基于时空轨迹数据的流行传染病病毒场可视化方法及系统与流程

专利2022-06-29  86


本发明涉及手机定位、时态gis、大数据、云计算在流行传染病预防和控制领域的应用,尤其涉及一种基于时空轨迹数据的流行传染病病毒场可视化方法及系统。



背景技术:

传染病爆发的核心就在于它的传染性,能够从一个人直接或者间接的传递给另一个人或者更多的人。应对这类突然爆发的传染病,人类掌握了一种非常古老但是异常有效的办法—那就是隔离。

隔离的核心有三条:

一是找到和管理传染源。科学家们已经明确新冠病毒就是这次传染病爆发的病原体,而且它能在人与人之间传播,那么将已经患病或者疑似患病者快速识别出来并隔离治疗,就起到了这个作用。

二是切断传播途径。作为一种呼吸道病毒,新冠病毒的主要传播途径是通过飞沫传播,但目前人们也无法完全排除其他的传播途径。因此切断传播途径最有效的方法就是避免人群的大规模的聚集和长距离的移动。

三是保护易感人群。面对这次新型冠状病毒2019-ncov,可以说每个人都是易感人群。

比尔·盖茨在2015年埃博拉病毒爆发之后的一次演讲中表示,在未来几十年里,如果有什么东西可以杀掉上千万人,那更可能是个有高度传染性的病毒,而不是战争;不是导弹,而是微生物。同时盖茨还提到,目前的问题不在于我们没有一套可以使用的系统,而是我们根本没有任何系统。这里所讲的系统包括了用于流行传染病防控的信息系统。

中国发明专利申请号为201610060508.x公开了一种公开了利用手机轨迹追踪传染源和预测传染病流行趋势的方法,包括步骤:从疾控中心获得新发感染者数据,确定新发感染者;获得所述新发感染者发病前和发病后一段时间内的手机话务数据及其相关基站数据;对所述手机话务数据和相关基站数据在地理信息系统平台上进行新发感染者的轨迹可视化分析;和分析传染病流行的高危区域和人群,预测传染病流行趋势。

中国发明专利申请号为201710315295.5公开了及一种传染病防控方法及系统。根据本地染病风险数据识别传染病的高风险区域;根据规则手机数据识别访问所述高风险区域的用户;通过访问高风险区域的用户手机轨迹数据识别出行目的地为所述高风险区域的流入人群,并根据所述流入人群的出行特征将出行目的地进行分类;依据防控严格程度分别制定空间防控措施,并依据所述空间防控措施以及出行目的地的分类结果分别向对应的流入人群发送出行干预信息。

这次2019-ncov传染病,具有很大的隐匿性;①冠状病毒是纳米级的,是肉眼不可见的,且有较长的潜伏期;②症状不明显,感染潜伏期也具有明显的传染性;③无症状感染者也存在一定传染性,这些都对疫情的防控带来新的挑战;

若将病毒携带者的病毒传播,通过其活动过程中所产生的病毒场进行表达,这样可以对病毒携带者的个人隐私进行保护;另外,若对病毒场的大小、分布情况以及影响进行计算,并动态地显示在时态gis上,这样就为实现以下三个目标奠定了坚实基础:①向有关部门及人员提供反映病毒场分布的时态gis信息,为精准施策、精准防控、公民出行等提供信息支持;②为进一步排查病毒感染源和感染途径提供数据支撑;③找出曾经在该病毒场停留过的个体,并计算出他们被感染的概率。



技术实现要素:

为了克服已有的传染病防控方法的对已经患病或者疑似患病者识别排查难、对个人隐私保护缺失、对付病毒的隐匿性手段欠缺、难以计算与病毒携带者相遇后被感染的概率、对疫情的精准施策和精准防控缺少有力的技术支撑等不足,本发明提供一种通过病毒携带人群的时空轨迹数据和感染发病数据加工成病毒携带者为位置中心的病毒分布密度图,并加入空间位置语义信息映射到时态gis上,将流行传染病病毒场可视化处理的方法。

本发明解决其技术问题所采用的技术方案是:

一种基于时空轨迹数据的流行传染病病毒场可视化方法,包括以下步骤:

s1:空气传播传染病城市扩散建模;

s2:病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工;

s3:病毒携带者位置语义信息获取;

s4:病毒携带者为位置中心的病毒分布密度计算;

s5:病毒携带人群的时间、空间和病毒分布密度数据映射;

s6:基于时态gis的流行传染病病毒场云平台构建,各地基层疾病防控中心工作人员通过所述的基于时态gis的流行传染病病毒场云平台输入病毒携带者感染发病数据;然后通过所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,所述的病毒携带者位置语义信息获取单元,所述的病毒携带者为位置中心的病毒分布密度计算单元,所述的病毒携带人群的时间、空间和病毒分布密度数据映射单元进行云计算,最后自动生成基于时态gis的流行传染病病毒场。

