本发明属于目标跟踪技术,具体涉及综合目标运动参数和属性参数的航迹关联策略的目标多源异构传感器复合跟踪方法。
背景技术:
无论是在现代防御还是在海上和空中交通管制系统中,多目标跟踪都是不可缺少的重要技术。尤其是随着现代航空、航海、航天事业的蓬勃发展以及现代战争的信息化,网络化发展,多目标跟踪技术的研究越来越受到各国的高度重视,现已成为一个十分活跃的研究领域。
在目标跟踪时,在仅对单个目标进行跟踪的情况下,目标源与量测的对应关系自然建立,无须进行数据关联,而在实际情况中,我们遇到的是多目标跟踪问题,在面对此种问题时,与单目标的跟踪不同,量测与航迹之间的数据关联变得异常复杂,在多目标情况下,我们无法判定量测数据来自感兴趣的目标,还是虚警或是其他目标,一个航迹的波门内可能存在多个量测,单个量测也可能在多个航迹的波门内。由于传感器观测过程和多目标跟踪环境中存在的各种不确定性以及随机性,破坏了回波量测与其目标源之间的对应关系,需要运用复合跟踪方法来对获得的量测进行划分。
多目标跟踪系统中有许多数据关联技术,从最近邻(nn)、全局最近邻(gnn)到联合概率关联(jpda)和多假设跟踪方法(mht)等。实际中,最近邻(nn)在目标密度较大时,未能考虑航迹与量测间的全局最优分配,而联合概率关联(jpda)和多假设跟踪方法(mht)计算量较大,工程实现较为复杂,因此常采用全局最近邻(gnn)方法进行航迹—量测关联。
常用的目标跟踪方法只考虑了目标的运动参数信息,而实际量测数据中,除了运动参数,还有属性参数,充分利用目标的运动参数和属性参数信息,可以提高关联正确率。
技术实现要素:
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种多源异构传感器复合跟踪方法,充分利用目标运动参数和属性参数,综合考虑伪量测的信号id、航迹的历史信号id、航迹的运动状态等采用不同的关联策略,提高伪量测与航迹之间的关联正确率,改善在多目标距离较近,杂波密度较大等复杂场景中的跟踪能力。
本发明是通过下述技术方案来实现的。
一种多源异构传感器复合跟踪方法,包括如下步骤:
步骤1,读取同一时刻单传感电子侦察或雷达量测数据,对于电子侦察量测,同一时刻相同信号id量测只保留1包量测;对于雷达量测,同一时刻单传感量测均保留;
步骤2,同一时刻量测定位:若为电子侦察量测,则采用多站联合定位方法输出定位结果;若为雷达量测,则采用雷达量测转换输出定位结果;
步骤3,根据当前时刻伪量测类型及系统航迹状态,进行航迹——伪量测关联判断,并对关联成功的航迹状态更新;
步骤4,删除航迹状态长时间未更新航迹,并将电子侦察航迹与雷达航迹状态进行合并,输出经过航迹合并的电子侦察航迹状态信息。
进一步,所述步骤2包括如下步骤:
21)对于电子侦察量测,结合当前时刻量测信息选择包括tdoa定位算法、aoa定位算法或tdoa&aoa定位算法的多站联合定位方法输出定位结果;
22)对于雷达量测,通过方位角θ、俯仰角η、目标与主站之间距离r转换输出定位结果。
进一步,所述步骤3包括如下步骤:
31)若系统航迹状态中系统航迹库为空,单点航迹初始化;
32)若伪量测类型来自电子侦察,首先考虑伪量测—航迹之间属性参数关联,若属性信息无法区分,再考虑伪量测—航迹之间运动参数关联;根据关联结果,如果航迹与伪量测关联,则更新航迹状态,否则暂态航迹初始化;
33)若伪量测类型来自雷达,进行航迹—伪量测运动参数关联;根据关联结果,如果航迹与伪量测关联,则更新航迹状态,否则暂态航迹初始化。
进一步,所述步骤32)中,航迹—伪量测属性参数关联判断:
首先伪量测信号id与电子侦察航迹历史信号id进行匹配:
若伪量测在航迹库中匹配成功,航迹状态更新;
若伪量测未匹配,继续判断伪量测信号id中前2位是否包含于当前航迹库中全部航迹历史信号id中;
