一种高矫顽力SmCo5FeCo纳米复合永磁材料及其制备方法与流程

专利2022-06-29  68


本发明属于永磁材料技术领域,具体涉及一种高矫顽力smco5/feco纳米复合永磁材料及其制备方法。



背景技术:

smco5为一种硬磁材料,具有强的磁晶各向异性场(40t),高的矫顽力(实验室可达到5~7t),但是其饱和磁化强度不高。而软磁相如fe、co和feco合金相等具有高的饱和磁化强度,将其与smco5在纳米尺寸复合有望得到同时具备高饱和磁化强度、高剩磁和高矫顽力特点的纳米复合材料。但是软磁相与smco5复合形成的smco5/软磁相双相纳米复合材料中软磁相的含量较高(≥20%)时,smco5相容易转变为smco3、smco7和sm2co17等磁晶各向异性较低的相,从而使得smco5/软磁相双相纳米复合材料的矫顽力较低。



技术实现要素:

本发明的目的在于提供一种高矫顽力smco5/feco纳米复合永磁材料,该复合永磁材料具有较高的矫顽力。

本发明的目的在于提供一种上述高矫顽力smco5/feco纳米复合永磁材料的制备方法。

为实现上述目的,本发明采用的技术方案为:

一种高矫顽力smco5/feco纳米复合永磁材料,由smco5、α-fe以及smco5硬磁相稳定成分混合后经压坯、热变形处理制得,所述smco5硬磁相稳定成分为smni合金和/或smzn合金;所述α-fe的质量为smco5以及α-fe质量总和的20~50%。

smco5为硬磁相,smco5硬磁相稳定成分中的sm原子以及ni原子或zn原子会通过扩散的方式进入到smco5的晶格中,能够提高smco5晶体结构的稳定性,从而抑制smco5相的转化,使得本发明的smco5/feco纳米复合永磁材料具有较高的矫顽力。本发明的纳米复合材料的矫顽力是同等条件下制备的不含smco5硬磁相稳定成分的复合材料的4~6倍。

通过调整所用原料的质量进一步优化本发明的纳米复合永磁材料的磁性能,所述smco5硬磁相稳定成分的质量为smco5、α-fe以及smco5硬磁相稳定成分总质量的2.5~10%;所述smni、smzn合金中sm的质量百分含量为50~90%,其余为ni或zn。进一步优选的,所述smco5硬磁相稳定成分的质量为smco5、α-fe以及smco5硬磁相稳定成分总质量的2.5~7.5%;所述smni、smzn合金中sm的质量百分含量为83~88%,其余为ni或zn。若smni以及smzn合金中sm含量过少时,对于smco5相的稳定化效果较差;同时合金中少量的ni或zn就可以促进原子的扩散和稳定smco5相的形成。

本发明的高矫顽力smco5/feco纳米复合永磁材料的制备方法采用的技术方案为:

一种上述高矫顽力smco5/feco纳米复合永磁材料的制备方法,包括以下步骤:将smco5、α-fe以及smco5硬磁相稳定成分混合均匀,得混合料;将混合料压制成型,然后进行热变形处理。

本发明的制备方法将smco5硬磁相稳定成分均匀地引入硬磁相smco5中,从而起到稳定硬磁相smco5结构的作用。采用本发明的制备方法制得的smco5/feco纳米复合永磁材料具有较高的致密性,硬磁相主相为具有强磁晶各向异性场的smco5相,具有较高的矫顽力和较好的综合磁性能。本发明的制备过程简单易行,成本较低。

