于两个未知参数的每一个具有至少一个不同的频率分量,则可以认为它足够丰富。如果未知参数的数量为n,则输入信号中有m≥n/2个不同频率足以使输入信号有资格作为足够丰富的n阶。当满足所需条件时,车载处理系统120可以使用这种一阶等效电路模型来估计ocv。

库仑计数系统115可以是车载处理系统120的一部分,并且可以从电压和电流测量系统110接收输入到车辆电池系统105或从车辆电池系统105输出的电流的瞬时量的测量结果。除了与车辆充电器连接之外,电动车辆101还可以使用其他方式为车辆电池系统105再充电。例如,可以使用再生制动或太阳能电池板为车辆电池系统105充电。库仑计数系统115可以用于确定离开车辆电池系统105的能量的总和。库仑计数系统115可以对一段时间内(车载处理系统120可以提供该段时间的开始和停止时间)从电压和电流测量系统110接收到的瞬时电流量进行积分。在这样的实施例中,库仑计数系统115可以补偿指示车辆电池系统105正在充电(例如,由于再生制动)的瞬时测量。因此,尽管在一段时间内存在车辆电池系统105放电和充电的情况,但仍可以执行精确的库仑计数以确定安培-小时值(或等效值)。

车载处理系统120可以包括一个或多个专用或通用处理器。可以对一个或多个专用处理器(例如,一个或多个asic或fpga)进行特定编程以执行测量定时引擎122和soh计算引擎124的功能。一个或多个通用处理器可以执行由非暂时性处理器可读介质存储的软件。软件可以使一个或多个通用处理器执行测量定时引擎122和soh计算引擎124的功能。除了一个或多个处理器之外,可以存在计算机化的组件,诸如一个或多个非暂时性处理器可读介质、通信总线、网络接口、电源等。车载处理系统120可以包括:测量定时引擎122、soh计算引擎124和预设soc关系数据存储库126。

测量定时引擎122可以确定何时适合由车辆电池系统105的电压和电流测量系统110进行ocv测量。测量定时引擎122可以监测自从电动车辆101最后一次由存储在车辆电池系统105中的电力驱动至今经过的时间量或者电动车辆101已经关闭或静止的时间量。测量定时引擎122还可以确定从电压和电流测量系统110获得的ocv测量结果是否适格于soh计算。测量定时引擎122可以访问预设soc关系数据存储库126。预设soc关系数据存储库126可以将ocv值映射至理想的或新的车辆电池系统的soc值。预设soc关系数据存储库126可以以查找表的形式存储数据,或者可以存储一个或多个定义ocv与soc之间关系的等式。图2示出了ocv和soc之间的关系的示意图。如图2所示,测量定时引擎122可以通过确定ocv的测量结果是否落入预设的缓冲区内来确定特定的ocv的测量结果是否适格于计算车辆电池系统105的soh。为了执行soh测量,可以使用来自两个soc缓冲区中的每一个缓冲区的ocv测量。在一些实施例中,不是存储在本地,而是可以访问远程源以确定新电池系统的ocv和soc之间的关系。

soh计算引擎124可以使用ocv的测量结果和库仑计数的测量结果确定车辆电池系统105的soh。soh计算引擎124可以对从库仑计数系统115接收的瞬时测量结果进行积分,或者可以接收在预设时间段内的积分值,该时间段的开始和结束时间由车载处理系统120提供给库仑计数系统115。soh计算引擎124(可能与测量定时引擎122结合)可以执行方法300、400或两者的步骤。车载处理系统120可基于所计算的soh值影响自主驾驶系统和/或导航系统130如何工作。基于车辆电池系统105的soh值,自主驾驶系统130可以基于车辆电池系统105的soh和当前电荷确定电动车辆101不能到达目的地,并且因此可能需要在旅程开始或完成之前对车辆电池系统105进行再充电或更换。或者,自主驾驶系统130可以基于soh值改变通往目的地的路线,以便最小化距离、所使用能量的总量或需要从车辆电池系统105获取的最大功率(例如,通过消除需要在入口坡道上快速加速的路线,或者避开具有陡峭向上坡度的路线)。如果导航系统作为独立系统或作为自主驾驶系统130的一部分存在,则导航系统可以基于车辆电池系统105的所计算的soh值和/或车辆电池系统105的当前电荷,更改推荐路线(例如,如在地图上绘制的),或请求在行程之前或期间对电动车辆101再充电。

