基于条件随机向量场的肿瘤临床靶区自动勾画方法及系统与流程

专利2022-06-29  67


本发明涉及预测肿瘤生长、模拟肿瘤扩散区域领域,尤其涉及一种基于条件随机向量场的肿瘤临床靶区自动勾画方法及系统。



背景技术:

临床中,治疗肿瘤的主要方式包括手术治疗、化疗及放射治疗。相较于手术治疗及化疗,放射治疗能够减少创伤,提高患者的生活质量。在放射治疗过程中,精确的靶区勾画能够有效的提高肿瘤靶区的治疗剂量计划,同时减少放射治疗带来的副作用,对患者治疗的效果以及后续的生活质量至关重要。

目前,部分软件能够提供一些靶区自动勾画系统,例如通过将原发灶肿瘤区域在三维方向上外扩一定区域,得到临床放疗靶区,临床医生再根据医学影像上的信息,结合患者肿瘤周边的解剖信息及临床经验,在影像上进行肿瘤临床靶区的手动修改或勾画。现有实现方案是基于隐马尔可夫模型的肿瘤临床靶区侵犯概率计算方法(cn107480445a),该方法具体操作如下:

s1、对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

s2、对读入的原发灶肿瘤数据做预处理操作,挖掘邻近肿瘤之间的关联关系,统计相邻的体素联合出现的频数,存储统计的结果,建立互关联规则的数据库;

s3、读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的转移次序和设定好的相邻体素状态转移公式,从肿瘤大体靶区开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率。

基于隐马尔可夫模型的肿瘤临床靶区侵犯概率计算方法提出了一种计算肿瘤临床靶区侵犯概率的方法,医生可以通过设置概率的阈值进行临床靶区的勾画,大大节省了人工勾画的时间成本,但是隐马尔可夫模型存在以下问题:

1.隐马尔可夫模型数据标注任务非常繁重,很难将一个病种的成功案例复制到另一病种上,同时,当患者人群的分布发生变化时,需要进行标注数据的迭代,任务量较大。

2.隐马尔可夫模型进行了两个重要的假设:

1)齐次马尔科夫链假设:任何时刻的隐藏状态只依赖于它的前一个隐藏状态

2)观测独立性假设:任何时刻的观察状态只仅仅依赖于当前时刻的隐藏状态

但是在实际情况下,勾画肿瘤临床靶区时,以上两条假设可能都不成立。

3.隐马尔可夫模型是一个局部最优解。局部最优解的问题在于,除了肿瘤本身的区域,不能关注到更多肿瘤周围的解剖结构,不够贴合临床的实际情况。



技术实现要素:

针对现有技术存在的问题,本发明实施例提供一种基于条件随机向量场的肿瘤临床靶区自动勾画方法及系统。

第一方面,本发明实施例提供一种基于条件随机向量场的肿瘤临床靶区自动勾画方法,包括以下步骤:

步骤s1:对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

步骤s2:对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数及状态特征函数,在给定的数据集上训练模型,确定参数;

步骤s3:读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从大体肿瘤靶区开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

进一步地,步骤s1中网格化三维的ct图像的具体过程为:把不同层面的ct序列图像划分成长方体格点,得到格点数目为width×height×zlen的三维网格。

进一步地,步骤s2具体包括下述步骤:

步骤s21:去掉二值图像中肿瘤表面层面不稳定的数据;

步骤s22:挖掘空间中体素之间的关联关系,从训练集中统计空间中体素组合之间的频数,如该体素组合在统计空间中存在,存储结果作为特征函数的标记,得到训练集中ct影像序列中体素之间的关联关系,训练模型,确定参数数据库。

进一步地,步骤s22具体包括以下步骤:

步骤s221:给空间中所有三维网格点按照位置顺序编号,具体公式为xxyz=z×height×width x×height y;其中,(x,y,z)是对应网格点三维坐标;z为网格点所在的ct层面,(x,y)为格点在该ct切片中的坐标位置;

