【
技术领域:
】本发明属于保健品制剂领域,具体涉及一种功能性茉莉花低聚糖口服液及其应用。
背景技术:
:茉莉花是一种重要的香料植物,起源于印度,中国茉莉花主要分布在广西、云南、福建,资源丰富,目前利用多限于窨制花茶、提取茉莉花浸膏和芳香油。据临床医学研究,茉莉花能提高人体的免疫功能,具有抗氧化、抗衰老、抗肿瘤活性、抗细菌病毒等作用。功能性低聚糖,或称寡糖,是由2~10个单糖通过糖苷键连接形成直链或支链的低度聚合糖。低聚糖分子中大量的-n和-o强极性基团的存在使低聚糖的水溶性大为改观,低聚或者更小分子量的水溶性多糖可用作具有生理功能的保健食品,有抗龋齿、增强免疫力、改善肠道菌落结构等能力。由于其特殊的生理功能,90年代开始,功能性低聚糖在我国也已广泛应用于保健品行业。截止2018年,低聚糖产品的年需求量已达22万吨以上,其中低聚异麦芽糖年需求量11万吨以上,低聚果糖年需求量9万吨左右。然而,目前我国功能性低聚糖的研发与应用尚处于发展初期,市面上产品种类单一,仅低聚异麦芽糖、低聚果糖、低聚木糖等功能性低聚糖已占低聚糖市场份额的70%左右,且主要应用于功能性保健食品及食品添加剂中。由于功能性不同的低聚糖性质不同,不同低聚糖也具有不同应用,就目前功能性低聚糖的现状,仍需开发有效的不同功能性低聚糖。目前,国内外有关茉莉花功能活性的研究多集中于多糖类、黄酮类物质,针对茉莉花低聚糖的功能活性及产品开发鲜有报道;此外,将茉莉花有效成分应用于保健品乃至医药科技领域的例子也非常少。因此,如何高效利用茉莉花中有效成分已成为茉莉花产业化亟需解决的问题。随着人们生活水平的提高,生活方式有了相应的转变,特别体现在饮食精细、热量充足,体力活动减少,随之而来的却是慢性非传染性疾病(如糖尿病)患病率的增加。who预计到2020年全球糖尿病患者可能达到6.42亿。目前西医学对治疗糖尿病主要以服药或打针为主,对身体有一定副作用,不宜长期服用;中医药学治疗糖尿病的药物很多,这些药物对糖尿病虽有一定疗效作用,但效果也不是很明显。因此,开发安全、无毒副作用且有效的治疗糖尿病的天然药物和保健品已成为当务之急。技术实现要素:本发明的目的就是针对现有技术存在的上述问题,提供一种功能性茉莉花低聚糖口服液,其具有良好的降血糖活性,能够有效缓解糖尿病“三多一少”症状,降低降糖药物的毒副作用,可以作为口服保健品使用,还能作为甜味剂使用。为实现上述目的,本发明技术方案如下:一种功能性茉莉花低聚糖口服液,由以下重量配比的原辅料制备而成:茉莉花低聚糖25%~30%,其余为蒸馏水。本发明还提供所述功能性茉莉花低聚糖口服液的制备方法,包括如下步骤:(1)原料预处理:干燥茉莉花烘干至恒重,粉碎并过筛,得到茉莉花粉末;以新型三元低共熔溶剂预处理茉莉花粉末,按茉莉花粉末与新型三元低共熔溶剂溶液的固液比为100:1.5-2.5(mg/ml)充分混合均匀,得到混合物;将混合物于45-55℃下超声提取50-70min后,离心分离,取沉淀物;沉淀物烘干至恒重,即为预处理茉莉花粉末;所述新型三元低共熔溶剂由以下摩尔比的组分组成:甜菜碱:蔗糖:甘油二乳酸=3-5:1.5-3:1;所述新型三元低共熔溶剂溶液是向新型三元低共熔溶剂加入水后配置而成,所述新型三元低共熔溶剂溶液的含水量为30%-40%;(2)茉莉花总提取物制备:称取预处理茉莉花粉末,按料液比为1:25-35(mg/ml)加入去离子水,在提取温度为160-170℃、提取时间为10-15min条件下进行亚临界水萃取,过滤取滤液,进行减压浓缩,即得茉莉花总提取物;(3)茉莉花多糖制备:向茉莉花总提取物中加入体积分数95%乙醇并在冰