通过优化热变形处理的条件来进一步提高本发明的纳米复合材料的致密性以及缩短生产时间,优选的,所述热变形处理时的温度(t)为600~900℃,变形量(reduction)为30~90%,变形速率(deformationrate)为5%/min~100%/min。进一步优选的,所述热变形处理时的温度为600℃,变形量为60%,变形速率为30%/min~50%/min。

smni或smzn合金的尺寸以能够与所用smco5与α-fe原料的尺寸相匹配为准。优选的,smco5与α-fe均为粉末,smni或smzn合金为粉末或合金速凝薄带。其中smni或smzn合金粉末可以由合金铸锭破碎得到。优选的,所述smni或smzn合金为合金速凝薄带,所述合金速凝薄带的厚度为10~200μm。合金速凝薄带中合金的晶粒较细,有利于合金与smco5以及α-fe的结合。同时,合金速凝薄带与铸锭相比脆性更强,更容易破碎,便于混合均匀,节省混料时间。

优选的,smco5与α-fe均为颗粒粒径小于180μm的粉末。smco5的颗粒粒径与α-fe的颗粒粒径可以相同也可以不同。

为提高三种原料的混合均匀性,所述混合为球磨混合,所述球磨时间为4~24h,转速为300~700r/min。

所述压制成型时所用压力为0.8~1.2gpa,压制成型时所用模具为不锈钢,同时压制成型时的温度为室温。压制成型具体为:将混合料压制成薄片(厚度/直径<0.4),将薄片装入钢管中,得压坯。压坯用于后续热变形处理。

在本发明的高矫顽力smco5/feco纳米复合永磁材料的制备方法中,混合、压制成型以及热变形处理均在保护气氛下进行。优选的,保护气氛为氩气气氛。

附图说明

图1为本发明的smco5/feco纳米复合永磁材料的制备流程图;

图2为本发明的实施例1的纳米复合永磁材料以及对比例1的纳米复合材料的初始磁化曲线和磁滞回线;

图3为本发明的实施例2的纳米复合永磁材料以及对比例1的纳米复合材料的初始磁化曲线和磁滞回线;

图4为本发明的实施例3的纳米复合永磁材料以及对比例1的纳米复合材料的初始磁化曲线和磁滞回线;

图5为本发明的实施例4的纳米复合永磁材料以及对比例1的纳米复合材料的初始磁化曲线和磁滞回线;

图6为本发明的对比例1的纳米复合材料的tem(a)和选区电子衍射图(b);

图7为本发明的实施例1的纳米复合永磁材料的tem(a)和选区电子衍射图(b);

图8为本发明的实施例3的纳米复合永磁材料的tem(a)和选区电子衍射图(b);

图9为本发明的实施例1的纳米复合永磁材料以及对比例1的纳米复合材料的xrd图;

图10为本发明的实施例3的纳米复合永磁材料以及对比例1的纳米复合材料的xrd图。

具体实施方式

下面结合具体实施例对本发明作进一步说明。

以下实施例中所用smco5粉由以下方法制得:将纯度为99.5%以上的sm、co单质按照1:5的化学计量比进行计算配料,并且熔炼时多加的sm的质量为按照化学计量计算得出的单质sm质量的5%,熔炼得smco5铸锭,将smco5铸锭破碎后过80目筛,即得。

一、高矫顽力smco5/feco纳米复合永磁材料的实施例

实施例1

本实施例的高矫顽力smco5/feco纳米复合永磁材料由smco5粉、α-fe粉(过80目筛后的粉末以及smni合金速凝薄带(厚度为10~50μm)混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的20%,smni合金速凝薄带的质量为smco5粉、α-fe粉以及smni合金速凝薄带三者总质量的2.5%;smni合金速凝薄带中sm的质量百分比为83%,其余为ni。

实施例2

本实施例的高矫顽力smco5/feco纳米复合永磁材料由smco5粉、α-fe粉(过80目筛后的粉末)以及smni合金速凝薄带(厚度为30~90μm)混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的20%,smni合金速凝薄带的质量为smco5粉、α-fe粉以及smni合金速凝薄带三者总质量的7.5%;smni合金速凝薄带中sm的质量百分比为83%,其余为ni。