图2示出了电池的开路电压(ocv)与电池的荷电状态(soc)相比较的曲线图200的一个实施例。曲线图200示出了新的车辆电池系统105在不同温度下的ocv。可以看出,soc大约高于18%时,ocv不会随温度而显着变化。在曲线图200上定义了两个缓冲区:缓冲区201和缓冲区202。缓冲区201的范围从20%soc到40%soc;缓冲区202的范围从60%soc到85%soc。为了准确地确定soc,可以在缓冲区201和202中的每一个缓冲区中进行ocv测量。可以看出,无论温度如何,缓冲区201和缓冲区202中的点之间的斜率203大约相同。曲线图200的数据可以以查找表的形式存储,或者可以以一个或多个函数的形式存储。该数据可以存储在预设soc关系数据存储库126中。根据车辆电池系统105的类型和设计,ocv与soc的特定关系可以变化;因此,存储在预设soc关系数据存储库126中的数据可以根据实施例而变化。此外,缓冲区201和202的具体范围可以变化。在其他实施例中,可以存在两个以上的缓冲区。

使用图1和图2中的系统和数据可以执行多种方法。图3示出了用于使用车辆电池系统的多个ocv的测量结果确定电池的soh的方法300的实施例。可以使用实施例100中的系统以执行方法300。在框310中,可以测量车辆电池的第一ocv。该第一ocv的测量结果可以通过诸如非暂时性处理器可读存储器来存储。在一些实施例中,不是直接测量ocv,而可以估计ocv,例如通过使用先前详细描述的一阶等效电路模型ocv。

在框320中,紧接在电池的第一ocv被测量之后,可以执行库仑计数,例如通过库仑计数系统115。在执行库仑计数的同时,车辆的电池可以输出电流;但是,有时电池可能被充电(例如,再生制动、太阳能电池板等)。作为库仑计数的一部分进行的瞬时测量可以被积分以确定在一个时间段内的总安培-小时输出。该时间段可以在框310中进行第一ocv测量时开始,并且可以在框330中进行第二ocv测量时结束。在一段时间之后,例如在预定时间段之后,可以在步骤330中对电池的ocv进行第二ocv测量。在一些实施例中,不是直接测量ocv,而是可以估计ocv,例如使用先前详细描述的一阶等效电路模型ocv。该第二ocv的测量结果或估计结果可例如通过非暂时性处理器可读存储器来存储。

在框340中,可以确定框310和330之间的所测量或所估计的ocv变化值。等式1可用于计算ocv的变化。应当理解,ocv的变化可能是负的(如果车辆的电池已充电)或可能是正的(如果车辆已操作)。

ocv2-ocv1=δocv等式1

在框350中,可以计算斜率值。斜率值可以代表相对于ocv(docv)的电荷变化(dq)。等式2描述了斜率的计算。

在等式2中,α是计算出的斜率。δq是指通过对执行中的框310与框330之间的对来自框320的瞬时库仑计数测量结果进行积分而得到的累积电荷(例如,以安培-小时为单位)。预期α的值随着电池老化而减小。也就是说,对于给定的ocv下降,由电池输出的存储电荷会减少。可以将α的值与αnew的值进行比较。αnew的值可以按新电池或理论上的电池进行计算。例如,可以使用图2的数据计算αnew的值。