进一步,在所述步骤s1中,对城市区域功能进行划分及空间位置映射,将城市中的每个空间位置功能语义化。

再进一步,在所述步骤s2中,将各病毒携带者的感染发病数据,包括手机号码及发病时间和被隔离时间,用所述的手机号码从通信运营商获得所属的病毒携带者从发病前1天和发病后直至被隔离前以时间间隔t的手机话务数据及其相关基站数据,所述的病毒携带者的手机话务数据包括用户触发话务的时间、用户通信业务类型和用户id号;所述相关基站数据包括与所述手机话务数据相关的基站位置区域识别号码和基站扇区位置标识号码;然后将上述数据加工成用户id、时刻、空间位置并按时间序列写入时空数据库集,即dataset1。

更进一步,在所述步骤s3中,根据所述的病毒携带者的空间位置访问所述的城市区域功能划分及空间位置映射单元,得到所述的病毒携带者的空间位置的语义信息。

在所述步骤s4中,根据所述的dataset1中所述的用户id、时刻、空间位置信息,分别计算每个所述用户id的为位置中心的病毒分布密度,计算公式如下;

式中,p(i)t为采样时刻t第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t,t(i))为采样时刻t第i个病毒携带者的病毒分布密度;

进一步,还要考虑到室内外病毒分布密度衰减情况不同,对于室外病毒分布密度不进行累加;对于室内,首先判断采样时刻t第i个病毒携带者所处的空间坐标p(i)t和采样时刻t 1第i个病毒携带者所处的空间坐标p(i)t 1之间的距离δd是否小于一个阈值td,如果满足,就要考虑病毒密度的累加效应;即将采样时刻t 1第i个病毒携带者的残存病毒分布密度f(p(i)t 1,t(i) δt)与采样时刻t 1第i个病毒携带者的病毒分布密度f(p(i)t 1,t(i))进行累加;

对于所述的病毒携带者所处的环境是否在室内还是在室外,是根据所述的病毒携带者位置语义信息获取单元所得到的空间语义来实现的;

考虑到经历采样时间间隔δt的病毒分布密度衰减,将经历采样时间间隔δt所残存在区域中的病毒分布密度用公式(2)进行衰减计算,

式中,p(i)t 1为采样时刻t 1第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t 1,t(i) δt)为采样时刻t 1第i个病毒携带者的残存病毒分布密度;

然后将上述数据进一步加工成用户id、时刻、空间位置、病毒分布密度并按时间序列写入病毒分布时空数据库集,即dataset2。

在所述步骤s5中,用于将所述的dataset2中的数据映射到时态gis上;

所述的时态gis在传统gis基础上增加时间维,把gis由传统的空间、属性两要素拓展为空间、时间、属性三要素;时态gis既可以描述和表达病毒场在空间中的分布和形状,也可以描述和表达其随时间的变化,进行时态分析。

一种基于时空轨迹数据的流行传染病病毒场可视化系统,包括空气传播传染病城市扩散建模单元,病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,病毒携带者位置语义信息获取单元,病毒携带者为位置中心的病毒分布密度计算单元,病毒携带人群的时间、空间和病毒分布密度数据映射单元,基于时态gis的流行传染病病毒场云平台构建单元。

进一步,所述的空气传播传染病城市扩散建模单元,用于对城市区域功能进行划分及空间位置映射,将城市中的每个空间位置功能语义化;

这里首先将城市的主城区分解为区域和区域中的子空间,所述的子空间的功能信息是通过所述的数字地图内容、导航和位置服务解决方案提供商这里获得的;从通信运营商获取基站位置区域识别号码和基站扇区位置标识号码,将所述的区域和所述的区域中的子空间进行映射;

所述的区域,是服务于不同目的的城市地块,将城市划分为农业区、办公区、住宅区、医院、学校、大学、休闲娱乐区不同类型;不考虑对传染病扩散基本无影响的区域,如农业区,将所述的区域映射为七种类型:住宅区、办公区、学校、大学、医院、休闲区和交通区;所述的交通区是一种特别的区域,由可移动的独立空间组成,比如火车车厢、地铁车厢和公共汽车;

