本发明涉及一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,属于卫星导航技术领域。
背景技术:
近年来,全球卫星导航系统(gnss)信号的脆弱性问题引起来广泛的关注。一方面,卫星导航信号的落地功率低(约-160dbw),容易受到有意或者无意的干扰,另一方面,gnss开放服务信号结构公开,容易受到欺骗干扰的攻击。
为了缓解gnss信号的脆弱性问题,出现了多种方法。对于gnss开放服务信号,galileo和gps研究引入了信号认证功能,采用导航电文认证(nma)和扩频码认证(sca),提升开放服务信号的抗欺骗能力。对于gnss授权服务信号,一种方式是采用点波束功率增强。专利“一种基于ka频段多波束天线的低轨卫星导航信号功率增强方法”(专利号201811068149.8)给出了一种导航信号功率增强方法,将低轨卫星多波束天线形成的所有波束指向导航信号功率增强目标区域,提高信号落地功率。点波束功率增强方法,缩小了覆盖范围。
为了提升导航信号的抗干扰能力,另一方法是采用抗干扰信号体制。专利“一种混合扩频信号的生成方法、生成装置及发送装置”(专利号201810141670.3)给出了一种混合直扩跳频信号生成方法。专利“一种ds-fh-th混合扩频系统”(专利号201620428971.0)给出了一种直扩跳频跳时信号生成系统。然而,直扩跳频信号的载波相位的高精度测量存在一定问题,传统的直扩跳时信号在时域上划分多个时隙,按照时隙进行播发,信号测量不连续。
另一种抗干扰信号体制是码片级脉冲跳时信号体制,在码片层面进行跳时,将码序列以每nc个码片分组,每nc个码片只播发一个码片,播发码片的位置是伪随机跳动的,nc个码片的功率集中于一个码片上,实现将低平均功率的连续信号变为高瞬时功率的随机脉冲位置准连续信号,在同等平均功率前提下抗干扰能力提升(10lgnc)db。然而,对于这种码片级脉冲跳时信号,需要采用脉冲固放实现信号放大,存在两个问题,一是难以实现高瞬时功率,二是脉冲切换时间难以保证,工程实现复杂度高。
技术实现要素:
本发明解决的技术问题为:克服上述现有技术的不足,提供一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,降低实现复杂度,提升导航信号的抗干扰能力。
本发明解决的技术方案为:一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,步骤如下:
(1)生成信号伪码和导航电文,进行基带调制,得到基带调制信号sbase(t);对基带调制信号sbase(t)进行数字低通滤波,生成数字滤波后的基带导航信号
(2)根据阵列天线形成的波束数为nbeam,生成m个跳时伪码序列,
(3)读取数字波束成形系数表,获得n个加权系数;将n个加权系数分别与步骤(1)数字滤波后的基带导航信号
(4)将步骤(3)加权后的n路数字导航信号,依次经过dac、滤波、上变频、功率放大后,经n个天线阵元播发,实现码片级脉冲跳时导航信号生成与播发。
优选的,步骤(1)中所述的数字滤波后的基带导航信号
(1)信号伪码发生器生成信号伪码序列记为{cs},cs∈{0,1},s=0,1,2,…,信号伪码序列的码速率为rchip,信号伪码序列的码片宽度为tchip=1/rchip;对码片进行赋形,得到码波形,实现扩频码(即伪码)波形生成;
码波形为:
式中,t表示时间,s表示码片的序号,(1-2cs)将码片值{0,1}映射为{1,-1},
(2)将导航电文经过组帧、信号编码后,得到符号速率为rd的电文数据{dl},dl∈{1,-1},l=0,1,2,…,导航电文符号宽度td=1/rd,且td是tchip的整数倍,将电文数据写为连续波形形式d(t),即导航电文生成,则有:
式中,pd(t)为宽度td的矩形函数:
(3)将连续波形形式的电文数据调制到伪码波形上,得到基带调制信号:
sbase(t)=d(t)·cs(t);
(4)将sbase(t)进行fir数字低通滤波,得到低通滤波后的信号
优选的,步骤(2)的跳时伪码序列生成,满足以下要求:
(1)跳时伪码发生器生成m个跳时伪码序列,分别为
(2)m个跳时伪码序列的码速率与信号伪码序列的码速率一样,都是rchip;跳时伪码序列与信号伪码序列在时域上是对齐的;
(3)m个跳时伪码序列的第s个码片值的组合,决定了导航信号的第s个码片值的播发波束(即决定了导航信号的第s个码片值在哪个波束播发)。
优选的,步骤(3)所述的数字波束成形,通过以下方法得到:
(1)数字波束成形系数表存储了加权系数;数字波束成形系数表是一个nbeam×n二维表,记为{wb,k},b=1,2,……,nbeam,k=1,2,……,n;数字波束成形系数表通过数值优化生成,与阵列天线的布局以及波束增益方向图设计有关;使用该表中第nbeam行的系数进行数字波束成形,能够让信号在第nbeam个波束播发,nbeam=1,2,……,nbeam;
(2)使用m个跳时伪码序列,控制数字波束成形系数表输出加权系数,具体为:
在第s个码片时刻,m个跳时伪码序列的值分别为:
转换为十进制数,即
将nth,s对nbeam进行求模加1,得到属于{1,2,…,nbeam}的数ns,实现数字波束成形系数选择,即
ns=(nth,smodnbeam) 1
在第s个码片时刻,信号在第ns个波束播发,数字波束成形系数表输出第ns行加权系数
(3)将生成的基带导航信号
实现数字波束成形。
优选的,生成信号伪码和导航电文,进行基带调制,具体为:
生成信号伪码和导航电文,将导航电文调制到伪码上。
优选的,数字波束成形时,阵列天线的阵元数为n,形成的波束数为nbeam,数字波束成形系数表存储了加权系数。
优选的,数字波束成形系数表是一个nbeam×n二维表将生成基带导航信号。
优选的,m个跳时伪码序列,控制不同的码片伪随机的在不同的波束里面播发。
优选的,将n个加权系数分别与步骤(1)数字滤波后的基带导航信号
在跳时伪码序列控制下,每一个信号伪码期间,选择n个加权系数,分别与基带导航信号相乘,得到加权后的n路数字导航信号,分别为sn(t),n=1,2,…,n。
优选的,(4)将步骤(3)加权后的n路数字导航信号,依次经过dac、滤波、上变频、功率放大后,经n个天线阵元播发,具体为
第n路数字导航信号sn(t),n=1,2,…,n经第n个dac、第n个滤波器、第n个上变频器、第n个功率放大器、第n个天线阵元播发,实现码片级脉冲跳时导航信号生成与播发。
本发明与现有技术相比的优点在于:
(1)本发明公开了一种数字波束成形的码片级脉冲跳时导航信号的实现方法,实现将连续导航信号的不同码片在不同的波束中播发,每个波束下收到的都是等效的码片级脉冲跳时导航信号,提升了导航信号的抗干扰能力。
(2)当前的码片级脉冲跳时导航信号生成方案,需要采用脉冲固放,将低平均功率的连续信号变为高瞬时功率的随机脉冲位置准连续信号,但是存在两个问题,一是难以实现高瞬时功率,二是脉冲切换时间难以保证,工程实现复杂度高。而本专利提出的基于数字波束成形的码片级脉冲跳时导航信号实现方法,不需要使用脉冲固放,采用连续工作的固放,每个固放的功率要求低,工程实现性好,导航信号的质量有保障。
(3)传统的混合扩频抗干扰系统,采用直扩 跳频 扩频体制实现抗干扰能力的提升,信号体制与当前卫星导航信号体制不同,接收复杂度高,而本专利提供的基于数字波束成形的码片级脉冲跳时导航信号,即使在不使用跳时伪码序列的情况下,可以采用当前的接收方法进行接收,兼容性好。
(4)本发明提出的基于数字波束成形的码片级脉冲跳时导航信号实现方法,从时域上上看,导航信号的不同码片在不同波束播发,每个波束下的用户都能接收到导航信号,服务区域不缩小,不缩小服务区域。在平均功率一定的前提下,对于有nbeam个波束的系统,抗干扰能力能够提升(10lgnbeam)db。