在框360中,可以使用等式2计算得到的斜率值确定电池的soh。更具体地,可以使用等式3确定指示α与αnew的关系的百分比值。在一些实施例中,可以通过在首次操作或制造电动车辆时执行初始α计算(等式2)获得αnew的值。这样的实施例允许为特定的电池系统和电动车辆专门定制αnew。

soh的确定值可以是指示电池容量与新电池或首次安装时的电池相比的百分比。然后,该soh值可用于确定电池是否需要更换(例如,通过在电动车辆的显示屏上输出这种指示);电池的当前总容量;电动车辆的行程;以及是否需要再充电(例如,在到达预定目的地之前);并可用于调整驾驶特性以节省电力;关闭一个或多个辅助系统;或禁用电动车辆的功能。

图4a和4b示出了使用车辆电池系统的多个ocv的测量结果确定电池的soh的方法400的实施例。方法400可以使用实施例100的系统来执行。方法400可以表示比图3中的方法300更详细的一个实施例。在框405中,可以做出关于电动车辆、车辆的电池系统或两者是否适格于进行ocv测量的初始确定。可以通过诸如测量定时引擎122来评估各种因素,以确定是否存在对于ocv测量的适格性。第一因素可以是车辆是否“关闭”或以其他方式停用。该因素可包括检查车辆设置为驻车位置以及车辆的电池系统未用于主动推进车辆。第二因素可以是自上次使用电池系统为车辆提供动力以来的时间量。在一些实施例中,在存在对于ocv测量的适格性之前,需要经过最少时间量,例如一小时或两小时。其他因素可能包括当前从电池汲取的电流量;例如,如果电流消耗大于设定的阈值(可能接近零),则可能不存在适格性。如果电池系统当前正在充电,则可能不存在适格性。

在框410中,可以测量车辆电池的第一ocv。第一ocv的测量结果可以被测量为电池两端子间的电压。第一ocv测量可以使用电压和电流测量系统110来执行。在一些实施例中,不直接测量ocv,而是可以例如通过先前详细描述的一阶等效电路模型来估计ocv。该第一ocv的测量结果或估计结果可以例如通过使用非暂时性处理器可读存储器进行存储,可能还连同确定第一ocv的测量结果在特定soc范围内的指示一起存储。

在框415中,可以分析第一ocv值。可以确定第一ocv是否落入期望的soc范围内。可能存在多个soc范围(也称为“缓冲区”)。例如,参考图2,第一soc范围可以在20%soc和40%soc之间,并且第二soc范围可以在60%soc和85%soc之间。在其他实施例中,特定soc范围可以变化。例如,范围可以更小和/或具有不同的上限和下限。在一些实施例中,可以使用两个以上的soc范围。第一ocv值可用于执行查找或计算函数以确定相关联的soc值。为了执行这种查找或计算函数,可能需要访问将电池系统的ocv值与soc值相关联的查找表或函数(例如,当电池系统是新电池系统时)。例如,图2表示新电池系统的ocv和soc之间的关系。在一些实施例中,可以将soc范围转换成ocv范围,然后ocv范围可以代替soc关系数据而被存储。例如,参考图2,第一soc范围可以转换为3.62v到3.68v的第一ocv范围,并且第二soc范围可以转换为3.79v到3.95v的第二ocv范围。如果确定第一ocv的测量值不在soc范围内,则方法400可返回到框405,例如在等待预设时间段之后。如果确定第一ocv的测量值落入其中一个soc范围内,则方法400可继续到框420。

在框420中,在测量电池的第一ocv之后,可立即开始库仑计数,例如通过库仑计数系统115。在执行库仑计数的同时,车辆的电池可以输出电流或者可以接收用于充电的电流(例如,再生制动、太阳能电池板等)。作为库仑计数的一部分进行的瞬时测量可以进行积分以确定在一段时间内的总安培-小时输出。上述一段时间可以在框410进行第一ocv测量时开始,并且在框435进行第二ocv测量时结束。