所述的子空间,是属于所述区域的一个更小的空间单位,对应到现实生活中的一个个非移动的独立空间,所述非移动的独立空间是一个家庭、或者一个医院病房、或者一个办公室、或者一个休闲娱乐场所、或者一个教室、或者一块绿地;所述的子空间区分室外和室内;所述的子空间的类型由其所在区域的功能类型决定;人们在所述的子空间中进行相应类型的活动,比如居家、住院、工作、休闲娱乐和学习;参考实际数据在每个所述的区域中生成不同类型的所述的子空间,比如一个大学区域可由办公子空间、居住空间、教室子空间、休闲子空间;由此,这里将所述的子空间划分为以下六种类型:居所、办公室、教室、病房、休闲场所、交通子空间;这样每个子空间都具备了相应的语义信息。

再进一步,所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元;从疾控中心获得所述的病毒携带人群中每个个体的感染发病数据,即各病毒携带者的感染发病数据,包括手机号码及发病时间和被隔离时间,用该手机号码从通信运营商获得所属的病毒携带者从发病前1天和发病后直至被隔离前以时间间隔t的手机话务数据及其相关基站数据,所述的通信运营商如中国移动、中国联通和中国电信,所述的病毒携带者的手机话务数据包括用户触发话务的时间、用户通信业务类型和用户id号;所述相关基站数据包括与所述手机话务数据相关的基站位置区域识别号码和基站扇区位置标识号码;然后将上述数据加工成用户id、时刻、空间位置并按时间序列写入时空数据库集,即dataset1。

所述的病毒携带者位置语义信息获取单元,根据所述的病毒携带者的空间位置访问所述的城市区域功能划分及空间位置映射单元,得到所述的病毒携带者的空间位置的语义信息。

所述病毒携带者为位置中心的病毒分布密度计算单元,根据所述的dataset1中所述的用户id、时刻、空间位置信息,分别计算每个所述用户id的为位置中心的病毒分布密度,计算公式如下;

式中,p(i)t为采样时刻t第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t,t(i))为采样时刻t第i个病毒携带者的病毒分布密度;

进一步,还要考虑到室内外病毒分布密度衰减情况不同,对于室外病毒分布密度不进行累加;对于室内,首先判断采样时刻t第i个病毒携带者所处的空间坐标p(i)t和采样时刻t 1第i个病毒携带者所处的空间坐标p(i)t 1之间的距离δd是否小于一个阈值td,如果满足,就要考虑病毒密度的累加效应;即将采样时刻t 1第i个病毒携带者的残存病毒分布密度f(p(i)t 1,t(i) δt)与采样时刻t 1第i个病毒携带者的病毒分布密度f(p(i)t 1,t(i))进行累加;

对于所述的病毒携带者所处的环境是否在室内还是在室外,是根据所述的病毒携带者位置语义信息获取单元所得到的空间语义来实现的;

考虑到经历采样时间间隔δt的病毒分布密度衰减,将经历采样时间间隔δt所残存在区域中的病毒分布密度用公式(2)进行衰减计算,

式中,p(i)t 1为采样时刻t 1第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t 1,t(i) δt)为采样时刻t 1第i个病毒携带者的残存病毒分布密度;

然后将上述数据进一步加工成用户id、时刻、空间位置、病毒分布密度并按时间序列写入病毒分布时空数据库集,即dataset2。

所述的病毒携带人群的时间、空间和病毒分布密度数据映射单元,用于将dataset2中的数据映射到时态gis上;

所述的时态gis在传统gis基础上增加时间维,把gis由传统的空间、属性两要素拓展为空间、时间、属性三要素;时态gis既可以描述和表达病毒场在空间中的分布和形状,也可以描述和表达其随时间的变化,进行时态分析。

所述的基于时态gis的流行传染病病毒场云平台构建单元,面对数据的加工处理,就必须采用云计算的方式来实现;各地基层疾病防控中心工作人员通过所述的基于时态gis的流行传染病病毒场云平台输入病毒携带者感染发病数据;然后通过所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,所述的病毒携带者位置语义信息获取单元,所述的病毒携带者为位置中心的病毒分布密度计算单元,所述的病毒携带人群的时间、空间和病毒分布密度数据映射单元进行云计算,最后自动生成基于时态gis的流行传染病病毒场。