若伪量测信号id中前2位包含于当前航迹库中全部航迹历史信号id中,则当前量测为新目标,进行单点航迹初始化;否则,找出候选系统航迹,进行航迹—伪量测运动参数关联判断;
根据关联结果,如果航迹与伪量测关联,则更新航迹状态,否则进行暂态航迹初始化。
进一步,所述步骤32)、33)中,航迹—伪量测运动参数关联判断,有以下三种情况:
1)无速度的暂态航迹,此时落入航迹波门内的全部量测均与暂态航迹关联;
2)有速度的暂态航迹,此时落入航迹波门内的全部量测均与暂态航迹关联;
3)确认航迹,量测与确认航迹之间采用gnn关联。
进一步,所述步骤1)中,对于无速度的暂态航迹,在航迹起始时,系统航迹尚未进行滤波跟踪,没有航迹速度值,根据先验知识设定目标速度的最大值vmax和最小值vmin;
设无速度暂态航迹h的到达时刻为th,其位置为zh,协方差矩阵为rh,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn,设差值d=||zn-zh||2,若rmin<d<rmax,其中rmin=vmin×δt,rmax=vmax×δt,δt=tn-th,则将暂态航迹与伪量测关联。
进一步,所述步骤2)中,对于有速度的暂态航迹与量测关联,其波门定义如下:
设有速度暂态航迹l的航迹更新时刻为tl,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn;
伪量测n的位置zn与预报观测量
其中,h是量测矩阵,
定义关联代价
进一步,所述步骤3)中,对于确认航迹m的航迹更新时刻为tm,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn;
伪量测n的位置zn,与预报观测量
其中,h是量测矩阵,
残差向量范数
则
计算确认系统航迹集合与候选伪量测集合之间的所有关联代价
进一步,所述步骤4包括如下步骤:
41)删除航迹,若电子侦察航迹或雷达航迹在δt时间内状态未更新,认为该目标已经消失或为杂波,删除该航迹;
42)航迹合并,将电子侦察航迹状态与雷达航迹状态进行合并,对于电子侦察航迹a和雷达航迹b,比较两条航迹在δt时间内的平均航迹距离,若距离小于阈值,认为两条航迹对应为同一目标,将此时刻电子侦察航迹状态用雷达航迹状态更新。
本发明由于采取以上技术方案,其具有以下有益效果:
本发明在传统仅利用航迹—伪量测运动参数关联的目标跟踪方法上,充分利用电子侦察量测本身具有的属性信息,在电子侦察量测与航迹关联环节先利用伪量测与航迹之间的信号id进行属性参数关联判断,可以降低后续航迹与伪量测之间的关联错误率;在航迹合并环节将电子侦察航迹与雷达航迹合并,提高了跟踪精度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的描述中所需要使用的附图作简单的介绍。下面描述中的附图仅仅是本发明的示例性实施例。
图1示出了目标跟踪整体流程图;
图2示出了单传感伪量测生成示意图;
图3示出了两平台的定位模型示意图;
图4示出了航迹-量测关联及航迹状态更新流程图;
图5示出了不同系统周期间航迹—量测关联示意图;
图6示出了确认航迹与伪量测关联示意图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
如图1所示,本发明的多源异构传感器复合跟踪方法,实现步骤如下:
步骤1,读取同一时刻单传感(电子侦察或雷达)量测数据。
结合图2说明读取同一时刻单传感(电子侦察或雷达)量测数据过程,对于电子侦察量测,如图2所示相同信号id量测只保留1包量测;对于雷达量测,如图2所示同一时刻单传感量测均保留。
步骤1中信号id是指同一个目标信号的标识号,对于一个量测,其信号id由平台id 传感器id 信号批号三部分组成。对于同一目标,电子侦察在不同时刻探测得到的量测信号id保持不变,可以考虑利用电子侦察量测的信号id进行航迹关联,而雷达量测在不同时刻的量测信号id在变化,无法利用雷达信号id进行航迹关联,所以,利用电子侦察量测的信号id来提高关联正确率。