附图说明
图1为本发明公开的基于数字波束成形的码片级脉冲跳时导航信号实现方法的技术方案流程图;
图2为跳时伪码序列与信号伪码序列的时域关系示意图;
图3为不同波束下接收到的码片级脉冲跳时信号的示意图;
图4为当前卫星导航信号与本发明导航信号的干扰容限对比图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细描述。
本发明一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,步骤如下:(1)生成信号伪码和导航电文,进行基带调制,得到基带调制信号;对基带调制信号进行数字低通滤波,生成数字滤波后的基带导航信号
导航卫星是一个能量受限的系统,导致卫星导航信号的落地功率低,通常只有-160dbw左右,抗干扰能力弱。因此,在复杂电磁环境下,存在干扰(如匹配谱干扰)时,卫星导航服务可能不可用。为提高卫星导航信号抗干扰能力,提升服务可用性,本发明提出了一种基于数字波束成形的码片级脉冲跳时导航信号的生成与播发方法,由基带信号生成、跳时伪码发生器、数字波束成形、n个dac、n个上变频器、n个滤波器、n个天线阵元组成,n个天线阵元形成多波束阵列天线,每一个阵元前面都有个功率放大器。通过数字波束成形,控制码片在不同的波束播发,在每个波束覆盖区域内,收到的都是码片级脉冲跳时导航信号。由于功率放大器的输入和输出是连续的,能够有效保障导航信号质量,每个固放的功率要求不高,降低工程实现难度。采用本法明的方法,能够在导航卫星能量受限,平均功率一定的情况下,提升导航信号的抗干扰能力,同时,不减小服务区域。能够在有干扰的环境下,提供导航定位与授时服务,提高卫星导航系统服务的可用性。
本发明的一种码片级脉冲跳时导航信号的生成与播发方法,优选步骤包括基带导航信号生成、跳时伪码序列、数字波束成形、射频滤波放大与播发,如图1所示,具体如下:
(1)生成信号伪码和导航电文,信号伪码发生器生成信号伪码序列记为{cs},cs∈{0,1},s=0,1,2,…,信号伪码序列的码速率为rchip,信号伪码序列的码片宽度为tchip=1/rchip。对码片进行赋形,得到码波形,实现扩频码(即伪码)波形生成;
码波形为:
式中,t表示时间,s表示码片的序号,(1-2cs)将码片值{0,1}映射为{1,-1},
导航电文由地面站上注到卫星上,主要包含了导航卫星的轨道参数(即导航卫星星历)和钟差参数,也可以包含电离层改正参数等。将导航电文经过组帧、信号编码后,得到符号速率为rd的电文数据{dl},dl∈{1,-1},l=0,1,2,…,导航电文符号宽度td=1/rd,且td是tchip的整数倍,将电文数据写为连续波形形式d(t),即导航电文生成,则有:
式中,pd(t)为宽度td的矩形函数:
将连续波形形式的电文数据调制到伪码波形上,进行基带调制,得到基带调制信号:
sbase(t)=d(t)·cs(t);
将sbase(t)进行fir数字低通滤波,得到低通滤波后的信号
导航电文宽度td是信号伪码序列的码片宽度tchip的整数倍,因此,基带导航信号的最小时间间隔为码片级,即码片宽度tchip。
(2)根据阵列天线形成的波束数为nbeam,生成m个跳时伪码序列,
跳时伪码发生器生成m个跳时伪码序列,分别为
m个跳时伪码序列的码速率与信号伪码序列的码速率一样,都是rchip。跳时伪码序列与信号伪码序列在时域上是对齐的。
m个跳时伪码序列的第s个码片值的组合,决定了导航信号的第s个码片值的播发波束(即决定了导航信号的第s个码片值在哪个波束播发)。
由于m个跳时伪码序列的码速率与信号伪码序列的码速率一样,都是rchip,因此,跳时伪码序列的最小时间间隔也是码片级,即码片宽度tchip。跳时伪码序列与信号伪码序列的时域关系示意图如图2所示。