本发明的技术构思为:要实现本发明的发明任务,必须要解决几个核心问题:(1)两步可视化方法,即对病毒携带者可视化和对其向周围散发的病毒分布可视化;(2)在充分保护个人隐私的前提下对病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工;(3)计算病毒携带者为位置中心的病毒分布密度;(4)将病毒携带人群的时间、空间和病毒分布密度数据映射到时态gis上;(5)排查出所有可疑重点的传染病病毒场,并根据空间位置语义信息标识出高风险的传染病病毒场。

本发明的有益效果主要表现在:

(1)通过对病毒携带者与病毒场的映射,可以做到对疫情进行坚决的、毫不松懈的动态监控,有利于彻底阻断疫情感染途径;能实现对人群隐私保护,包括了已感染的人群、实施人道主义关怀,有助于提高全民对传染病的群防群控自觉性;容易做到做到时间和空间维度上的精准防控。

(2)在法律方面,有助于解决疫情信息发布和预警之间责任不清问题;疫情发布,是对巳经明确的疫情进行公开,需要由国务院卫生行政部门负责向社会公布传染病疫情信息;预警是对还没有发生或者可能发生的疫情进行前置式的警示,发布预警主体是县级以上地方各级人民政府。疫情发布要求准确全面;预警采用的是“疑有从有”的原则。各地基层疾病防控中心可以在得到当地人民政府授权的情况下,实时在网络上发布当地流行传染病病毒场时空分布信息,将有关风险的信息及时转告给潜在的受影响者,使其采取必要的行动,减少事件的不利影响。

(3)对于那些担忧是否可能被病毒感染,且自己原来在外出时没有佩戴口罩的人群,可以提供这样一种信息服务,用户只要将其手机号发送给平台,平台就会根据用户的活动轨迹,再检查该用户是否在出行期间遇到的病毒场,根据其接触病毒场的强度和时间长短,最后计算某次出行被感染的概率,有助于消除居民的恐慌和焦虑心理。

(4)能快速有效地了解到初次感染者的出行特点与路线,能有效帮助传染病预防工作者并对感染源进行追溯调查,在特殊情况下还可以对传染源进行实时动态追踪,及时有效地对其所接触的人和地进行疾病干预,不仅准确方便,也节省了大量的人力物力财力。

(5)有了基于时空轨迹数据的流行传染病病毒场为基础的疫情防控云平台,极大地提升了疫情信息上报、排查摸底的效率,同时也为指挥协调、巡防管控、后勤保障奠定了坚实的基础,为群防群控、精准施策提供了坚实的信息支撑。

附图说明

图1为利用时态gis技术构造层次化的城市模型说明图,1-城市交通网络映射层,2-城市区域划分映射层,3-城市地理信息网络映射层,4-分布在城市区域内的病毒场;

图2为病毒携带者在周围环境中所产生的病毒分布以及经历一段时间后的衰减后的病毒分布曲线;

图3为基于时空轨迹数据的流行传染病病毒场可视化方法处理流程图。

具体实施方式

下面结合附图对本发明作进一步描述。

参照图1~图3,一种基于时空轨迹数据的流行传染病病毒场可视化系统,包括空气传播传染病城市扩散建模单元,病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,病毒携带者位置语义信息获取单元,病毒携带者为位置中心的病毒分布密度计算单元,病毒携带人群的时间、空间和病毒分布密度数据映射单元,基于时态gis的流行传染病病毒场云平台构建单元。

如图3所示,重要的处理步骤如下:

s1:空气传播传染病城市扩散建模;

s2:病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工;

s3:病毒携带者位置语义信息获取;

s4:病毒携带者为位置中心的病毒分布密度计算;

s5:病毒携带人群的时间、空间和病毒分布密度数据映射;

s6:基于时态gis的流行传染病病毒场云平台构建。

所述的空气传播传染病城市扩散建模单元,用于对城市区域功能进行划分及空间位置映射,将城市中的每个空间位置功能语义化;图1所示的是利用时态gis技术构造层次化的城市模型说明图,1-城市交通网络映射层,2-城市区域划分映射层,3-城市地理信息网络映射层,4-分布在城市区域内的病毒场;其中,城市区域划分最好依据国家最基层疾病防控中心所管辖的行政区域来确定,以避免在管理上出现漏洞;

这里首先将城市的主城区分解为区域和区域中的子空间,所述的子空间的功能信息是通过所述的数字地图内容、导航和位置服务解决方案提供商这里获得的;从通信运营商获取基站位置区域识别号码和基站扇区位置标识号码,将所述的区域和所述的区域中的子空间进行映射;

