本发明涉及磁体领域,主要是一种静磁耦合高性能复合粘结钕铁硼磁体。
背景技术:
图1为所有钕铁硼磁体的化学成分,蓝色代表微米晶烧结钕铁硼成分区域,原子比总稀土含量tre13.7-16,总稀土含量和晶界富稀土相在所有钕铁硼磁体中最高。原子比成分从tre11.8到tre13.7是纳米晶热压及热变形钕铁硼磁体的成分范围,其晶界富稀土相比烧结钕铁硼少,所以耐蚀性比烧结钕铁硼好,最适合海边风力发电机用。红色箭头所指是nd2fel4b当量成分,其原子比为11.8at%。小于nd2fel4b当量成分的区域是粘结钕铁硼磁体成分,除了含nd2fel4b主相外还含有α-fe,其特点是沒有晶界富钕相,所以抗氧化性能比其它钕铁硼磁体好.另外环氧树脂粘结磁体磁性均匀,尺寸精密,薄壁环是计算机硬盘驱动器不可缺少的部件,同时壁厚0.4毫米到1毫米的多极钕铁硼薄壁环已成功用于各种微型伺服和步进电机。
单一种类的快淬钕铁硼粉末无法实现静磁耦合,单一种类的快淬钕铁硼粉末存在不同颗粒度,颗粒度不同性能也有很大的差异,用单一种类钕铁硼不同颗粒度的粉末测试,剩余磁化强度br和最大磁能积(bh)max随粒度增加而线性变化,所以无法实现静磁耦合。粉末颗粒度大于40目的粉料占0.1%以下,小于325目的粉料占12%以下,名义粒度为200微米。其剩余磁化强度br和最大磁能积(bh)max随粒度增加而线性变化,表明无静磁耦合特性。
从mqp-q粘结磁体和mqp-a1粘结磁体磁性对比看出q粉磁体有比a1粉磁体高的br和大的可逆回复磁导率,可逆回复磁导率代表其弹簧特性,两种磁体差别很大。a1磁体有比q磁体高的多的矫顽力。两者更明显的不同是粘结磁体的退磁曲线,a1磁体的退磁曲线方而宽,q磁体退磁曲线高而窄。由于q磁体稀土含量比a1磁体少,所以q磁体抗腐蚀性比a1磁体显著优越。以上单一种类的粘结钕铁硼磁体,不涉及静磁耦合。
技术实现要素:
本发明的目的在于克服现有技术存在的不足,而提供一种静磁耦合高性能复合粘结钕铁硼磁体。
本发明的目的是通过如下技术方案来完成的。一种静磁耦合高性能复合粘结钕铁硼磁体,矫顽力hci在2k-4koe的粉末为10-40重量份和矫顽力hci在7k-17koe的粉末为60-90重量份制备出的复合磁体,两种粉末矫顽力相差3k-15koe通过静磁耦合改善复合粘结磁体的性能。
作为优选,矫顽力hci在2k-4koe的钕铁硼粉末和矫顽力hci在7k-17koe的钕铁硼粉末制备出的复合粘结磁体或热压、热变形磁体。
作为优选,矫顽力hci为4koe的铁氧体粉和矫顽力hci为15koe的mqp-a1粉制备的复合粘结磁体。
作为优选,矫顽力hci3k-4koe的铁氧体粉末占40重量份与矫顽力hci7koe的mqp-15-7快淬ndfeb粉末为60重量份,加7重量份尼龙12制备出的复合注射磁体。
本发明的有益效果为:两种矫顽力高低悬殊的磁粉之间发生的磁性能相互作用的结果通配比形成静磁耦合,可以加入尼龙12增大静磁耦合效果,静磁耦合能大幅度改善复合粘结磁体的性能。
附图说明
图1为所有钕铁硼磁体的化学成分示意图。
图2为静磁耦合物理模型。
图3为实施例2的剩磁br随钕铁硼混入比例的示意图。
图4为实施例3的退磁曲线示意图。
图5为实施例5的退磁曲线示意图。
具体实施方式
下面将结合附图对本发明做详细的介绍:
图2为静磁耦合物理模型,用低矫顽力mqp-q粉和高矫顽力mqp-a1粉制备的复合粘结磁体出现的静磁耦合反常物理现象。理论计算br随q/a1比例变化以直线上升关系。但实际磁测量br随q/a1比值变化为正向非线性曲线,这表明出现了静磁耦合现象和静磁耦合非线性物理本质。随q/a1比值增加,br升高6.4%,说明静磁耦合能大幅度改善复合粘结磁体的性能。这里要说明一点,静磁耦合不同于纳米双相交换耦合,前者是两种矫顽力高低悬殊的磁粉之间发生的磁性能相互作用的结果,后者是30纳米等级的软硬两相之间发生的近程交换耦合作用。
实施例1:两种不同牌号的钕铁硼粉末制备的复合粘结磁体或热压、热变形磁体,矫顽力hci在2k-4koe的钕铁硼粉末为10-30重量份和矫顽力hci在7k-17koe的钕铁硼粉末为70-90重量份制备出的复合粘结磁体或热压、热变形磁体,两种粉末矫顽力相差3k-15koe通过静磁耦合改善复合粘结磁体的性能。其性能都能大大提升,从而说明了静磁耦合能大幅度改善复合粘结磁体或热压、热变形磁体的性能。
计算br随q/a1比例变化为直线,但实测结果所示,当q/a1比从10升到100时实测br比计算的线性直线值显著高,br随q/a1比值变化为正向非线性曲线,这表明出现了静磁耦合反应,表征了静磁耦合非线性物理本质,随q/a1比值增加br升高6.4%,说明静磁耦合能大幅度改善复合粘结磁体的性能。
实施例2:用铁氧体磁粉和mqp-15-7钕铁硼磁粉制备的复合注塑磁体出现的静磁耦合反常物理现象。如图3所示,为hci4koe的铁氧体粉和hci7koe的钕铁硼粉复合注射磁体的剩磁br随钕铁硼混入比例的非线性变化。这显然是由两种粉末颗粒之间的静磁耦合导致地。
实施例3:图4为hci4koe的铁氧体粉末与hci7koe的mqp-15-7快淬ndfeb粉末注射磁体的退磁曲线,,矫顽力hci3k-4koe的铁氧体粉末占40重量份与矫顽力hci7koe的mqp-15-7快淬ndfeb粉末为60重量份,加7重量份尼龙12制备出的复合注射磁体,复合注射磁体退磁曲线是平滑无台阶的。两种粉末颗粒之间的静磁耦合导致其复合注塑磁体的剩磁br随钕铁硼混入比例出现非线性变化。
实施例4:矫顽力hci为4koe的铁氧体粉和矫顽力hci为15koe的mqp-a1粉制备的复合粘结磁体。尽管两种粉末矫顽力相差11koe,但粘结磁体退磁曲线平滑无台阶。
实施例5:复合粘结磁体由差别大的hci9koe左右b 和hci4koe左右q粉混合而成,在一定混合比例时退磁曲线是平滑的,当b 与q两种粉比例分别为20%和80%时,出现静磁耦合,复合磁体的br比b 与q两种粉的br都显著的高,如图5。
可以理解的是,对本领域技术人员来说,对本发明的技术方案及发明构思加以等同替换或改变都应属于本发明所附的权利要求的保护范围。
1.一种静磁耦合高性能复合粘结钕铁硼磁体,其特征在于:矫顽力hci在2k-4koe的粉末为10-40重量份和矫顽力hci在7k-17koe的粉末为60-90重量份制备出的复合磁体,两种粉末矫顽力相差3k-15koe通过静磁耦合改善复合粘结磁体的性能。
2.根据权利要求1所述的静磁耦合高性能复合粘结钕铁硼磁体,其特征在于:矫顽力hci在2k-4koe的钕铁硼粉末和矫顽力hci在7k-17koe的钕铁硼粉末制备出的复合粘结磁体或热压、热变形磁体。
3.根据权利要求1所述的静磁耦合高性能复合粘结钕铁硼磁体,其特征在于:矫顽力hci为4koe的铁氧体粉和矫顽力hci为15koe的mqp-a1粉制备的复合粘结磁体。
4.根据权利要求1所述的静磁耦合高性能复合粘结钕铁硼磁体,其特征在于:矫顽力hci3k-4koe的铁氧体粉末占40重量份与矫顽力hci7koe的mqp-15-7快淬ndfeb粉末为60重量份,加7重量份尼龙12制备出的复合注射磁体。
技术总结