水中静置10-15h进行第一次醇沉,过滤得到沉淀物①;向沉淀物①中加入去离子水,加热溶解后过滤去除不溶物,再加入体积分数95%乙醇并在冰水中放置20-30h进行第二次醇沉,过滤得到沉淀物②;将所得沉淀物②放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花多糖;(4)茉莉花低聚糖提取:向茉莉花多糖中加入去离子水,加热溶解,过滤去除不溶物,得到茉莉花多糖溶液;向茉莉花多糖溶液中加入混合酶制剂,在45~55℃下恒温搅拌3~5h;最后灭酶,过滤取滤液,得到茉莉花低聚糖滤液;所述混合酶制剂是由以下质量比的组分组成:阿拉伯木聚糖酶:β-甘露聚糖酶:纤维素酶=2-3:2-3:1;(5)茉莉花低聚糖纯化与浓缩:采用离心式分子膜精馏装置,在温度为80~150℃、弱酸性条件下,将茉莉花低聚糖滤液定向分级分馏,最终残留物即为茉莉花低聚糖浆;将茉莉花低聚糖浆放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花低聚糖;(6)口服液调配:按照重量配比,茉莉花低聚糖添加量25%~30%,其余为蒸馏水,加热使茉莉花低聚糖溶解,混合均匀,冷却后灌装,灭菌,即得功能性茉莉花低聚糖口服液。进一步的,步骤(3)中,所述两次醇沉的95%乙醇加入量体积均为茉莉花总提取物体积的4倍。进一步的,步骤(4)中,向茉莉花多糖中加入去离子水,所述茉莉花多糖与去离子水的重量比为1:5;向茉莉花多糖溶液中加入混合酶制剂,所述混合酶制剂的加入量为茉莉花多糖溶液重量的4-6%。进一步的,步骤(5)中,所述弱酸性条件是指4.5<ph≤6.5。该弱酸性条件是茉莉花低聚糖滤液的ph值,当ph值不在该范围时,使用柠檬酸或纯碱进行调节。进一步的,步骤(5)中,将茉莉花低聚糖滤液定向分级分馏,进料流速为0.53mbar、400r/min和3滴/s。本发明还提供所述的功能性茉莉花低聚糖口服液在制备降血糖药物/保健品中的应用。本发明还提供所述的功能性茉莉花低聚糖口服液作为甜味剂在制备饮料产品中的应用。进一步的,所述饮料产品为奶茶或果汁。有益效果:本发明在对茉莉花提取前,对其进行了预处理。针对本发明制备的目标产物茉莉花低聚糖,本发明配置了新型三元低共熔溶剂(甜菜碱 蔗糖 甘油二乳酸)对茉莉花粉末进行预处理,特殊成分及配比下的低共熔溶剂体系对茉莉花中的多酚类、黄酮类等成分有较高的溶解度,而对单糖、二糖、低聚糖和多糖成分的溶解率低。本发明通过对甜菜碱、蔗糖、甘油二乳酸的组分合理调配得到的新型三元低共熔溶剂,能很好去除茉莉花粉末中的多酚类、黄酮类等成分,为后续产物的定向提取除去了部分屏障。对于预处理后的茉莉花,本发明采用亚临界水萃取技术制备茉莉花总提取物,在亚临界状态下,水分子热运动增加,许多特性会发生显著改变,水的介电常数会降低,表现出类似于有机溶剂的特性,使许多弱极性的物质都能溶解到亚临界水中。与传统热水浸提技术相比较,可以大大缩短提取时间、降低能耗、减少杂质成分的溶出,使多糖物质从植物细胞内释放出来,提高有效成分的得率。本发明采用定向酶解制备茉莉花低聚糖,使用自制混合酶制剂:阿拉伯木聚糖酶 β-甘露聚糖酶 纤维素酶,获得含有低聚果糖、低聚木糖、甘露低聚糖等多种功能性低聚糖的茉莉花低聚糖溶液。对于得到的茉莉花低聚糖溶液,本发明采用离心式分子膜精馏装置配合适当的操作条件进行纯化。膜精馏是一种膜分离过程,它用疏水性微孔膜将不同温度的溶液分开,较高温度下溶液中易挥发组分呈气态透过膜进去另一侧,然后冷凝。分子膜精馏技术属于物理过程,因而可很好地保护茉莉花低聚糖在纯化与浓缩过程中不受污染和侵害。