所述的区域,是服务于不同目的的城市地块,将城市划分为农业区、办公区、住宅区、医院、学校、休闲娱乐区不同类型;不考虑对传染病扩散基本无影响的区域,如农业区,将所述的区域映射为七种类型:住宅区、办公区、学校、医院、休闲区和交通区;所述的交通区是一种特别的区域,由可移动的独立空间组成,比如火车车厢、地铁车厢和公共汽车;

所述的子空间,是属于所述区域的一个更小的空间单位,对应到现实生活中的一个个非移动的独立空间,所述非移动的独立空间是一个家庭、或者一个医院病房、或者一个办公室、或者一个休闲娱乐场所、或者一个教室、或者一块绿地;所述的子空间区分室外和室内;所述的子空间的类型由其所在区域的功能类型决定;人们在所述的子空间中进行相应类型的活动,比如居家、住院、工作、休闲娱乐和学习;参考实际数据在每个所述的区域中生成不同类型的所述的子空间,比如一个大学区域可由办公子空间、居住空间、教室子空间、休闲子空间;由此,这里将所述的子空间划分为以下六种类型:居所、办公室、教室、病房、休闲场所、交通子空间;这样每个子空间都具备了相应的语义信息;

所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元;从疾控中心获得所述的病毒携带人群中每个个体的感染发病数据,即各病毒携带者的感染发病数据,包括手机号码及发病时间和被隔离时间,用该手机号码从通信运营商获得所属的病毒携带者从发病前1天和发病后直至被隔离前以时间间隔t的手机话务数据及其相关基站数据,所述的通信运营商如中国移动、中国联通和中国电信,所述的病毒携带者的手机话务数据包括用户触发话务的时间、用户通信业务类型和用户id号;所述相关基站数据包括与所述手机话务数据相关的基站位置区域识别号码和基站扇区位置标识号码;然后将上述数据加工成用户id、时刻、空间位置并按时间序列写入时空数据库集,即dataset1;

为了最大限度的保护个人隐私,平台只要求各地基层的疾控中心相关人员输入病毒携带者的手机号码及发病时间和被隔离时间的感染发病数据,不包含其他任何的个人信息;访问通信运营商得到话务数据及其相关基站数据时也只提供手机号码;在时态gis上显示城市区域流行传染病病毒场时不包含任何个人信息。

所述的病毒携带者位置语义信息获取单元,根据所述的病毒携带者的空间位置访问所述的城市区域功能划分及空间位置映射单元,得到所述的病毒携带者的空间位置的语义信息;

飞沫传染和接触传播是新型冠状病毒2019-ncov主要的传播渠道,也是很多流行传染病的主要的传播渠道;一般来说,室外空气流通性好不适宜微生物的存活,病毒携带者所产生的病毒场会比较快的衰减;而对于环境比较密闭的空间内,病毒携带者将病原微生物带入室内;咳嗽和喷嚏,甚至呼吸,都会将飞沫排入空气中,较大的飞沫在蒸发之前降落到地面,较小的飞沫可以在较短的时间内由于水分蒸发完毕而形成飞沫核,直径≤10μm的飞沫核在空中悬浮的时间长达数小时,若人们在这种病毒场室内滞留时间较长,与病原微生物接触的机会较多,从而形成较高的疾病传染风险。

含有新冠病毒的飞沫核尺寸在亚微米到微米的范围,与烟草燃烧后的颗粒尺度类似。这些飞沫核在没有任何外部干扰情况下,作布朗运动向外传播。用一个比较通俗的话来说,在一个封闭的房间内抽烟,开始在抽烟者周围产生烟雾,然后以抽烟者为中心慢慢地向四周蔓延开来,最后在整个房间内都有烟味。另一方面,随着时间推移,烟味的分布密度也逐渐下降。这就是2019-ncov病毒分布密度计算的依据。

所述病毒携带者为位置中心的病毒分布密度计算单元,根据所述的dataset1中所述的用户id、时刻、空间位置信息,分别计算每个所述用户id的为位置中心的病毒分布密度,计算公式如下;

式中,p(i)t为采样时刻t第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t,t(i))为采样时刻t第i个病毒携带者的病毒分布密度;

图2所示的是用公式(1)计算得到的病毒分布密度图,图中的虚线表示在采样时刻t时病毒分布密度图;随着时间推移,若病毒携带者不再向周围散发病毒,那么病毒分布密度就会出现衰减,如图2中的实线所示;若病毒携带者还是不断地向周围散发病毒,那么病毒分布密度就需要进行累加。