步骤s222:条件随机向量场的参数化定义为:

其中tk(yi-1,yi,x,i)是转移特征函数,表示对于观察序列x的标注序列在i-1和i时刻上的转移概率,sl(yi,x,i)是状态特征函数,表示对于观察序列x其i时刻的标记概率,λk和μl分别是tk(yi-1,yi,x,i)和sl(yi,x,i)的权重,通过训练得到;

观察序列的特征函数sl(yi,x,i)定义为:

转移特征函数tk(yi-1,yi,x,i)定义为:

其中,某标签设定为临床靶区勾画中需要考虑的解剖结构或亚病灶区域;通过遍历病例数据库,构造以上两个函数,并进行λk和μl的计算。

进一步地,步骤s3具体包括下述步骤:

步骤s31:设定初始状态的肿瘤侵犯概率,位于大体肿瘤靶区内部的体素概率设置为1,位于大体肿瘤靶区外部的体素点设置为0,此时为初始观察状态的概率值,即i=0,其中点坐标为(xyz)的体素点xxyz在第i个观察时刻的条件概率记为p(y|x);

步骤s32:运用距离变换计算所有体素到大体肿瘤靶区的欧几里得距离,并四舍五入取整,得到各个点的距离索引;在大体肿瘤靶区内部的体素点距离索引为0,点坐标为(x,y,z)的体素点xxyz记为d(xxyz);

步骤s33:在已知i-1观察时刻的概率下,计算i观察时刻的各个体素点的肿瘤侵犯概率值;按照距离索引的顺序从小到大依次使用训练好的模型,计算肿瘤的侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

第二方面,本发明实施例提供一种基于条件随机向量场的肿瘤临床靶区自动勾画系统,包括:

二值图像生成模块:用于对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

模型训练模块:用于对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数及状态特征函数在给定的数据集上,训练模型,确定参数;

临床放疗靶区范围生成模块:用于读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从大体肿瘤靶区开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

第三方面,本发明实施例提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所提供的基于条件随机向量场的肿瘤临床靶区自动勾画方法的步骤。

第四方面,本发明实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面所提供的基于条件随机向量场的肿瘤临床靶区自动勾画方法的步骤。

本发明实施例提供的一种基于条件随机向量场的肿瘤临床靶区自动勾画方法及系统具有如下优点:使用条件随机向量场,结合肿瘤原发灶信息及肿瘤附近的解剖结构对肿瘤侵犯区域的预测进行限制,能够使用更贴近于医生临床行为的方式对肿瘤侵犯区域进行建模计算的模型,用于新病人的肿瘤侵犯区域概率计算。相较于隐形马尔科夫模型,本发明除了考虑大体肿瘤靶区(gtv)之外,还将肿瘤周边的解剖结构及亚病灶区域考虑在内,基于大量数据,能精确地预测出肿瘤的侵犯概率,自动确定放疗靶区,预测结果更加精确和合理,更加贴合临床的实际情况。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的基于条件随机向量场的肿瘤临床靶区自动勾画方法流程图;

图2为本发明实施例提供的方法中步骤s2的流程图;

图3本发明实施例提供的基于条件随机向量场的肿瘤临床靶区自动勾画系统的原理图;

图4本发明实施例提供的一种电子设备的实体结构图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

图1为本发明实施例提供的一种基于条件随机向量场的肿瘤临床靶区自动勾画方法流程图(其中,肿瘤区(grosstumorvolume,gtv):指临床可见、可通过诊疗检查手段(包括ct和mri)证实的肿瘤范围。原发病灶临床靶区(clinicaltargetvolume,ctv):除包含gtv外,还包括显微镜下可见的、亚临床灶以及肿瘤可能侵犯的范围。如图1所示,本发明提出的一种基于条件随机向量场的肿瘤临床靶区自动勾画方法,包括下述步骤:

步骤s1:对ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

本发明实施例的步骤s1中,网格化三维的ct图像的具体过程为:把不同层面的ct序列图像划分成长方体格点,即体素点。得到格点数目为width×height×zlen的三维网格。width和height的值,由训练集中n例病例中肿瘤所侵犯的区域决定,zlen为ct横断面的层数。

本发明实施例的步骤s1中,所述二值图像需要判断网格点是否在肿瘤轮廓(多边形)内部,把三维网格中在肿瘤区域内部的网格点(体素)值设为1,肿瘤区域外部的网格点值设为0(体素(voxel):三维图像体积元素的简称。数字数据于三维空间分割上的最小单位,用于三维成像、医学影像等领域。概念类似于二维空间的最小单位——像素);

本发明实施例的步骤s1中,所述肿瘤区域将运用判断体素点是否在多边形内的方法(inpolygon),分开非肿瘤区域与肿瘤区域。具体的判断体素点是否在多边形内的方法(inpolygon)的计算公式为:

in=inpolygon(x,y,z,xv,yv,zv)

式中in为输出的二值图像,其尺寸与原始输入横截面ct图像i(x,y,z)相同,(x,y,z)为像素,(xv,yv,zv)为gtv轮廓的坐标。

步骤s2:对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数tk(yi-1,yi,x,i)及状态特征函数sl(yi,x,i)在给定的数据集上,训练模型,确定参数λk和μl;

如图2所示,本发明实施例的步骤s2具体包括下述步骤:

步骤s21:去掉二值图像中肿瘤表面层面不稳定的数据(对读入的原发灶肿瘤数据做预处理操作),所述不稳定数据是指:肿瘤最外层的数据,由于不同病人拍片时间的不同,导致肿瘤表面数据存在误差,去掉二值图像中肿瘤表面层面不稳定的数据采用开运算进行处理,具体公式为:

其中b是腐蚀结构元素,先做腐蚀操作,再做膨胀操作;腐蚀就是结构元素b平移到e空间中每个位置,可以完全包含在e中的像素点的集合;膨胀就是在结构元素b约束下,将于空间e接触的部分背景点合并到e中的过程。本发明选取了3×3的基础结构,通过该方法,肿瘤最外层不稳定数据被移除。

步骤s22:挖掘空间中体素之间的关联关系,从训练集中统计空间中体素组合之间的频数,如该体素组合在统计空间中存在,存储结果作为特征函数fk(y,x)的标记,得到训练集中ct影像序列中体素之间的关联关系,训练模型,确定参数数据库。具体实施过程为:

步骤s221:给空间中所有三维网格点按照位置顺序编号,具体公式为xxyz=z×height×width x×height y;其中,(x,y,z)是对应着网格点三维坐标。z为网格点所在的ct层面,(x,y)为格点在该ct切片中的坐标位置。

步骤s222:条件随机向量场的参数化定义为:

其中tk(yi-1,yi,x,i)是转移特征函数,表示对于观察序列x的标注序列在,i-1和,i时刻上的转移概率,sl(yi,x,i)是状态特征函数,表示对于观察序列x其,i时刻的标记概率,λk和μl分别是tk(yi-1,yi,x,i)和sl(yi,x,i)的权重,通过训练得到。在本例具体实施过程中,病例n的个数为1000。

观察序列的特征函数sl(yi,x,i)可以定义为:

转移特征函数tk(yi-1,yi,x,i)可以定义为:

其中,某标签可以设定为临床靶区勾画中需要考虑的解剖结构或亚病灶区域。通过遍历病例数据库,构造以上2个函数,并进行λk和μl的计算。

步骤s3:读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从gtv开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

本发明实施例的步骤s3具体包括下述步骤:

步骤s31:设定初始状态的肿瘤侵犯概率,位于gtv内部的体素概率设置为1,位于gtv外部的体素点设置为0,此时为初始观察状态的概率值,即i=0,具体来说,点坐标为(xyz)的体素点xxyz在第i个观察时刻的条件概率记为p(y|x)。