与传统分子蒸馏技术相比,能分离离子、大分子、胶体和其他非挥发性物质,分离率可达90%以上,因此可一次性有效去除茉莉花低聚糖浆中的单糖、二糖、芳香油、黄酮类、残留低共熔溶剂、水分等杂质。与传统蒸馏技术相比,真空度高、操作温度低且受热时间短,因此能极好地保持茉莉花低聚糖的天然品质。与传统膜分离技术相比,操作压力更低,减少了膜与茉莉花低聚糖溶液之间的化学反应,解决了分离纯化多糖类物质中膜污染和膜堵塞的关键问题。本发明制备得到的功能性茉莉花低聚糖口服液对α-葡萄糖苷酶和β-葡萄糖苷酶具有抑制效果;采用rin-5f细胞模型,功能性茉莉花低聚糖口服液具有降血糖功能;同时,采用腹腔注射四氧嘧啶造成高血糖小鼠模型,功能性茉莉花低聚糖口服液能降低糖尿病小鼠的空腹血糖及提高免疫器官指数(胸腺指数、脾指数),缓解糖尿病小鼠“三多一少”症状。综上,功能性茉莉花低聚糖口服液具有良好的降血糖功效,缓解糖尿病症状,因此,本发明具有良好的使用前景和社会意义。【具体实施方式】以下结合实施例对本发明的具体实施方式做进一步说明。实施例1一种功能性茉莉花低聚糖口服液的制备方法,包括如下步骤:(1)原料预处理:干燥茉莉花在55℃下烘干至恒重,粉碎并过60目筛,得到茉莉花粉末;按摩尔比为甜菜碱:蔗糖:甘油二乳酸=4:2:1将三者混合,加入少量水进行溶解,然后冻干至恒重,得到新型三元低共熔溶剂;在新型三元低共熔溶剂中加入水混匀,得到新型三元低共熔溶剂溶液,所述新型三元低共熔溶剂溶液含水量为35%;以新型三元低共熔溶剂溶液预处理茉莉花粉末,按固液比为100:2(mg/ml)的比例充分混合均匀(即茉莉花粉末100mg,新型三元低共熔溶剂溶液2ml);将混合物于50℃下超声提取60min后,离心分离,取沉淀物;沉淀物在55℃烘干至恒重,即为预处理茉莉花粉末。(2)茉莉花总提取物制备:称取一定量预处理茉莉花粉末,按料液比为1:30(mg/ml)加入去离子水,在提取温度为165℃、提取时间为12min条件下进行亚临界水萃取,过滤取滤液,在60℃进行减压浓缩,即得茉莉花总提取物;(3)茉莉花多糖制备:将茉莉花总提取物按体积比1:4向茉莉花总提取物中加入体积分数95%乙醇并在冰水中静置12h进行第一次醇沉,过滤得到沉淀物①;向沉淀物①中加入适量的去离子水,加热溶解后过滤去除不溶物;再按体积比1:4(茉莉花总提取物与95%乙醇的体积比)加入体积分数95%乙醇并在冰水中放置24h进行第二次醇沉,过滤得到沉淀物②;将所得沉淀放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花多糖,得率27%,纯度97%。(4)茉莉花低聚糖提取:向茉莉花多糖中加入5倍重量的去离子水,加热溶解,过滤去除不溶物,得到茉莉花多糖溶液;采用定向生物酶解技术,向茉莉花多糖溶液中加入质量比5%的自制混合酶制剂(质量比为阿拉伯木聚糖酶:β-甘露聚糖酶:纤维素酶=2:2:1),在50℃下恒温搅拌4h;最后灭酶,过滤取滤液,得到茉莉花低聚糖滤液;(5)茉莉花低聚糖纯化与浓缩:采用离心式分子膜精馏装置,在不同温度(80℃、100℃、120℃和150℃)和弱酸性(ph=5.5)条件下,茉莉花低聚糖滤液定向分级分馏,最终残留物即为茉莉花低聚糖浆(含低聚果糖、低聚木糖、甘露低聚糖等),进料流速为0.53mbar、400r/min和3滴/s;浓缩倍数可达5倍,低聚糖浆截留率达到90%以上,单糖、蔗糖去除率达到90%以上。功能性低聚糖浆放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花低聚糖,得率为85%。