因此,在实际环境中,还要考虑到室内外病毒分布密度衰减情况不同,对于室外病毒分布密度不进行累加;对于室内,首先判断采样时刻t第i个病毒携带者所处的空间坐标p(i)t和采样时刻t 1第i个病毒携带者所处的空间坐标p(i)t 1之间的距离δd是否小于一个阈值td,如果满足,就要考虑病毒密度的累加效应;即将采样时刻t 1第i个病毒携带者的残存病毒分布密度f(p(i)t 1,t(i) δt)与采样时刻t 1第i个病毒携带者的病毒分布密度f(p(i)t 1,t(i))进行累加;

对于所述的病毒携带者所处的环境是否在室内还是在室外,是根据所述的病毒携带者位置语义信息获取单元所得到的空间语义来实现的;

考虑到经历采样时间间隔δt的病毒分布密度衰减,将经历采样时间间隔δt所残存在区域中的病毒分布密度用公式(2)进行衰减计算,

式中,p(i)t 1为采样时刻t 1第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t 1,t(i) δt)为采样时刻t 1第i个病毒携带者的残存病毒分布密度;

然后将上述数据进一步加工成用户id、时刻、空间位置、病毒分布密度并按时间序列写入病毒分布时空数据库集,即dataset2;

所属的病毒携带人群的时间、空间和病毒分布密度数据映射单元,用于将dataset2中的数据映射到时态gis上;

所述的时态gis在传统gis基础上增加时间维,把gis由传统的空间、属性两要素拓展为空间、时间、属性三要素;时态gis既可以描述和表达病毒场在空间中的分布和形状,也可以描述和表达其随时间的变化,进行时态分析;

所述的基于时态gis的流行传染病病毒场云平台构建单元,面对数据的加工处理,就必须采用云计算的方式来实现;各地基层疾病防控中心工作人员通过所述的基于时态gis的流行传染病病毒场云平台输入病毒携带者感染发病数据;然后通过所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,所述的病毒携带者位置语义信息获取单元,所述的病毒携带者为位置中心的病毒分布密度计算单元,所述的病毒携带人群的时间、空间和病毒分布密度数据映射单元进行云计算,最后自动生成基于时态gis的流行传染病病毒场。

本发明的实施方式同样适用于诸如禽流感、流感、sras等通过空气传播的流行病的防控。

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。


技术特征:

1.一种基于时空轨迹数据的流行传染病病毒场可视化方法,其特征在于,所述方法包括以下步骤:

s1:空气传播传染病城市扩散建模;

s2:病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工;

s3:病毒携带者位置语义信息获取;

s4:病毒携带者为位置中心的病毒分布密度计算;

s5:病毒携带人群的时间、空间和病毒分布密度数据映射;

s6:基于时态gis的流行传染病病毒场云平台构建,各地基层疾病防控中心工作人员通过所述的基于时态gis的流行传染病病毒场云平台输入病毒携带者感染发病数据;然后通过所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,所述的病毒携带者位置语义信息获取单元,所述的病毒携带者为位置中心的病毒分布密度计算单元,所述的病毒携带人群的时间、空间和病毒分布密度数据映射单元进行云计算,最后自动生成基于时态gis的流行传染病病毒场。

2.如权利要求1所述的一种基于时空轨迹数据的流行传染病病毒场可视化方法,其特征在于,在所述步骤s1中,对城市区域功能进行划分及空间位置映射,将城市中的每个空间位置功能语义化。

3.如权利要求1或2所述的一种基于时空轨迹数据的流行传染病病毒场可视化方法,其特征在于,在所述步骤s2中,将各病毒携带者的感染发病数据,包括手机号码及发病时间和被隔离时间,用所述的手机号码从通信运营商获得所属的病毒携带者从发病前1天和发病后直至被隔离前以时间间隔t的手机话务数据及其相关基站数据,所述的病毒携带者的手机话务数据包括用户触发话务的时间、用户通信业务类型和用户id号;所述相关基站数据包括与所述手机话务数据相关的基站位置区域识别号码和基站扇区位置标识号码;然后将上述数据加工成用户id、时刻、空间位置并按时间序列写入时空数据库集,即dataset1。

4.如权利要求1或2所述的一种基于时空轨迹数据的流行传染病病毒场可视化方法,其特征在于,在所述步骤s3中,根据所述的病毒携带者的空间位置访问所述的城市区域功能划分及空间位置映射单元,得到所述的病毒携带者的空间位置的语义信息。