在框425中,可以做出关于电动车辆、车辆的电池系统或两者是否适格于进行ocv测量的第二确定。在框425中可以再次评估在框405中评估过的相同因素。作为示例,如果用户已经将其电动车辆停在家里过夜,则框405被评估为是。若该电动车辆第二天停放在用户的工作地点,则框425被评估为是。如果框425被评估为否,则可在充电和放电事件中继续库仑计数。在框430中,可以测量车辆电池的第二ocv。类似于第一ocv的测量结果,第二ocv的测量结果可能为电池两端子间的电压。第二ocv测量可以使用电压和电流测量系统110来执行。在一些实施例中,不直接测量ocv,而是可以例如通过先前详细描述的一阶等效电路模型来估计ocv。该第二ocv的测量结果或估计结果可以例如通过使用诸如非暂时性处理器可读存储器进行存储。

在框435中,可以分析第二ocv值。可以确定第二ocv是否落入与框415中第一ocv的测量结果被确定为处于的soc范围不同的期望soc范围内。为了能够适格,第二ocv的测量结果所落入的范围可能需要不同于第一ocv被确定落入的范围。例如,参照图2,如果第一ocv的测量结果落入缓冲区201内,则第二ocv的测量结果将需要落入缓冲区202内;或者如果第一ocv的测量结果落入缓冲区202内,则第二ocv的测量结果将需要落入缓冲区201内。如关于框415所详细描述的,第二ocv值可用于执行查找或计算函数以确定相关联的soc值。为了执行这种查找或计算函数,可能需要访问将ocv值与电池系统的soc值相关联的查找表或函数(例如,当电池系统是新电池系统时)。在一些实施例中,如先前详细描述的,soc范围可以被转换成ocv范围,然后该ocv范围可以代替soc关系数据而被存储。如果确定第一ocv测量值不落入适格soc范围内,则方法400可返回到框420,在此期间库仑计数可继续而不中断。如果确定第二ocv测量值落入适格soc范围,则方法400可前进到框440(在图4b上)。

在框440中,可以确定框410和430之间的ocv的测量结果或估计结果的变化值。等式1可用于计算ocv变化值。应当理解,ocv变化值可能是负的(如果车辆的电池已充电)或可能是正的(如果车辆已操作)。在框445中,可以计算斜率值。斜率值可以代表相对于ocv(docv)的电荷变化(dq)。等式2描述了斜率的计算。预期α的值随着电池老化而减小。也就是说,当ocv下降,由电池输出的存储电荷会减少。可以将α的值与αnew的值进行比较。αnew的值可以按新电池或理论上的电池进行计算。例如,可以使用图2的数据来计算αnew的值。

在框450中,可以使用等式2计算得到的斜率值来确定电池的soh。更具体地,可以使用等式3来确定指示α与αnew的关系的百分比值。在一些实施例中,可以通过在首次操作或制造电动车辆时执行初始α计算(等式2)来获得αnew的值。这样的实施例允许为特定的电池系统和电动车辆专门定制αnew。

在框455中,可以至少部分基于所确定的soh来操作电动车辆。soh值可用于:1)确定电池是否需要更换(例如,通过在电动车辆的显示屏上输出这种指示,或向制造商或服务提供商发送消息),2)确定并输出电池当前总容量的指示;3)确定电动车辆的行程;4)确定是否有必要进行再充电(例如,在到达预定目的地之前);5)更改电动车辆的行驶路线(例如,在导航系统上或由自主驾驶系统控制);6)调整电动车辆的行驶特性以节省电力;7)关闭电动车辆的一个或多个辅助系统;和/或7)禁用电动车辆的功能。

应当注意,以上讨论的方法,系统和设备仅旨在作为示例。必须强调的是,各种实施例可以适当地省略,替代或添加各种过程或组件。例如,应当理解,在替代实施例中,可以按与所描述的顺序不同的顺序执行所述方法,并且可以添加,省略或组合各个步骤。此外,关于某些实施例描述的特征可以在各种其他实施例中组合。实施例的不同方面和元素可能以类似方式进行组合。另外,应当强调的是,技术在发展,因此许多要素是示例,并且不应被解释为限制本发明的范围。