步骤2,同一时刻量测定位,若为电子侦察量测,则采用多站联合定位方法输出定位结果,若为雷达量测,则采用雷达量测转换输出定位结果。
具体的,包括如下步骤:
21)对于电子侦察量测,结合当前时刻量测信息选择包括tdoa定位算法、aoa定位算法或tdoa&aoa定位算法的多站联合定位方法输出定位结果;
对于电子侦察量测,根据量测信息选择一种联合定位算法进行定位。常用的定位方法有tdoa定位算法,aoa定位算法,tdoa&aoa定位算法。
若原始量测中只有tdoa量测,采用tdoa定位算法。
tdoa定位算法,如图3所示,通过综合多个主从站之间的tdoa信息建立定位方程,单组tdoa量测信息对应一个双曲面,多个主从站获得的双曲面交点就是目标的位置。
以两平台为例,单组tdoa定位方程为:
其中r21表示从站2与主站1之间的距离差,t21表示从站2与主站1之间的tdoa,u(x,y,z)表示目标位置,s2(xs2,ys2,zs2)表示传感器位置,c为电磁波传播在空中的传播速度。
若原始量测中只有aoa量测,采用aoa定位算法。
aoa定位算法,如图3所示,根据各平台机体坐标系下测得的方位角和俯仰角,通过坐标系转换,转化到ecef坐标系下的各平台测得目标的方位角和俯仰角,求解目标位置。
aoa定位方程为:
其中(θμ,φμ)为平台μ测得目标的方位角,俯仰角,u(x,y,z)表示为目标位置,sμ(xsμ,ysμ,zsμ)为平台μ的位置。
若原始量测中tdoa,aoa均存在,采用tdoa&aoa定位算法。
tdoa&aoa定位算法,如图3所示,在实际定位中,单参数定位有一定局限,如tdoa定位需要接收站的数目较多;doa定位随接收站距离目标距离增大,其相对定位精度变差;因此考虑联合tdoa和aoa量测信息进行定位;
以两平台定位tdoa&aoa为例,tdoa&aoa定位方程为:
其中(θv,φv)为平台ν测得目标的方位角,俯仰角,u(x,y,z)表示为目标位置,sν(xsν,ysν,zsν)为平台ν的位置(v=1,2),r21为从站2与主站1之间的距离差。
22)对于雷达而言,因为主动发射雷达信号探测目标,仅靠单个平台就可以得到定位结果,通过方位角θ、俯仰角η、目标与平台之间距离r转换得到目标位置u(x,y,z)。
雷达定位方程:
步骤3,根据当前时刻伪量测类型及系统航迹状态,进行航迹——伪量测关联判断,并对关联成功的航迹状态更新。
具体的,包括如下步骤:
31)若系统航迹状态中系统航迹库为空,单点航迹初始化。
如图4所示,若电子侦查或雷达系统航迹库为空,依据伪量测信息及目标先验信息进行单点航迹初始化。
当k时刻系统航迹库为空,或者当航迹——量测关联后存在部分伪量测未与任何航迹关联,需要对伪量测进行暂态航迹的初始化。暂态航迹初始化采用了单点初始化法。具体如下:
暂态航迹初始状态为:
其中,初始状态位置等于伪量测值z1,初始状态速度等于0。
其中,r1为伪量测的协方差矩阵。
32)若伪量测来自电子侦察,航迹—伪量测属性参数关联判断:
如图4所示,将伪量测信号id与电子侦察航迹历史信号id(前3位)匹配,若伪量测与航迹库中某系统航迹匹配成功,该系统航迹状态更新;
若量测i与航迹j关联成功,航迹j得到k时刻量测值,进行航迹状态更新。
航迹状态更新步骤具体如下:
航迹当前状态的预测值为:
其中,fk-1是系统状态转移矩阵,
预测误差的协方差矩阵为:
其中γk-1是噪声矩阵,qk-1是过程噪声协方差矩阵
状态的更新值为:
其中,kk是卡尔曼增益阵,hk是量测矩阵
状态更新后对应的协方差矩阵为:
pk|k=pk|k-1-kkhkpk|k-1
若伪量测未匹配,继续判断伪量测信号中id前2位是否包含于当前航迹库中全部航迹历史信号id中;