5.如权利要求1或2所述的一种基于时空轨迹数据的流行传染病病毒场可视化方法,其特征在于,在所述步骤s4中,根据所述的dataset1中所述的用户id、时刻、空间位置信息,分别计算每个所述用户id的为位置中心的病毒分布密度,计算公式如下;

式中,p(i)t为采样时刻t第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t,t(i))为采样时刻t第i个病毒携带者的病毒分布密度;

进一步,还要考虑到室内外病毒分布密度衰减情况不同,对于室外病毒分布密度不进行累加;对于室内,首先判断采样时刻t第i个病毒携带者所处的空间坐标p(i)t和采样时刻t 1第i个病毒携带者所处的空间坐标p(i)t 1之间的距离δd是否小于一个阈值td,如果满足,就要考虑病毒密度的累加效应;即将采样时刻t 1第i个病毒携带者的残存病毒分布密度f(p(i)t 1,t(i) δt)与采样时刻t 1第i个病毒携带者的病毒分布密度f(p(i)t 1,t(i))进行累加;

对于所述的病毒携带者所处的环境是否在室内还是在室外,是根据所述的病毒携带者位置语义信息获取单元所得到的空间语义来实现的;

考虑到经历采样时间间隔δt的病毒分布密度衰减,将经历采样时间间隔δt所残存在区域中的病毒分布密度用公式(2)进行衰减计算,

式中,p(i)t 1为采样时刻t 1第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t 1,t(i) δt)为采样时刻t 1第i个病毒携带者的残存病毒分布密度;

然后将上述数据进一步加工成用户id、时刻、空间位置、病毒分布密度并按时间序列写入病毒分布时空数据库集,即dataset2。

6.如权利要求1或2所述的一种基于时空轨迹数据的流行传染病病毒场可视化方法,其特征在于,在所述步骤s5中,用于将所述的dataset2中的数据映射到时态gis上;

所述的时态gis在传统gis基础上增加时间维,把gis由传统的空间、属性两要素拓展为空间、时间、属性三要素;时态gis既可以描述和表达病毒场在空间中的分布和形状,也可以描述和表达其随时间的变化,进行时态分析。

7.一种如权利要求1所述的基于时空轨迹数据的流行传染病病毒场可视化方法实现的系统,其特征在于,所述系统包括空气传播传染病城市扩散建模单元,病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,病毒携带者位置语义信息获取单元,病毒携带者为位置中心的病毒分布密度计算单元,病毒携带人群的时间、空间和病毒分布密度数据映射单元,基于时态gis的流行传染病病毒场云平台构建单元。

8.如权利要求7所述的系统,其特征在于,所述的空气传播传染病城市扩散建模单元,用于对城市区域功能进行划分及空间位置映射,将城市中的每个空间位置功能语义化;

这里首先将城市的主城区分解为区域和区域中的子空间,所述的子空间的功能信息是通过所述的数字地图内容、导航和位置服务解决方案提供商这里获得的;从通信运营商获取基站位置区域识别号码和基站扇区位置标识号码,将所述的区域和所述的区域中的子空间进行映射;

所述的区域,是服务于不同目的的城市地块,将城市划分为农业区、办公区、住宅区、医院、学校、大学、休闲娱乐区不同类型;不考虑对传染病扩散基本无影响的区域,如农业区,将所述的区域映射为七种类型:住宅区、办公区、学校、大学、医院、休闲区和交通区;所述的交通区是一种特别的区域,由可移动的独立空间组成,比如火车车厢、地铁车厢和公共汽车;

所述的子空间,是属于所述区域的一个更小的空间单位,对应到现实生活中的一个个非移动的独立空间,所述非移动的独立空间是一个家庭、或者一个医院病房、或者一个办公室、或者一个休闲娱乐场所、或者一个教室、或者一块绿地;所述的子空间区分室外和室内;所述的子空间的类型由其所在区域的功能类型决定;人们在所述的子空间中进行相应类型的活动,比如居家、住院、工作、休闲娱乐和学习;参考实际数据在每个所述的区域中生成不同类型的所述的子空间,比如一个大学区域可由办公子空间、居住空间、教室子空间、休闲子空间;由此,这里将所述的子空间划分为以下六种类型:居所、办公室、教室、病房、休闲场所、交通子空间;这样每个子空间都具备了相应的语义信息。