实施例3

本实施例的高矫顽力smco5/feco纳米复合永磁材料由smco5粉、α-fe粉(过80目筛后的粉末)以及smzn合金速凝薄带(厚度为80~150μm)混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的20%,smzn合金速凝薄带的质量为smco5粉、α-fe粉以及smzn合金速凝薄带三者总质量的5%;smzn合金速凝薄带中sm的质量百分比为88%,其余为zn。

实施例4

本实施例的高矫顽力smco5/feco纳米复合永磁材料由smco5粉、α-fe粉(过80目筛后的粉末)以及smzn合金速凝薄带(厚度为140~200μm)混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的20%,smzn合金速凝薄带的质量为smco5粉、α-fe粉以及smzn合金速凝薄带三者总质量的7.5%;smzn合金速凝薄带中sm的质量百分比为88%,其余为zn。

实施例5

本实施例的高矫顽力smco5/feco纳米复合永磁材料由smco5粉、α-fe粉(过80目筛后的粉末)以及smzn合金速凝薄带(厚度为10~80μm)混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的30%,smzn合金速凝薄带的质量为smco5粉、α-fe粉以及smzn合金速凝薄带三者总质量的10%;smzn合金速凝薄带中sm的质量百分比为50%,其余为zn。

实施例6

本实施例的高矫顽力smco5/feco纳米复合永磁材料由smco5粉、α-fe粉(过80目筛后的粉末)以及smzn合金速凝薄带(厚度为70~160μm)混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的40%,smzn合金速凝薄带的质量为smco5粉、α-fe粉以及smzn合金速凝薄带三者总质量的10%;smzn合金速凝薄带中sm的质量百分比为70%,其余为zn。

实施例7

本实施例的高矫顽力smco5/feco纳米复合永磁材料由smco5粉、α-fe粉(过80目筛后的粉末)以及smzn合金速凝薄带(厚度为120~200μm)混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的50%,smzn合金速凝薄带的质量为smco5粉、α-fe粉以及smzn合金速凝薄带三者总质量的10%;smzn合金速凝薄带中sm的质量百分比为90%,其余为zn。

二、高矫顽力smco5/feco纳米复合永磁材料的制备方法的实施例

本发明的高矫顽力smco5/feco纳米复合永磁材料的制备工艺流程如图1所示,包括以下步骤:先将原料(smco5 α-fe (smniorsmzn))进行球磨混合(ballmilling),得到混合粉(milledpowder),混合粉为含feco相的非晶粉末(amorphous feco);然后将混合粉中置于不锈钢模具进行压制成型(consolidation),为保证致密度,先压制得到薄片(厚度/直径<0.4),再将薄片装入不锈钢套筒中(steelcapsule或capsule),得压坯;然后对压坯进行热变形处理(hotdeformation),热变形处理结束后进行机械加工(machining)使得材料(sample)从不锈钢套筒中脱落。为减少氧化,球磨、压制以及热变形均在氩气(氧含量小于5ppm)保护下进行。

实施例8

本实施例的制备方法得到的产品对应于实施例1中的高矫顽力smco5/feco纳米复合永磁材料,包括以下步骤:

(1)将smco5粉、α-fe粉和smni合金速凝薄带按照比例在全方位行星式球磨机中球磨6h,转速为500r/min,球磨介质为氩气,得混合粉;

其中smni合金速凝薄带由以下方法制得:先电弧熔炼得到smni合金铸锭,然后将smni合金铸锭在真空快淬设备上制成速凝薄带,具体过程为:真空度高于1×10-3pa的条件下,将合金铸锭加热熔化后在压力下迅速喷射到水冷的转速为40m/s铜轮上。

(2)在氩气气氛下,将混合粉装入不锈钢模具中,然后在室温下沿轴向向粉末施加1gpa的压力,先压制得到薄片(厚度/直径=0.2-0.3),再将薄片装入不锈钢套筒中,得到压坯(外部为不锈钢套筒);然后沿轴向进行热变形处理,热变形温度为600℃,变形量为60%,变形速率为30%/min,热处理结束后除去不锈钢套筒即得。