若伪量测信号id中前2位包含于当前航迹库中全部航迹历史信号id中,则当前量测为新目标,进行单点航迹初始化;否则,找出候选系统航迹,进行航迹—伪量测运动参数关联判断;
候选系统航迹是指航迹库中系统航迹的历史信号id与伪量测信号id前2位不同的系统航迹。
航迹—伪量测运动参数关联包括三种情况:
1)对于无速度的暂态航迹,此时落入航迹波门内的全部量测均与航迹关联;
2)对于有速度的暂态航迹,此时落入航迹波门内的全部量测均与航迹关联;
3)对于确认航迹,量测与航迹之间采用gnn关联。
对于每条暂态航迹(如图5中x3),定义其波门,对于有无速度的暂态航迹,波门定义方式不同,将波门内伪量测都与该暂态航迹关联;
对于无速度的暂态航迹,在航迹起始时,系统航迹尚未进行滤波跟踪,没有航迹速度值,根据先验知识设定目标速度的最大值vmax和最小值vmin;
设无速度暂态航迹h的到达时刻为th,其位置为zh,协方差矩阵为rh,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn,
设差值d=||zn-zh||2,若rmin<d<rmax,
其中rmin=vmin×δt,rmax=vmax×δt,δt=tn-th,
则将暂态航迹与伪量测关联。
对于有速度的暂态航迹与量测关联,其波门定义如下:
设有速度暂态航迹l的航迹更新时刻为tl,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn;
伪量测n的位置zn与预报观测量
snl=hpn|lht rn;
其中,h是量测矩阵,
定义关联代价
如图6,对于确认系统航迹集合a,以及候选伪量测集合b(依系统航迹波门产生),使用gnn关联,图6中,a={x1,x2},b={z1,z2,z3},对于确认航迹与伪量测的关联代价定义为:
对于确认航迹m的航迹更新时刻为tm,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn;
伪量测n的伪量测位置zn,与预报观测量
其中,h是量测矩阵,
残差向量范数
则
计算确认系统航迹集合a与候选伪量测集合b之间的所有关联代价
gnn算法中考虑将所有航迹与伪量测进行分配,找出使代价函数最小化的航迹和伪量测的配对方案。gnn算法数学表述为:
s.t.
根据关联结果,如果确认航迹与伪量测关联,则更新航迹状态,否则进行暂态航迹初始化。
步骤4,删除长时间未更新状态的航迹,并将电子侦察航迹与雷达航迹状态合并,输出经过航迹合并的电子侦察航迹状态信息及属性信息。
具体的,包括如下步骤:
根据航迹更新的次数和航迹上次更新时间来判断,每条航迹存在三种状态:
1)确认航迹(状态标志位为2)航迹从生成到当前时刻状态更新次数大于k1次。
2)暂态航迹(状态标志位为1)航迹状态更新次数小于k1次。
3)删除航迹(状态标志位为0)航迹在δt时间内未更新。
具体的:
41)航迹删除,计算所有航迹(暂态和确认)从上次更新至当前时刻的时间间隔δt,若某航迹从上次更新至当前时刻的时间间隔δt>t1,其中t1为设定的时间阈值,将该航迹状态属性设为删除状态。
42)对于电子侦察航迹a和雷达航迹b,计算两条航迹在δt时间内的平均航迹距离dab,若距离dab小于阈值,认为两条航迹对应为同一目标,将此时刻电子侦察航迹状态用雷达航迹状态更新。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。
1.一种多源异构传感器复合跟踪方法,其特征在于,包括如下步骤:
步骤1,读取同一时刻单传感电子侦察或雷达量测数据,对于电子侦察量测,同一时刻相同信号id量测只保留1包量测;对于雷达量测,同一时刻单传感量测均保留;
步骤2,同一时刻量测定位:若为电子侦察量测,则采用多站联合定位方法输出定位结果;若为雷达量测,则采用雷达量测转换输出定位结果;
步骤3,根据当前时刻伪量测类型及系统航迹状态,进行航迹—伪量测关联判断,并对关联成功的航迹状态更新;