(6)口服液调配:按照重量配比,茉莉花低聚糖添加量28%,其余为蒸馏水,加热使茉莉花低聚糖溶解,混合均匀,冷却后灌装,灭菌,即得功能性茉莉花低聚糖口服液。实施例2一种功能性茉莉花低聚糖口服液的制备方法,包括如下步骤:(1)原料预处理:干燥茉莉花烘干至恒重,粉碎并过筛,得到茉莉花粉末;以新型三元低共熔溶剂预处理茉莉花粉末,按茉莉花粉末与新型三元低共熔溶剂溶液的固液比为100:1.5(mg/ml)充分混合均匀,得到混合物;将混合物于45℃下超声提取70min后,离心分离,取沉淀物;沉淀物烘干至恒重,即为预处理茉莉花粉末;所述新型三元低共熔溶剂由以下摩尔比的组分组成:甜菜碱:蔗糖:甘油二乳酸=5:3:1;所述新型三元低共熔溶剂溶液是向新型三元低共熔溶剂加入水后配置而成,所述新型三元低共熔溶剂溶液的含水量为30%;(2)茉莉花总提取物制备:称取预处理茉莉花粉末,按料液比为1:25(mg/ml)加入去离子水,在提取温度为170℃、提取时间为10min条件下进行亚临界水萃取,过滤取滤液,进行减压浓缩,即得茉莉花总提取物;(3)茉莉花多糖制备:向茉莉花总提取物中加入体积分数95%乙醇并在冰水中静置10h进行第一次醇沉,过滤得到沉淀物①;向沉淀物①中加入去离子水,加热溶解后过滤去除不溶物,再加入体积分数95%乙醇并在冰水中放置30h进行第二次醇沉,过滤得到沉淀物②;所述两次醇沉的95%乙醇加入量体积均为茉莉花总提取物体积的4倍;将所得沉淀物②放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花多糖;得率21%,纯度90%。(4)茉莉花低聚糖提取:向茉莉花多糖中加入去离子水,所述茉莉花多糖与去离子水的重量比为1:5,加热溶解,过滤去除不溶物,得到茉莉花多糖溶液;向茉莉花多糖溶液中加入混合酶制剂,所述混合酶制剂的加入量为茉莉花多糖溶液重量的4%,在45℃下恒温搅拌5h;最后灭酶,过滤取滤液,得到茉莉花低聚糖滤液;所述混合酶制剂是由以下质量比的组分组成:阿拉伯木聚糖酶:β-甘露聚糖酶:纤维素酶=2.5:2.5:1;(5)茉莉花低聚糖纯化与浓缩:采用离心式分子膜精馏装置,在温度为(85℃、100℃、115℃和140℃、弱酸性条件(ph=5.0)下,将茉莉花低聚糖滤液定向分级分馏,最终残留物即为茉莉花低聚糖浆;进料流速为0.53mbar、400r/min和3滴/s;将茉莉花低聚糖浆放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花低聚糖;得率为80%。(6)口服液调配:按照重量配比为茉莉花低聚糖25%,其余为蒸馏水,加热使茉莉花低聚糖溶解,混合均匀,冷却后灌装,灭菌,即得功能性茉莉花低聚糖口服液。实施例3一种功能性茉莉花低聚糖口服液的制备方法,包括如下步骤:(1)原料预处理:干燥茉莉花烘干至恒重,粉碎并过筛,得到茉莉花粉末;以新型三元低共熔溶剂预处理茉莉花粉末,按茉莉花粉末与新型三元低共熔溶剂溶液的固液比为100:2.5(mg/ml)充分混合均匀,得到混合物;将混合物于55℃下超声提取50min后,离心分离,取沉淀物;沉淀物烘干至恒重,即为预处理茉莉花粉末;所述新型三元低共熔溶剂由以下摩尔比的组分组成:甜菜碱:蔗糖:甘油二乳酸=3:1.5:1;所述新型三元低共熔溶剂溶液是向新型三元低共熔溶剂加入水后配置而成,所述新型三元低共熔溶剂溶液的含水量为40%;(2)茉莉花总提取物制备:称取预处理茉莉花粉末,按料液比为1:35(mg/ml)加入去离子水,在提取温度为160℃、提取时间为15min