(3)读取数字波束成形系数表,获得n个加权系数;将n个加权系数分别与步骤(1)数字滤波后的基带导航信号
数字波束成形系数表存储了加权系数。数字波束成形系数表是一个nbeam×n二维表,记为{wb,k},b=1,2,……,nbeam,k=1,2,……,n。数字波束成形系数表通过数值优化生成,与阵列天线的布局以及波束增益方向图设计有关。
n个天线阵元的相对位置坐标记为dn=[xn,yn,zn]t,n=1,2,l,n,对于阵列天线下方的一个点,天顶角记为
式中,fc为载波频率。将
对于数字波束成形系数表的第b行的加权系数,设置目标函数:
其中,
通过已有的数值优化算法,如拟牛顿法,遗传算法或者粒子群算法,优化计算出每一行的加权系数。
使用数字波束成形系数表中第nbeam行的系数进行数字波束成形,能够让信号在第nbeam个波束播发,nbeam=1,2,……,nbeam。
使用m个跳时伪码序列,控制数字波束成形系数表输出加权系数,具体为:在第s个码片时刻,m个跳时伪码序列的值分别为:
将nth,s对nbeam进行求模加1,得到属于{1,2,…,nbeam}的数ns,实现数字波束成形系数选择,即
ns=(nth,smodnbeam) 1
在第s个码片时刻,信号在第ns个波束播发,数字波束成形系数表输出第ns行加权系数
将生成的基带导航信号
实现数字波束成形。
由于m个跳时伪码序列码速率与信号伪码序列码速率一样,因此,m个跳时伪码序列的值以码片级变化,n个波束成形系数
(4)将步骤(3)加权后的n路数字导航信号,依次经过dac、滤波、上变频、功率放大后,经n个天线阵元播发;第n路数字导航信号sn(t),n=1,2,…,n经第n个dac、第n个上变频器、第n个滤波器、第n个功率放大器、n个天线阵元播发,实现码片级脉冲跳时导航信号生成与播发。在每个波束中,播发的导航信号是脉冲的,脉冲的位置是伪随机跳动,脉冲的最小宽度是码片宽度tchip。因此,是码片级脉冲跳时导航信号。
本发明的设计思路如下:导航卫星是能量受限系统,平均功率一定,为了提升导航信号的抗干扰能力,可以将信号集中一个小区域内,提升信号的落地功率,但是,这样会降低服务区域。为此,本发明采用基于数字波束成形的码片级脉冲跳时导航信号方案,将服务区域划分为nbeam个波束,每一个码片持续时间内,只在一个波束播发,不同码片由跳时伪码序列控制,在不同的波束播发。在每一个波束内,都是码片级脉冲跳时导航信号,瞬时功率提升nbeam,平均功率保持不变。干扰信号由于不知道跳时伪码序列,只能发连续干扰信号。码片级脉冲跳时导航信号的接收终端具有跳时伪码序列,在时域上只接收对应的码片,因此,干扰信号功率等效降低nbeam倍,抗干扰能力增加10lg(nbeam)db。
1)本发明实现信号生成时,信号伪码可采用周期性的伪码,码长为lc,为保证信号伪码的自相关特性与互相关特性,需要满足lc/nbeam≥100,nbeam为波束个数。
2)本发明实现信号生成时,为了保证足够的抗干扰能力提升,波束nbeam≥10,且log2(nbeam)为整数,保证码片在nbeam个波束间均匀的跳动。
3)本发明在数字波束成形系数表生成时,为了保证足够的波束间隔离度,数值优化时目标函数的门限值满足gth≥15db。
(1)基带导航信号生成
基带导航信号生成包括信号伪码生成,导航电文生成、电文调制、以及数字低通滤波。信号伪码的码序列为周期伪码序列,码序列长度为20460,记为{cs},cs∈{0,1},s=0,1,2,…,20460,信号伪码的码速率为rchip=10.23mcps,码片宽度为tchip=1/rchip。对码片进行赋形,得到一个周期的码波形:
其中,(1-2cs)将码片值{0,1}映射为{1,-1},
导航电文符号速率为rd=100sps的电文数据流{dl},dl∈{1,-1},l=0,1,2,…,电文符号宽度td=1/rd。将电文数据写为连续波形形式,有:
式中,pd(t)为宽度td的矩形函数:
将电文调制到伪码上,得到:
sbase(t)=d(t)·cs(t)
将sbase(t)进行低通数字滤波得到低通滤波后的信号
(2)跳时伪码生成
阵列天线形成的波束数为nbeam=128,为了控制不同的码片伪随机的在不同的波束里面播发,跳时伪码序列的个数为
跳时伪码发生器生成7个跳时伪码序列,分别为
(3)数字波束成形
阵列天线的阵元数为n=256,形成的波束数为nbeam=128,数字波束成形系数表存储了加权系数。数字波束成形系数表是一个100×200的二维表,记为{wb,k},b=1,2,……,128,k=1,2,……,256。数字波束成形系数表通过优化生成,与阵列天线的布局以及波束增益方向图设计有关。
200个天线阵元的相对位置坐标记为dn=[xn,yn,zn]t,n=1,2,l,256,对于阵列天线下方的一个点,天顶角记为
式中,fc为载波频率,如1575.42mhz。将
对于数字波束成形系数表的第b行的加权系数,设置目标函数:
其中,
通过已有的数值优化算法,如拟牛顿法,遗传算法或者粒子群算法,优化计算出每一行的加权系数。
使用该表中第nbeam行的系数进行数字波束成形,能够让信号在第nbeam个波束播发,nbeam=1,2,……,128。
使用7个跳时伪码序列,控制数字波束成形系数表输出系数。在第s个码片时刻,7个跳时伪码序列的值分别为:
将nth,s对nbeam=128进行求模加1,得到属于{1,2,…,128}的数ns,即
ns=(nth,smodnbeam) 1
因此,在第s个码片时刻,信号在第ns个波束播发,数字波束成形系数表输出第ns行系数
将生成的基带导航信号
(4)射频滤波放大与播发
将256个数字导航信号,分别经dac、滤波、放大后,经256个天线阵元播发。第n个数字导航信号sn(t),n=1,2,…,256经第n个dac、第n个滤波器、第n个放大器、第n个天线阵元播发。
单个波束下接收到的码片级脉冲跳时信号,与基带导航信号的示意图如图3所示。可以看到,单个波束下受到的信号是码片级脉冲跳时信号,平均功率与传统导航信号一样,但是码片脉冲峰值功率高了128倍。
本发明通过理论与仿真分析,采用干扰容限指标,对比本发明与当前卫星导航信号的抗干扰能力,干扰信号采为匹配谱干扰,噪声功率谱密度为-204dbw/hz,载波跟踪门限为28db-hz。当平均发射功率相同时,当前卫星导航信号与本发明的干扰容限如图4所示。可以看到,同样的平均功率下,本发明抗干扰能力提升了20db。
1.一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于步骤如下:
(1)生成信号伪码和导航电文,进行基带调制,得到基带调制信号sbase(t);对基带调制信号sbase(t)进行数字低通滤波,生成数字滤波后的基带导航信号
(2)根据阵列天线形成的波束数为nbeam,生成m个跳时伪码序列,
(3)读取数字波束成形系数表,获得n个加权系数;将n个加权系数分别与步骤(1)数字滤波后的基带导航信号
(4)将步骤(3)加权后的n路数字导航信号,依次经过dac、滤波、上变频、功率放大后,经n个天线阵元播发,实现码片级脉冲跳时导航信号生成与播发。
2.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:步骤(1)中所述的数字滤波后的基带导航信号
(1)信号伪码发生器生成信号伪码序列记为{cs},cs∈{0,1},s=0,1,2,…,信号伪码序列的码速率为rchip,信号伪码序列的码片宽度为tchip=1/rchip;对码片进行赋形,得到码波形,实现扩频码(即伪码)波形生成;
码波形为:
式中,t表示时间,s表示码片的序号,(1-2cs)将码片值{0,1}映射为{1,-1},