实施例9

本实施例的制备方法得到的产品对应于实施例2中的高矫顽力smco5/feco纳米复合永磁材料,具体过程同实施例8。

实施例10

本实施例的制备方法得到的产品对应于实施例3中的高矫顽力smco5/feco纳米复合永磁材料,包括以下步骤:

(1)将smco5粉、α-fe粉和smzn合金速凝薄带按照比例在全方位行星式球磨机中球磨6h,转速为500r/min,球磨介质为氩气,得混合粉;

其中smzn合金速凝薄带由以下方法制得:先电弧熔炼得到smzn合金铸锭,然后将smzn合金铸锭在真空快淬设备上制成速凝薄带,具体过程为:真空度高于1×10-3pa的条件下,将合金铸锭加热熔化后在压力下迅速喷射到水冷的转速为40m/s铜轮上。

(2)在氩气气氛下,将混合粉装入不锈钢模具中,然后在室温下沿轴向向粉末施加1gpa的压力,先压制得到薄片(厚度/直径=0.2-0.3),再将薄片装入不锈钢套筒中,得到压坯(外部为不锈钢套筒);然后沿轴向进行热变形处理,热变形温度为600℃,变形量为60%,变形速率为50%/min,热处理结束后除去不锈钢套筒即得。

实施例11

本实施例的制备方法得到的产品对应于实施例4中的高矫顽力smco5/feco纳米复合永磁材料,具体过程基本与实施例10相同,区别仅在于:步骤(2)中热变形时的变形速率为30%/min。

实施例12

本实施例的制备方法制得的产品对应于实施例5中的高矫顽力smco5/feco纳米复合永磁材料,具体过程基本与实施例10相同,区别仅在于:步骤(1)中球磨时的时间为4h,转速为700r/min;步骤(2)中向粉末施加1.2gpa的压力得到压坯,热变形时的温度为700℃,变形量为30%,变形速率为5%/min。

实施例13

本实施例的制备方法制得的产品对应于实施例6中的高矫顽力smco5/feco纳米复合永磁材料,具体过程基本与实施例10相同,区别仅在于:步骤(1)中球磨时的时间为12h,转速为600r/min;步骤(2)中向粉末施加1.1gpa的压力得到压坯,热变形时的温度为800℃,变形量为60%,变形速率为80%/min。

实施例14

本实施例的制备方法制得的产品对应于实施例7中的高矫顽力smco5/feco纳米复合永磁材料,具体过程基本与实施例10相同,区别仅在于:步骤(1)中球磨时的时间为24h,转速为300r/min;步骤(2)中向粉末施加0.8gpa的压力得到压坯,热变形时的温度为900℃,变形量为90%,变形速率为100%/min。

三、对比例:不含smni或smzn合金

对比例1

本对比例的smco5/软磁相纳米复合材料由smco5粉、α-fe粉混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的20%,具体制备方法基本与实施例8相同,区别仅在与:步骤(1)中球磨时不加入smni合金或smzn合金。

本对比例的smco5/软磁相纳米复合材料在制备时,先与实施例8~9中的样品同一批次制备得到一个样品,标记为未引入smni合金的样品(withoutsmni);然后再与实施例10~14中的样品同一批次制备得到另一个样品,标记为未引入smzn合金的样品(withoutsmzn)。

对比例2

本对比例的smco5/软磁相纳米复合材料由smco5粉、α-fe粉混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的30%,具体制备方法基本与实施例12相同,区别仅在与:步骤(1)中球磨时不加入smni合金或smzn合金。

对比例3

本对比例的smco5/软磁相纳米复合材料由smco5粉、α-fe粉混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的40%,具体制备方法基本与实施例13相同,区别仅在与:步骤(1)中球磨时不加入smni合金或smzn合金。