条件下进行亚临界水萃取,过滤取滤液,进行减压浓缩,即得茉莉花总提取物;(3)茉莉花多糖制备:向茉莉花总提取物中加入体积分数95%乙醇并在冰水中静置15h进行第一次醇沉,过滤得到沉淀物①;向沉淀物①中加入去离子水,加热溶解后过滤去除不溶物,再加入体积分数95%乙醇并在冰水中放置20h进行第二次醇沉,过滤得到沉淀物②;所述两次醇沉的95%乙醇加入量体积均为茉莉花总提取物体积的4倍;将所得沉淀物②放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花多糖;得率18%,纯度87%。(4)茉莉花低聚糖提取:向茉莉花多糖中加入去离子水,所述茉莉花多糖与去离子水的重量比为1:5,加热溶解,过滤去除不溶物,得到茉莉花多糖溶液;向茉莉花多糖溶液中加入混合酶制剂,所述混合酶制剂的加入量为茉莉花多糖溶液重量的6%,在55℃下恒温搅拌3h;最后灭酶,过滤取滤液,得到茉莉花低聚糖滤液;所述混合酶制剂是由以下质量比的组分组成:阿拉伯木聚糖酶:β-甘露聚糖酶:纤维素酶=3:3:1;(5)茉莉花低聚糖纯化与浓缩:采用离心式分子膜精馏装置,在温度为90℃、110℃、130℃和150℃、弱酸性条件(ph=6.5)下,将茉莉花低聚糖滤液定向分级分馏,最终残留物即为茉莉花低聚糖浆;进料流速为0.53mbar、400r/min和3滴/s;将茉莉花低聚糖浆放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花低聚糖;得率为75%。(6)口服液调配:按照重量配比为茉莉花低聚糖30%,其余为蒸馏水,加热使茉莉花低聚糖溶解,混合均匀,冷却后灌装,灭菌,即得功能性茉莉花低聚糖口服液。对比例1一种功能性茉莉花低聚糖口服液的制备方法,与实施例1基本相同,不同之处在于:步骤(1)中,所述的低共熔溶剂仅由摩尔比为4:1的甜菜碱与甘油二乳酸组成。对比例2一种功能性茉莉花低聚糖口服液的制备方法,与实施例1基本相同,不同之处在于:步骤(1)中,所述的低共熔溶剂仅由摩尔比为2:1的甜菜碱与蔗糖组成。对比例3一种功能性茉莉花低聚糖口服液的制备方法,与实施例1基本相同,不同之处在于:步骤(1)中,所述的三元低共熔溶剂是由摩尔比为氯化胆碱:甘油:柠檬酸=4:7:1组成。对比例4一种功能性茉莉花低聚糖口服液的制备方法,与实施例1基本相同,不同之处在于:步骤(4)中,所述的混合酶制剂是由以下质量比的组分组成:β-甘露聚糖酶:纤维素酶=2:1。对比例5一种功能性茉莉花低聚糖口服液的制备方法,与实施例1基本相同,不同之处在于:所述步骤(5)是使用传统蒸馏技术进行茉莉花低聚糖的纯化。所述传统蒸馏技术的工艺条件为:采用传统一体化蒸馏仪,温度180℃。对比例6一种功能性茉莉花低聚糖口服液的制备方法,与实施例1基本相同,不同之处在于:所述步骤(5)是使用传统膜分离技术进行茉莉花低聚糖的纯化。所述传统膜分离技术的工艺条件为:选择分子量(mr)范围200~2000超滤膜元件、温度40℃、操作压力0.50mpa。为了验证本发明的功能性茉莉花低聚糖口服液的有效性,发明人做了如下分析:对比试验1:体外小肠内碳水化合物消化酶活性评价:α-葡萄糖苷酶和β-葡萄糖苷酶是体内糖类物质代谢的关键酶,可在小肠内催化蔗糖、麦芽糖等水解成葡萄糖,进而引起餐后血糖升高。因此,本发明将功能性茉莉花低聚糖口服液进行稀释10倍后,通过测定功能性茉莉花低聚糖口服液对α-葡萄糖苷酶和β-葡萄糖苷酶的抑制率来反映其降血糖能力,检测参数设定如表1,具体试验数据见表2。表1:注:表1中所述的产品是指稀释10倍后的功能性茉莉花低聚糖口服液。