(2)将导航电文经过组帧、信号编码后,得到符号速率为rd的电文数据{dl},dl∈{1,-1},l=0,1,2,…,导航电文符号宽度td=1/rd,且td是tchip的整数倍,将电文数据写为连续波形形式d(t),即导航电文生成,则有:
式中,pd(t)为宽度td的矩形函数:
(3)将连续波形形式的电文数据调制到伪码波形上,得到基带调制信号:
sbase(t)=d(t)·cs(t);
(4)将sbase(t)进行fir数字低通滤波,得到低通滤波后的信号
3.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:步骤(2)的跳时伪码序列生成,满足以下要求:
(1)跳时伪码发生器生成m个跳时伪码序列,分别为
(2)m个跳时伪码序列的码速率与信号伪码序列的码速率一样,都是rchip;跳时伪码序列与信号伪码序列在时域上是对齐的;
(3)m个跳时伪码序列的第s个码片值的组合,决定了导航信号的第s个码片值的播发波束(即决定了导航信号的第s个码片值在哪个波束播发)。
4.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:步骤(3)所述的数字波束成形,通过以下方法得到:
(1)数字波束成形系数表存储了加权系数;数字波束成形系数表是一个nbeam×n二维表,记为{wb,k},b=1,2,……,nbeam,k=1,2,……,n;数字波束成形系数表通过数值优化生成,与阵列天线的布局以及波束增益方向图设计有关;使用该表中第nbeam行的系数进行数字波束成形,能够让信号在第nbeam个波束播发,nbeam=1,2,……,nbeam;
(2)使用m个跳时伪码序列,控制数字波束成形系数表输出加权系数,具体为:
在第s个码片时刻,m个跳时伪码序列的值分别为:
转换为十进制数,即
将nth,s对nbeam进行求模加1,得到属于{1,2,…,nbeam}的数ns,实现数字波束成形系数选择,即
ns=(nth,smodnbeam) 1
在第s个码片时刻,信号在第ns个波束播发,数字波束成形系数表输出第ns行加权系数
(3)将生成的基带导航信号
实现数字波束成形。
5.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:生成信号伪码和导航电文,进行基带调制,具体为:
生成信号伪码和导航电文,将导航电文调制到伪码上。
6.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:数字波束成形时,阵列天线的阵元数为n,形成的波束数为nbeam,数字波束成形系数表存储了加权系数。
7.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:数字波束成形系数表是一个nbeam×n二维表将生成基带导航信号。
8.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:m个跳时伪码序列,控制不同的码片伪随机的在不同的波束里面播发。
9.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:将n个加权系数分别与步骤(1)数字滤波后的基带导航信号
在跳时伪码序列控制下,每一个信号伪码期间,选择n个加权系数,分别与基带导航信号相乘,得到加权后的n路数字导航信号,分别为sn(t),n=1,2,…,n。
10.根据权利要求1所述的一种基于数字波束成形的码片级脉冲跳时导航信号生成与播发实现方法,其特征在于:(4)将步骤(3)加权后的n路数字导航信号,依次经过dac、滤波、上变频、功率放大后,经n个天线阵元播发,具体为
第n路数字导航信号sn(t),n=1,2,…,n经第n个dac、第n个滤波器、第n个上变频器、第n个功率放大器、第n个天线阵元播发,实现码片级脉冲跳时导航信号生成与播发。
技术总结