在说明书中给出了具体细节以提供对实施例的透彻理解。然而,本领域的普通技术人员将理解,可以在没有这些具体细节的情况下实践实施例。例如,已经示出了公知的过程,结构和技术,而没有不必要的细节,以避免使实施例晦涩难懂。该描述仅提供示例性实施例,而不是要限制本发明的范围、适用性或配置。相反,实施例的前述描述将为本领域技术人员提供用于实现本发明的实施例的使能描述。在不脱离本发明的精神和范围的情况下,可以对元件的功能和布置进行各种改变。

另外,应注意,实施例可被描述为被描绘为流程图或步骤图的过程。尽管每个过程都可以将各操作描述为顺序的过程,但是许多操作可以并行或同时执行。另外,可以重新排列操作的顺序。一个过程可能具有图中未包括的其他步骤。

已经描述了几个实施例,本领域技术人员将认识到,在不偏离本发明的精神的情况下,可以使用各种修改,替代构造和等同形式。

例如,以上元件可以仅仅是较大系统的组件,其中其他规则可以优先于本发明的应用或者以其他方式修改本发明的应用。而且,在考虑上述元件之前、期间或之后可以采取多个步骤。因此,以上描述不应被视为限制本发明的范围。


技术特征:

1.一种确定电动车辆的电池的健康状态(soh)的方法,所述方法包括:

确定所述电动车辆的当前状态适格于开路电压(ocv)确定;

响应于确定所述电动车辆的当前状态适格于所述ocv确定,确定所述电动车辆的电池的第一ocv;

响应于确定所述第一ocv,对所述电动车辆的电池进行库仑计数以确定累积容量值;

在进行所述库仑计数之后,确定所述电动车辆的电池的第二ocv;

使用已确定的所述第一ocv和已确定的所述第二ocv,计算ocv变化值;

通过将所述累积容量值除以所述ocv变化值确定斜率值;以及

使用所述斜率值确定所述电池的soh。

2.根据权利要求1所述的确定电动车辆的电池的soh的方法,其中,使用所述斜率值确定所述电池的soh,包括将所述斜率值除以预设的斜率值,其中所述预设的斜率值指示所述电池在新的时候的健康状态。

3.根据权利要求1所述的确定电动汽车电池的soh的方法,还包括:

确定所述第一ocv在第一荷电状态(soc)范围内,其中,响应于确定所述第一ocv和确定所述第一ocv在所述第一soc范围内,执行库仑计数。

4.根据权利要求3所述的确定电动车辆的电池的soh的方法,其中,确定所述第一ocv在所述第一soc范围内,包括使用所述第一ocv与预设关系的结合,其中所述预设关系为ocv值和soc值之间的预设关系。

5.根据权利要求4所述的确定电动车辆的电池的soh的方法,还包括:

确定所述第二ocv在第二soc范围内,其中,在确定所述第二ocv在所述第二soc范围内之后,进行确定所述斜率值。

6.根据权利要求5所述的确定电动车辆的电池的soh的方法,其中,确定所述第二ocv在所述第二soc范围内,包括使用所述第二ocv与ocv值和soc值之间的所述预设关系的结合。

7.根据权利要求6所述的确定电动车辆的电池的soh的方法,其中,所述第一soc范围和所述第二soc范围分别为至少15%,并且所述第一soc范围和所述第二soc范围被分隔开至少15%。

8.根据权利要求1所述的确定电动车辆的电池的soh的方法,其中,在确定所述第一ocv之后,但在确定所述第二ocv之前进行库仑计数的同时,对所述电池进行充电和放电。

9.根据权利要求1所述的确定电动车辆的电池的soh的方法,还包括:

至少部分地基于已确定的soh值操作所述电动车辆。

10.根据权利要求1所述的确定电动车辆的电池的soh的方法,其中,确定所述电动车辆的电池的第一ocv包括估计所述第一ocv。

11.根据权利要求1所述的确定电动车辆的电池的soh的方法,其中,确定所述电动车辆的电池的第一ocv包括测量所述第一ocv。

12.根据权利要求1至11任意一项所述的确定电动车辆的电池的soh的方法,其中,确定所述电动车辆的当前状态适格于ocv确定,包括确定所述电动车辆已被关闭了至少预设的时间段。