表2:α-葡萄糖苷酶抑制率(%)β-葡萄糖苷酶抑制率(%)实施例194.8288.43实例例290.1186.72实例例391.9487.29对比例177.4174.15对比例261.1359.42对比例370.6770.21对比例454.1853.95对比例548.4047.94对比例665.2363.41阳性对照(阿卡波糖)96.4592.22α-葡萄糖苷酶和β-葡萄糖苷酶抑制率越大,表明其降血糖能力越强。从表2可以看出,实施例1-3制得的茉莉花低聚糖口服液具有很好的降血糖活性,接近阳性对照阿卡波糖的α-葡萄糖苷酶和β-葡萄糖苷酶的抑制率。由对比例1-2数据与实施例1数据对比可知,使用本发明自制的新型三元低共熔溶剂对茉莉花进行预处理,能更有针对性的制备得到目标低聚糖,显著提高产品茉莉花低聚糖口服液的降血糖活性,新型三元低共熔溶剂的三个组分缺一不可。由对比例3数据对比可知,与常规的三元低共熔溶剂(氯化胆碱 甘油 柠檬酸)相比,本发明的新型三元低共熔溶剂针对茉莉花低聚糖产物更具效果,同样可以证明并不是所有的三元低共熔溶剂均适用于本发明。由对比例4数据对比可知,本发明所使用的混合酶制剂需要特殊调配,任一组分的缺失均会对产品效果产生较大影响。由对比例5-6数据对比可知,本发明采用离心式分子膜精馏装置配合适当的操作条件对茉莉花低聚糖进行纯化,相对于传统的蒸馏技术或传统膜分离技术,纯化后的茉莉花低聚糖在降血糖方面均得到了很大提升。对比试验2:采用rin-5f细胞模型分析茉莉花低聚糖口服液的降血糖和抗糖尿病功能。rin-5f细胞培养在含有rpmi1640(11mm葡萄糖)、10%胎牛血清(fbs)、青霉素(100u/ml)和链霉素(100μg/ml)的培养瓶中,并放置在含5%二氧化碳的培养箱内。将rin-5f细胞(1.5x106个细胞/孔)培养在含有100μl高糖rpmi1640(17mm葡萄糖)、20μl尿苷(5mm)和20μl过氧化氢(0.1mm)的培养瓶内培养2h。培养基中的尿苷用于刺激细胞内胰岛素的合成,同时加入过氧化氢以诱导氧化应激反应。将功能性茉莉花低聚糖口服液进行稀释20倍后加入培养瓶中,培养24h和36h。通过mtt法测定细胞活性,用人胰岛素elisa试剂盒进行胰岛素分泌能力测定。具体试验数据见表3。表3:rin-5f细胞活性(%)胰岛素分泌能力(ng/ml)实施例194.289.94实例例291.449.30实例例393.939.57对比例170.116.38对比例254.015.07对比例361.895.92对比例449.384.44对比例541.333.71对比例657.905.54rin-5f细胞活性(%)越大,表明其降血糖能力越强;胰岛素分泌越多,表明其抗糖尿病能力越强。从表3可以看出,实施例1-3制得的茉莉花低聚糖口服液具有很高的降血糖活性。由对比例1-6的数据与实施例1的数据对比可知,本发明中的新型三元低共熔溶剂、混合酶制剂、纯化步骤,均对产品茉莉花低聚糖口服液的降血糖活性产生较大影响。对比试验3:采用腹腔注射四氧嘧啶造成高血糖小鼠模型分析茉莉花低聚糖口服液的降血糖和抗糖尿病能力。糖尿病模型小鼠110只,按体重与血糖均衡原则随机分为11组,每组10只,分别为糖尿病模型对照组、阳性药物对照组(阿卡波糖5mg/kg·bw·d)、茉莉花低聚糖口服液实施例组(实施例1组、实施例2组、实施例3组),茉莉花低聚糖口服液对比例组(对比例1组、对比例2组、对比例3组、对比例4组、对比例5组、对比例6组),另设正常对照组。茉莉花低聚糖口服液稀释20倍。