9.如权利要求7或8所述的系统,其特征在于,所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元;从疾控中心获得所述的病毒携带人群中每个个体的感染发病数据,即各病毒携带者的感染发病数据,包括手机号码及发病时间和被隔离时间,用该手机号码从通信运营商获得所属的病毒携带者从发病前1天和发病后直至被隔离前以时间间隔t的手机话务数据及其相关基站数据,所述的通信运营商如中国移动、中国联通和中国电信,所述的病毒携带者的手机话务数据包括用户触发话务的时间、用户通信业务类型和用户id号;所述相关基站数据包括与所述手机话务数据相关的基站位置区域识别号码和基站扇区位置标识号码;然后将上述数据加工成用户id、时刻、空间位置并按时间序列写入时空数据库集,即dataset1;

所述的病毒携带者位置语义信息获取单元,根据所述的病毒携带者的空间位置访问所述的城市区域功能划分及空间位置映射单元,得到所述的病毒携带者的空间位置的语义信息。

10.如权利要求7或8所述的系统,其特征在于,所述病毒携带者为位置中心的病毒分布密度计算单元,根据所述的dataset1中所述的用户id、时刻、空间位置信息,分别计算每个所述用户id的为位置中心的病毒分布密度,计算公式如下;

式中,p(i)t为采样时刻t第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t,t(i))为采样时刻t第i个病毒携带者的病毒分布密度;

进一步,还要考虑到室内外病毒分布密度衰减情况不同,对于室外病毒分布密度不进行累加;对于室内,首先判断采样时刻t第i个病毒携带者所处的空间坐标p(i)t和采样时刻t 1第i个病毒携带者所处的空间坐标p(i)t 1之间的距离δd是否小于一个阈值td,如果满足,就要考虑病毒密度的累加效应;即将采样时刻t 1第i个病毒携带者的残存病毒分布密度f(p(i)t 1,t(i) δt)与采样时刻t 1第i个病毒携带者的病毒分布密度f(p(i)t 1,t(i))进行累加;

对于所述的病毒携带者所处的环境是否在室内还是在室外,是根据所述的病毒携带者位置语义信息获取单元所得到的空间语义来实现的;

考虑到经历采样时间间隔δt的病毒分布密度衰减,将经历采样时间间隔δt所残存在区域中的病毒分布密度用公式(2)进行衰减计算,

式中,p(i)t 1为采样时刻t 1第i个病毒携带者所处的空间坐标,t(i)为采样时刻t第i个病毒携带者在所处的空间坐标所经历的时间,σ为常数,f(p(i)t 1,t(i) δt)为采样时刻t 1第i个病毒携带者的残存病毒分布密度;

然后将上述数据进一步加工成用户id、时刻、空间位置、病毒分布密度并按时间序列写入病毒分布时空数据库集,即dataset2;

所述的病毒携带人群的时间、空间和病毒分布密度数据映射单元,用于将dataset2中的数据映射到时态gis上;

所述的时态gis在传统gis基础上增加时间维,把gis由传统的空间、属性两要素拓展为空间、时间、属性三要素;时态gis既可以描述和表达病毒场在空间中的分布和形状,也可以描述和表达其随时间的变化,进行时态分析;

所述的基于时态gis的流行传染病病毒场云平台构建单元,面对数据的加工处理,就必须采用云计算的方式来实现;各地基层疾病防控中心工作人员通过所述的基于时态gis的流行传染病病毒场云平台输入病毒携带者感染发病数据;然后通过所述的病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工单元,所述的病毒携带者位置语义信息获取单元,所述的病毒携带者为位置中心的病毒分布密度计算单元,所述的病毒携带人群的时间、空间和病毒分布密度数据映射单元进行云计算,最后自动生成基于时态gis的流行传染病病毒场。

技术总结
一种基于时空轨迹数据的流行传染病病毒场可视化方法,包括以下步骤:S1:空气传播传染病城市扩散建模;S2:病毒携带人群的时空轨迹数据和感染发病数据的收集、清洗与加工;S3:病毒携带者位置语义信息获取;S4:病毒携带者为位置中心的病毒分布密度计算;S5:病毒携带人群的时间、空间和病毒分布密度数据映射;S6:基于时态GIS的流行传染病病毒场云平台构建。以及提供一种基于时空轨迹数据的流行传染病病毒场可视化系统。本发明通过病毒携带人群的时空轨迹数据和感染发病数据加工成病毒携带者为位置中心的病毒分布密度图,并加入空间位置语义信息映射到时态GIS上,将流行传染病病毒场可视化处理。

技术研发人员:汤一平;汤晓燕;窦文博
受保护的技术使用者:汤一平
技术研发日:2020.02.26
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-34447.html

最新回复(0)