步骤4,删除航迹状态长时间未更新航迹,并将电子侦察航迹与雷达航迹状态进行合并,输出经过航迹合并的电子侦察航迹状态信息。
2.根据权利要求1所述的方法,其特征在于,所述步骤2包括如下步骤:
21)对于电子侦察量测,结合当前时刻量测信息选择包括tdoa定位算法、aoa定位算法或tdoa&aoa定位算法的多站联合定位方法输出定位结果;
22)对于雷达量测,通过方位角θ、俯仰角η、目标与主站之间距离r转换输出定位结果。
3.根据权利要求1所述的方法,其特征在于,所述步骤3包括如下步骤:
31)若系统航迹状态中系统航迹库为空,单点航迹初始化;
32)若伪量测类型来自电子侦察,首先考虑伪量测—航迹之间属性参数关联,若属性信息无法区分,再考虑伪量测—航迹之间运动参数关联;根据关联结果,如果航迹与伪量测关联,则更新航迹状态,否则暂态航迹初始化;
33)若伪量测类型来自雷达,进行航迹—伪量测运动参数关联;根据关联结果,如果航迹与伪量测关联,则更新航迹状态,否则暂态航迹初始化。
4.根据权利要求3所述的方法,其特征在于,所述步骤32)中,航迹—伪量测属性参数关联判断:
首先伪量测信号id与电子侦察航迹历史信号id进行匹配:
若伪量测在航迹库中匹配成功,航迹状态更新;
若伪量测未匹配,继续判断伪量测信号id中前2位是否包含于当前航迹库中全部航迹历史信号id中;
若伪量测信号id中前2位包含于当前航迹库中全部航迹历史信号id中,则当前量测为新目标,进行单点航迹初始化;否则,找出候选系统航迹,进行航迹—伪量测运动参数关联判断;
根据关联结果,如果航迹与伪量测关联,则更新航迹状态,否则进行暂态航迹初始化。
5.根据权利要求3所述的方法,其特征在于,所述步骤32)、33)中,航迹—伪量测运动参数关联判断,有以下三种情况:
1)无速度的暂态航迹,此时落入航迹波门内的全部量测均与暂态航迹关联;
2)有速度的暂态航迹,此时落入航迹波门内的全部量测均与暂态航迹关联;
3)确认航迹,量测与确认航迹之间采用gnn关联。
6.根据权利要求5所述的方法,其特征在于,所述步骤1)中,对于无速度的暂态航迹,在航迹起始时,系统航迹尚未进行滤波跟踪,没有航迹速度值,根据先验知识设定目标速度的最大值vmax和最小值vmin;
设无速度暂态航迹h的到达时刻为th,其位置为zh,协方差矩阵为rh,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn,设差值d=||zn-zh||2,若rmin<d<rmax,其中rmin=vmin×δt,rmax=vmax×δt,δt=tn-th,则将暂态航迹与伪量测关联。
7.根据权利要求5所述的方法,其特征在于,所述步骤2)中,对于有速度的暂态航迹与量测关联,其波门定义如下:
设有速度暂态航迹l的航迹更新时刻为tl,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn;
伪量测n的位置zn与预报观测量
其中,h是量测矩阵,
定义关联代价
8.根据权利要求5所述的方法,其特征在于,所述步骤3)中,对于确认航迹m的航迹更新时刻为tm,伪量测n的到达时刻为tn,其位置为zn,伪量测协方差矩阵为rn;
伪量测n的位置zn,与预报观测量
其中,h是量测矩阵,
残差向量范数
则
计算确认系统航迹集合与候选伪量测集合之间的所有关联代价
9.根据权利要求1所述的方法,其特征在于,所述步骤4包括如下步骤:
41)删除航迹,若电子侦察航迹或雷达航迹在δt时间内状态未更新,认为该目标已经消失或为杂波,删除该航迹;
42)航迹合并,将电子侦察航迹状态与雷达航迹状态进行合并,对于电子侦察航迹a和雷达航迹b,比较两条航迹在δt时间内的平均航迹距离,若距离小于阈值,认为两条航迹对应为同一目标,将此时刻电子侦察航迹状态用雷达航迹状态更新。
技术总结