其中糖尿病模型对照组及正常对照组给予等体积的生理盐水灌胃,各组连续给药或产品30d,末次给药后禁食,测定空腹血糖浓度。试验结束处死存活小鼠,大体解剖各实质脏器肉眼观察有无病变。取小鼠脾脏、胸腺称重(湿重),测其脾脏指数、胸腺指数(脏器湿重/动物体重),与对照组比较。实验期间观察记录小鼠的饮水量,进食状况,被毛,精神状况,排尿量,及其体重变化。具体试验数据见表4。表4:与正常对照组相比,糖尿病小鼠血糖值显著升高,表明造模成功。造模后,小鼠“三多一少”症状明显即多饮、多食、多尿、体重减轻。随着试验的进行,经茉莉花低聚糖口服液产品治疗后,小鼠的日饮水量、进食量逐渐降低,其中实施例1组效果最好。经茉莉花低聚糖口服液产品治疗后,糖尿病小鼠血糖值明显下降,与糖尿病模型对照组小鼠血糖值相比有显著差异。其中实施例1组最接近于阿卡波糖的降糖效果。经茉莉花低聚糖口服液治疗后,糖尿病小鼠的胸腺指数和脾指数均提高,实施例1组小鼠的胸腺指数和脾指数高于阿卡波糖对照组小鼠。由此可知,本发明的茉莉花低聚糖口服液具有促进糖尿病小鼠胸腺、脾脏生长发育的作用,对糖尿病小鼠的免疫功能存在一定的保护作用。具体试验数据见表4。对比试验4:采用传统水提醇沉法制备茉莉花多糖,按照固液比1:20加入茉莉花粉末和水,提取时间3h,加热至95℃以上。冷却后,过滤取滤液,滤渣再提取一次。合并两次滤液,进行减压浓缩。向浓缩液中加入体积分数95%乙醇并在冰水中静置10-15h进行第一次醇沉,过滤得到沉淀物。将所得沉淀物放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花多糖。按照重量配比,茉莉花多糖添加量28%,其余为蒸馏水,加热使茉莉花多糖溶解,混合均匀,冷却后灌装,灭菌,即得茉莉花多糖口服液。采用小肠内碳水化合物消化酶(α-葡萄糖苷酶和β-葡萄糖苷酶)活性评价体系,对比传统方法制得的茉莉花多糖口服液与本发明实施例1的茉莉花低聚糖口服液的降血糖效果。按照对比试验1的方法进行,具体试验数据见表5。表5:α-葡萄糖苷酶抑制率(%)β-葡萄糖苷酶抑制率(%)实施例195.4987.89传统方法61.2159.34阳性对照(阿卡波糖)98.3394.12从表5可以看出,与传统水提醇沉法制备的茉莉花多糖口服液相比,实施例1的茉莉花低聚糖口服液对α-葡萄糖苷酶和β-葡萄糖苷酶抑制率更高,表明其降血糖能力越强。且实施例1制得的茉莉花低聚糖口服液接近阳性对照阿卡波糖的α-葡萄糖苷酶和β-葡萄糖苷酶的抑制率。上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。当前第1页1 2 3 
技术特征:1.一种功能性茉莉花低聚糖口服液,其特征在于,由以下重量配比的原辅料制备而成:茉莉花低聚糖25%~30%,其余为蒸馏水。
2.如权利要求1所述的一种功能性茉莉花低聚糖口服液,其特征在于,所述功能性茉莉花低聚糖口服液的制备方法包括如下步骤:
(1)原料预处理:干燥茉莉花烘干至恒重,粉碎并过筛,得到茉莉花粉末;以新型三元低共熔溶剂预处理茉莉花粉末,按茉莉花粉末与新型三元低共熔溶剂溶液的固液比为100:1.5-2.5(mg/ml)充分混合均匀,得到混合物;将混合物于45-55℃下超声提取50-70min后,离心分离,取沉淀物;沉淀物烘干至恒重,即为预处理茉莉花粉末;
所述新型三元低共熔溶剂由以下摩尔比的组分组成:甜菜碱:蔗糖:甘油二乳酸=3-5:1.5-3:1;所述新型三元低共熔溶剂溶液是向新型三元低共熔溶剂加入水后配置而成,所述新型三元低共熔溶剂溶液的含水量为30%-40%;