步骤s32:运用距离变换计算所有体素到gtv的欧几里得距离,并四舍五入取整,得到各个点的距离索引。在gtv内部的体素点距离索引为0,点坐标为(x,y,z)的体素点xxyz记为d(xxyz);

步骤s33:在已知i-1观察时刻的概率下,计算i观察时刻的各个体素点的肿瘤侵犯概率值,具体计算过程如下:

按照距离索引的顺序从小到大(从距离索引为1开始)依次使用训练好的模型,计算肿瘤的侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

基于上述任一实施例,图3为本发明实施例提供的一种基于条件随机向量场的肿瘤临床靶区自动勾画系统的结构示意图,该系统包括:

二值图像生成模块:用于对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

模型训练模块:用于对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数tk(yi-1,yi,x,i)及状态特征函数sl(yi,x,i)在给定的数据集上,训练模型,确定参数λk和μl;

临床放疗靶区范围生成模块:用于读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从gtv开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

综上所述,本发明实施例提供的基于条件随机向量场的肿瘤临床靶区自动勾画方法及系统使用条件随机向量场,结合肿瘤原发灶信息及肿瘤附近的解剖结构对肿瘤侵犯区域的预测进行限制,能够使用更贴近于医生临床行为的方式对肿瘤侵犯区域进行建模计算的模型,用于新病人的肿瘤侵犯区域概率计算。相较于隐形马尔科夫模型,本发明除了考虑大体肿瘤靶区(gtv)之外,还将肿瘤周边的解剖结构及亚病灶区域考虑在内,基于大量数据,能精确地预测出肿瘤的侵犯概率,自动确定放疗靶区,预测结果更加精确和合理,更加贴合临床的实际情况。

图4为本发明实施例提供的一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)301、通信接口(communicationsinterface)302、存储器(memory)303和通信总线304,其中,处理器301,通信接口302,存储器303通过通信总线304完成相互间的通信。处理器301可以调用存储在存储器303上并可在处理器301上运行的计算机程序,以执行上述各实施例提供的方法,例如包括:

对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数tk(yi-1,yi,x,i)及状态特征函数sl(yi,x,i)在给定的数据集上,训练模型,确定参数λk和μl;

读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从gtv开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

此外,上述的存储器303中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(rom,read-onlymemory)、随机存取存储器(ram,randomaccessmemory)、磁碟或者光盘等各种可以存储程序代码的介质。

本发明实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,例如包括:

对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数tk(yi-1,yi,x,i)及状态特征函数sl(yi,x,i)在给定的数据集上,训练模型,确定参数λk和μll;

读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从gtv开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。


技术特征:

1.一种基于条件随机向量场的肿瘤临床靶区自动勾画方法,其特征在于,包括以下步骤:

步骤s1:对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

步骤s2:对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数及状态特征函数,在给定的数据集上训练模型,确定参数;

步骤s3:读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从大体肿瘤靶区开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

2.根据权利要求1所述的基于条件随机向量场的肿瘤临床靶区自动勾画方法,其特征在于,所述步骤s1中网格化三维的ct图像的具体过程为:把不同层面的ct序列图像划分成长方体格点,得到格点数目为width×height×zlen的三维网格。

3.根据权利要求1所述的基于条件随机向量场的肿瘤临床靶区自动勾画方法,其特征在于,所述步骤s2具体包括下述步骤:

步骤s21:去掉二值图像中肿瘤表面层面不稳定的数据;

步骤s22:挖掘空间中体素之间的关联关系,从训练集中统计空间中体素组合之间的频数,如该体素组合在统计空间中存在,存储结果作为特征函数的标记,得到训练集中ct影像序列中体素之间的关联关系,训练模型,确定参数数据库。

4.根据权利要求3所述的基于条件随机向量场的肿瘤临床靶区自动勾画方法,其特征在于,所述步骤s22具体包括以下步骤:

步骤s221:给空间中所有三维网格点按照位置顺序编号,具体公式为xxyz=z×height×width x×height y;其中,(x,y,z)是对应网格点三维坐标;z为网格点所在的ct层面,(x,y)为格点在该ct切片中的坐标位置;

步骤s222:条件随机向量场的参数化定义为:

其中tk(yi-1,yi,x,i)是转移特征函数,表示对于观察序列x的标注序列在i-1和i时刻上的转移概率,sl(yi,x,i)是状态特征函数,表示对于观察序列x其i时刻的标记概率,λk和μl分别是tk(yi-1,yi,x,i)和sl(yi,x,i)的权重,通过训练得到;

观察序列的状态特征函数sl(yi,x,i)定义为:

转移特征函数tk(yi-1,yi,x,i)定义为:

其中,某标签设定为临床靶区勾画中需要考虑的解剖结构或亚病灶区域;通过遍历病例数据库,构造以上两个函数,并进行λk和μl的计算。

5.根据权利要求1所述的基于条件随机向量场的肿瘤临床靶区自动勾画方法,其特征在于,所述步骤s3具体包括下述步骤:

步骤s31:设定初始状态的肿瘤侵犯概率,位于大体肿瘤靶区内部的体素概率设置为1,位于大体肿瘤靶区外部的体素点设置为0,此时为初始观察状态的概率值,即i=0,其中点坐标为(x,y,z)的体素点xxyz在第i个观察时刻的条件概率记为p(y|x);

步骤s32:运用距离变换计算所有体素到大体肿瘤靶区的欧几里得距离,并四舍五入取整,得到各个点的距离索引;在大体肿瘤靶区内部的体素点距离索引为0,点坐标为(x,y,z)的体素点xxyz记为d(xxyz);

步骤s33:在已知i-1观察时刻的概率下,计算i观察时刻的各个体素点的肿瘤侵犯概率值;按照距离索引的顺序从小到大依次使用训练好的模型,计算肿瘤的侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

6.一种基于条件随机向量场的肿瘤临床靶区自动勾画系统,其特征在于,包括:

二值图像生成模块:用于对模板ct的图像序列进行数据离散操作,网格化三维的ct图像得到对应的三维网格,读入训练集中医生勾画好的肿瘤轮廓文件,生成肿瘤原发灶区域的二值图像;

模型训练模块:用于对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数及状态特征函数在给定的数据集上,训练模型,确定参数;

放疗临床靶区范围生成模块:用于读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从大体肿瘤靶区开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率,通过阈值设置的方式,进行原发灶临床靶区的自动勾画。

7.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至5任一项所述的基于条件随机向量场的肿瘤临床靶区自动勾画方法的步骤。

8.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至5任一项所述的基于条件随机向量场的肿瘤临床靶区自动勾画方法的步骤。

技术总结
本发明实施例提供一种基于条件随机向量场的肿瘤临床靶区自动勾画方法及系统,该方法包括以下步骤:步骤S1:对模板CT的图像序列进行数据离散操作,生成肿瘤原发灶区域的二值图像;步骤S2:对读入的原发灶肿瘤数据做预处理操作,定义转移特征函数及状态特征函数在给定的数据集上,训练模型,确定参数;步骤S3:读入新病人的原发肿瘤数据,得到对应的二值图像,按照设定好的体素状态转移公式,从大体肿瘤靶区开始向外不断迭代计算相邻体素之间的状态转移概率,最终得到全局的肿瘤概率侵犯概率。该方法使用条件随机向量场,能够预测出肿瘤的侵犯概率,自动确定放疗临床靶区,预测结果更加合理,更加贴合临床的实际情况。

技术研发人员:田孟秋;谢培梁;李松峰;魏军
受保护的技术使用者:广州柏视医疗科技有限公司
技术研发日:2020.01.15
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-34495.html

最新回复(0)