对比例4

本对比例的smco5/软磁相纳米复合材料由smco5粉、α-fe粉混合后经热变形处理制得,其中α-fe的质量为smco5粉以及α-fe粉质量的50%,具体制备方法基本与实施例14相同,区别仅在与:步骤(1)中球磨时不加入smni合金或smzn合金。

四、试验例

试验例1

对实施例1~7的纳米复合永磁材料以及对比例1~4中的纳米复合材料的磁性能进行测试,具体测试过程为:在室温下,先测试初始磁化曲线0~3t,接着在3t至-3t条件下测量磁滞回线,测试时的样品为φ3mm×3的圆柱,测试时沿着圆柱的轴向。其中实施例1~4以及对比例1中的各材料的初始磁化曲线和磁滞回线分别如图2~图5所示。

图2为本发明的实施例1的纳米复合永磁材料(with2.5%smni)与对比例1的纳米复合材料(withoutsmni)的磁滞回线;图3为本发明的实施例2的纳米复合永磁材料(with7.5%smni)与对比例1的纳米复合材料(withoutsmni)的磁滞回线;图4为本发明的实施例3的纳米复合永磁材料(with5%smzn)与对比例1的纳米复合材料(withoutsmzn)的磁滞回线;图5为本发明的实施例4的纳米复合永磁材料(with7.5%smzn)与对比例1的纳米复合材料(wthoutsmzn)的磁滞回线。

根据图2~图5可知,在没有引入smni合金或smzn合金时即对比例1的纳米复合材料的矫顽力仅为1.24koe(未引入smni合金的样品)和1.54koe(未引入smzn合金的样品)(未引入smni合金的样品以及未引入smzn合金的样品由于不是同一批次制备,因此矫顽力有所不同,但是在误差允许范围内)。而本发明的纳米复合永磁材料,如实施例1的纳米复合永磁材料的矫顽力为5.13koe,是对比例1的纳米复合材料的4.1倍;实施例2的纳米复合永磁材料的矫顽力为7.29koe,是对比例1的纳米复合材料的5.9倍;实施例3的纳米复合永磁材料的矫顽力为6.88koe,是对比例1的纳米复合材料的4.5倍;实施例4的纳米复合永磁材料的矫顽力为8.37koe,是对比例1的纳米复合材料的5.4倍。同时,根据图2~图5可以看出,本发明的纳米复合材料的剩余磁化强度同样有所提高。

测试结果还表明:实施例5中的纳米复合永磁材料的矫顽力为5.08koe,而对比例2中的纳米复合材料的矫顽力为1.02koe;实施例6中的纳米复合永磁材料的矫顽力为4.98koe,而对比例3中的纳米复合材料的矫顽力为0.96koe;实施例7中的纳米复合永磁材料的矫顽力为4.57koe,而对比例4中的纳米复合材料的矫顽力为0.89koe。

试验例2

对实施例1、3中的纳米复合永磁材料以及对比例1中的纳米复合材料进行tem测试,测试结果如图6~8所示。其中图6为对比例1的纳米复合材料的tem(a)以及选区电子衍射图(b),结果表明材料的晶粒尺寸为10nm左右,由sm2co17和α-feco相两相组成。图7为实施例1的纳米复合永磁材料的tem(a)以及选区电子衍射图(b),结果表明材料的晶粒尺寸为10nm左右,由smco5、sm2co17和α-feco相三相组成。图8为实施例3的纳米复合永磁材料的tem(a)以及选区电子衍射图(b),结果表明材料的晶粒尺寸为10nm左右,由smco5、sm2co17和α-feco相三相组成。