(2)茉莉花总提取物制备:称取预处理茉莉花粉末,按料液比为1:25-35(mg/ml)加入去离子水,在提取温度为160-170℃、提取时间为10-15min条件下进行亚临界水萃取,过滤取滤液,进行减压浓缩,即得茉莉花总提取物;
(3)茉莉花多糖制备:向茉莉花总提取物中加入体积分数95%乙醇并在冰水中静置10-15h进行第一次醇沉,过滤得到沉淀物①;向沉淀物①中加入去离子水,加热溶解后过滤去除不溶物,再加入体积分数95%乙醇并在冰水中放置20-30h进行第二次醇沉,过滤得到沉淀物②;将所得沉淀物②放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花多糖;
(4)茉莉花低聚糖提取:向茉莉花多糖中加入去离子水,加热溶解,过滤去除不溶物,得到茉莉花多糖溶液;向茉莉花多糖溶液中加入混合酶制剂,在45~55℃下恒温搅拌3~5h;最后灭酶,过滤取滤液,得到茉莉花低聚糖滤液;
所述混合酶制剂是由以下质量比的组分组成:阿拉伯木聚糖酶:β-甘露聚糖酶:纤维素酶=2-3:2-3:1;
(5)茉莉花低聚糖纯化与浓缩:采用离心式分子膜精馏装置,在温度为80~150℃、弱酸性条件下,将茉莉花低聚糖滤液定向分级分馏,最终残留物即为茉莉花低聚糖浆;将茉莉花低聚糖浆放入超声辅助真空冷冻干燥机冷冻干燥,即得茉莉花低聚糖;
(6)口服液调配:按照重量配比,茉莉花低聚糖添加量25%~30%,其余为蒸馏水,加热使茉莉花低聚糖溶解,混合均匀,冷却后灌装,灭菌,即得功能性茉莉花低聚糖口服液。
3.如权利要求2所述的一种功能性茉莉花低聚糖口服液,其特征在于:步骤(3)中,所述两次醇沉的95%乙醇加入量均为茉莉花总提取物体积的4倍。
4.如权利要求2所述的一种功能性茉莉花低聚糖口服液,其特征在于:步骤(4)中,向茉莉花多糖中加入去离子水,所述茉莉花多糖与去离子水的重量比为1:5;向茉莉花多糖溶液中加入混合酶制剂,所述混合酶制剂的加入量为茉莉花多糖溶液重量的4-6%。
5.如权利要求2所述的一种功能性茉莉花低聚糖口服液,其特征在于:步骤(5)中,所述弱酸性条件是指4.5<ph≤6.5。
6.如权利要求2所述的一种功能性茉莉花低聚糖口服液,其特征在于:步骤(5)中,将茉莉花低聚糖滤液定向分级分馏,进料流速为0.53mbar、400r/min和3滴/s。
7.如权利要求1-6任一项所述的功能性茉莉花低聚糖口服液在制备降血糖药物/保健品中的应用。
8.如权利要求1-6任一项所述的功能性茉莉花低聚糖口服液作为甜味剂在制备饮料产品中的应用。
9.如权利要求8所述的功能性茉莉花低聚糖口服液作为甜味剂在制备饮料产品中的应用,所述饮料产品为奶茶或果汁。
技术总结本发明公开了一种功能性茉莉花低聚糖口服液及其应用,属于保健品制剂领域。本发明的功能性茉莉花低聚糖口服液是由以下重量配比的原辅料制备而成:茉莉花低聚糖25%~30%,其余为蒸馏水;所述功能性茉莉花低聚糖口服液的制备方法包括如下步骤:先用新型三元低共熔溶剂预处理茉莉花;然后制备茉莉花总提取物;通过二次醇沉,得到茉莉花多糖;对茉莉花多糖进行定向酶解,制得茉莉花低聚糖;最后通过合理调配,获得功能性茉莉花低聚糖口服液。本发明的茉莉花低聚糖具有良好的降血糖活性,能够有效缓解糖尿病“三多一少”症状,降低降糖药物的毒副作用,可以作为口服保健品使用,还能作为甜味剂使用。
技术研发人员:唐雅园;何雪梅;孙建;盛金凤;刘国民;零东宁;李丽;周主贵;李昌宝;辛明;郑凤锦;李志春;易萍;李杰民;杨莹
受保护的技术使用者:广西壮族自治区农业科学院
技术研发日:2020.02.25
技术公布日:2020.06.09