13.一种用于确定电动车辆的电池的健康状态(soh)的电动车辆系统,所述电动车辆系统包括:

安装在所述电动车辆上的车辆电池系统;

电压和电流测量系统,电压和电流测量系统测量所述车辆电池系统的瞬时电压和电流测量;以及

安装在所述电动车辆上的车载处理系统,所述车载处理系统包括一个或多个处理器,所述一个或多个处理器配置为:

确定所述电动车辆的当前状态适格于开路电压(ocv)确定;

响应于确定所述电动车辆的当前状态适格于所述ocv确定,确定所述电动车辆的电池的第一ocv;

响应于确定所述第一ocv,对所述电动车辆的电池进行库仑计数以确定累积容量值;

在进行所述库仑计数之后,确定所述电动车辆的电池的第二ocv;

使用已确定的所述第一ocv和已确定的所述第二ocv,计算ocv变化值;

通过将所述累积容量值除以所述ocv变化值确定斜率值;以及

根据所述斜率值确定所述电池的soh。

14.根据权利要求13所述的电动车辆系统,其中,所述车载处理系统被配置为确定所述电动车辆的电池的第一ocv,包括所述车载处理系统被配置为估计所述第一ocv。

15.根据权利要求13所述的电动车辆系统,其中,所述车载处理系统被配置为确定所述电动车辆的电池的第一ocv,包括所述车载处理系统被配置为测量所述第一ocv。

16.根据权利要求13所述的电动车辆系统,其中,所述车载处理系统被配置为使用所述斜率值确定所述电池的soh,包括所述车载处理系统被配置为将所述斜率值除以预设的斜率值,其中所述预设的斜率值指示所述电池在新的时候的健康状态。

17.根据权利要求13所述的电动车辆系统,其中,所述车载处理系统还被配置为:

确定所述第一ocv在第一荷电状态(soc)范围内,其中,响应于确定所述第一ocv和确定所述第一ocv在所述第一soc范围内,执行库仑计数。

18.根据权利要求17所述的电动车辆系统,其中,所述车载处理系统被配置为确定所述第一ocv在所述第一soc范围内,包括所述车载处理系统被配置为使用所述第一ocv与预设关系的结合,其中所述预设关系为ocv值和soc值之间的预设关系。

19.根据权利要求13所述的电动车辆系统,其中,所述车载处理系统还被配置为确定所述第二ocv在第二soc范围内,其中,所述车载处理系统被配置为在确定所述第二ocv在所述第二soc范围内之后,进行确定所述斜率值。

20.一种用于确定电动车辆的电池的健康状态(soh)的非暂时性处理器可读介质,包括处理器可读指令,所述处理器可读指令被配置为使一个或多个处理器:

确定所述电动车辆的当前状态适格于开路电压(ocv)确定;

响应于确定所述电动车辆的当前状态适格于所述ocv确定,确定所述电动车辆的电池的第一ocv;

响应于确定所述第一ocv,对所述电动车辆的电池进行库仑计数,以确定累积容量值;

在进行库仑计数之后,确定所述电动车辆的电池的第二ocv;

使用已确定的所述第一ocv和已确定的所述第二ocv,计算ocv变化值;

通过将所述累积容量值除以所述ocv变化值确定斜率值;以及

使用所述斜率值确定所述电池的soh。

技术总结
提出了用于确定电动车辆的电池的健康状态(SOH)的多种方案。可以确定电动车辆的电池的第一OCV。在确定了第一OCV之后,可以对电动车辆的电池进行库仑计数以确定累积容量值。可以在进行库仑计数之后,确定电动车辆的电池的第二OCV。可以使用所确定的第一OCV和所确定的第二OCV计算OCV变化值。可以通过将累积容量值除以OCV变化值确定斜率值。然后可以使用斜率值确定电池的SOH。

技术研发人员:萨伊德·哈勒吉·拉希米安;侯俊;田民;游振彦;史俊哲;刘瀛
受保护的技术使用者:重庆金康新能源汽车有限公司
技术研发日:2020.02.06
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-36927.html

最新回复(0)