上述测试结果表明smni或smzn合金引入后对材料的晶粒尺寸产生的影响较小,并且能够稳定smco5相。

试验例3

对实施例1、3的纳米复合永磁材料以及对比例1中的纳米复合材料进行xrd测试,测试结果如图9和图10所示。

图9为实施例1的纳米复合永磁材料(with2.5wt.%smni)和对比例1的纳米复合材料(withoutsmni)的xrd图;图10为实施例3的纳米复合永磁材料(with5wt.%smzn)和对比例1的纳米复合材料(withoutsmzn)中的xrd图。xrd测试结果表明,对比例1的纳米复合永磁材料中硬磁相的主相为sm2co17相(而不是smco5相),而实施例1以及实施例3的纳米复合永磁材料中硬磁相的主相为smco5相,测试结果与试验例2中的测试结果相符。


技术特征:

1.一种高矫顽力smco5/feco纳米复合永磁材料,其特征在于,由smco5、α-fe以及smco5硬磁相稳定成分混合后经压坯、热变形处理制得,所述smco5硬磁相稳定成分为smni合金和/或smzn合金;所述α-fe的质量为smco5以及α-fe质量总和的20~50%。

2.根据权利要求1所述的高矫顽力smco5/feco纳米复合永磁材料,其特征在于,所述smco5硬磁相稳定成分的质量为smco5、α-fe以及smco5硬磁相稳定成分总质量的2.5~10%,所述smni、smzn合金中sm的质量百分含量为50~90%,其余为ni或zn。

3.一种如权利要求1或2所述的高矫顽力smco5/feco纳米复合永磁材料的制备方法,其特征在于,包括以下步骤:将smco5、α-fe以及smco5硬磁相稳定成分混合均匀,得混合料;将混合料压制成型,然后进行热变形处理。

4.根据权利要求3所述的高矫顽力smco5/feco纳米复合永磁材料的制备方法,其特征在于,所述热变形处理时的温度为600~900℃,变形量为30~90%,变形速率为5%/min~100%/min。

5.根据权利要求3所述的高矫顽力smco5/feco纳米复合永磁材料的制备方法,其特征在于,所述smco5硬磁相稳定成分为合金速凝薄带,所述合金速凝薄带的厚度为10~200μm。

6.根据权利要求3~5任一项所述的高矫顽力smco5/feco纳米复合永磁材料的制备方法,其特征在于,所述smco5与α-fe均为颗粒粒径小于180μm的粉末。

7.根据权利要求3~5任一项所述的高矫顽力smco5/feco纳米复合永磁材料的制备方法,其特征在于,所述混合为球磨混合,所述球磨时间为4~24h,转速为300~700r/min。

8.根据权利要求3~5任一项所述的高矫顽力smco5/feco纳米复合永磁材料的制备方法,其特征在于,所述压制成型时所用压力为0.8~1.2gpa。

9.根据权利要求3~5任一项所述的高矫顽力smco5/feco纳米复合永磁材料的制备方法,其特征在于,所述混合、压制成型以及热变形处理均在保护气氛下进行。

技术总结
本发明属于永磁材料技术领域,具体涉及一种高矫顽力SmCo5/FeCo纳米复合永磁材料及其制备方法。本发明的SmCo5/FeCo纳米复合永磁材料由SmCo5、α‑Fe以及SmCo5硬磁相稳定成分混合后经热变形处理制得,所述SmCo5硬磁相稳定成分为SmNi合金和/或SmZn合金;所述α‑Fe的质量为SmCo5以及α‑Fe质量总和的20~50%。SmCo5硬磁相稳定成分能够稳定SmCo5的结构,因此本发明的SmCo5/FeCo纳米复合永磁材料具有较高的矫顽力,是同等条件下制备的不含SmNi或SmZn合金复合材料的矫顽力的4~6倍。

技术研发人员:安士忠;李孝森;李武会;徐盼盼;殷婷;朱雁风;任凤章;宋克兴;马峥;吕贵红;肖滕龙
受保护的技术使用者:河南科技大学
技术研发日:2020.03.02
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-33968.html

最新回复(0)