照明系统及投影装置的制作方法

专利2022-06-29  66


本发明是有关于一种光学系统及光学装置,且特别是有关于一种照明系统及应用所述照明系统的投影装置。



背景技术:

随着光学科技的发展,固态光源(solid-statelighting)的技术例如是发光二极管(lightemittingdiode,led)和激光二极管(laserdiode,ld)已经越来越普遍地应用在投影机的光源上,其中激光二极管相较于发光二极管还可以提供强度更高的光束来作为投影机的光源。因此,渐渐发展了以激光光源激发荧光粉而产生投影机所需用的纯色光源。此外,激光投影装置除了可以使用激光光源激发荧光粉发光外,亦可直接以激光作为投影机照明光源,并具有因应亮度需求而调整光源数目的优点,以达到各种不同亮度的投影机需求。

然而,随着激光投影机输出亮度的要求日渐提高,输入的激光功率数亦须随之增加。当激光光源的数量增加时,需要更大的透镜才能将所有的激光光束皆导引至内部的光学装置,使得激光光束的光路径变长,导致整体的体积太大。此外,当激光能量强度过于集中时,可能会烧损内部的光学装置或导致内部的光学装置的使用寿命缩短。

“背景技术”段落只是用来帮助了解本

技术实现要素:
,因此在“背景技术”段落所揭露的内容可能包含一些没有构成本领域技术人员所知道的已知技术。在“背景技术”段落所揭露的内容,不代表所述内容或者本发明一个或多个实施例所要解决的问题,在本发明申请前已被本领域技术人员所知晓或认知。

发明内容

本发明提供一种照明系统及投影装置,具有较小的体积以及较长的使用寿命。

本发明的其他目的和优点可以从本发明所揭露的技术特征中得到进一步的了解。

为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种照明系统,包括多个第一激发光源模块以及扩散组件。多个第一激发光源模块用于发出多个第一激发光束。扩散组件配置于多个第一激发光束的传递路径上,其中多个第一激发光束在扩散组件上的多个位置形成多个光斑。

为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种投影装置,包括上述的照明系统、光阀模块以及投影镜头。照明系统用于发出照明光束。光阀模块配置于照明光束的传递路径上,以将照明光束调变成影像光束。投影镜头配置于影像光束的传递路径上。

基于上述,在本发明的实施例的照明系统中,照明系统包括多个第一激发光源模块,且多个第一激发光源模块发出的多个第一激发光束在扩散组件上的多个位置形成多个光斑。也就是说,藉由将多个第一激发光源模块分散地设置,使多个第一激发光束并非集中照射于扩散组件的同一位置,因此无须较大的透镜来将多个第一激发光束收敛至同一位置,可减少光程,因此可具有较小的体积。此外,多个第一激发光束分散地照射于扩散组件的不同位置,可降低扩散组件上的能量密度,以避免烧损扩散组件,因此可具有较长的使用寿命。本发明的实施例的投影装置包括上述的照明系统,因而具有较小的体积以及较长的使用寿命。

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。

附图说明

图1是依照本发明一实施例的一种投影装置的示意图。

图2是依照本发明的第一实施例的一种照明系统的示意图。

图3a是图2中的扩散组件的前视示意图。

图3b是图2中的波长转换组件的前视示意图。

图4是依照本发明的第二实施例的一种照明系统的示意图。

图5是图4中的扩散组件的前视示意图。

图6a是依照本发明的第三实施例的一种照明系统的示意图。

图6b是图6a中的匀光组件的前视示意图。

图7a是依照本发明的第四实施例的一种照明系统的示意图。

图7b是图7a中的匀光组件的前视示意图。

图8是依照本发明的第五实施例的一种照明系统的示意图。

图9是依照本发明的第六实施例的一种照明系统的示意图。

图10是依照本发明的第七实施例的一种照明系统的示意图。

具体实施方式

有关本发明之前述及其他技术内容、特点与功效,在以下配合参考附图之较佳实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。

图1是依照本发明一实施例的一种投影装置的示意图。请参照图1,本实施例的投影装置200包括照明系统100、光机引擎210以及投影镜头220。照明系统100用于发出照明光束ib。光机引擎210配置于照明光束ib的传递路径上,以将照明光束ib调变成一影像光束imb。投影镜头220配置于影像光束imb的传递路径上,并用于将影像光束imb投射至屏幕或墙壁(未绘示)上,以形成影像画面。

光机引擎210可包括光阀模块212,其中光阀模块212中光阀的数量可以为一个,也可以为多个。这些不同颜色的照明光束ib照射在光阀模块212上后,光阀模块212依时序将不同颜色的照明光束ib转换成影像光束imb并传递至投影镜头220,因此,光阀模块212所转换出的影像光束imb被投射出投影装置200的影像画面便能够成为彩色画面。此外,光机引擎210还可包括多个光学组件,用来调整内部的光束路径。

在本实施例中,光阀模块212中的光阀例如为数字微镜组件(digitalmicro-mirrordevice,dmd)、硅基液晶面板(liquid-crystal-on-siliconpanel,lcospanel)、液晶面板(liquidcrystalpanel,lcd)或是其他空间光调变器。在本实施例中,投影镜头220例如是包括具有屈亮度的一个或多个光学镜片的组合,光学镜片例如包括双凹透镜、双凸透镜、凹凸透镜、凸凹透镜、平凸透镜、平凹透镜等非平面镜片或其各种组合。本发明对投影镜头220的型态及其种类并不加以限制。

于以下的段落中会详细地说明本实施例的照明系统100的各种实施样态,其中照明系统100可以是以下的第一实施例至第七实施例中的照明系统100a至照明系统100g的其中任一者。

图2是依照本发明的第一实施例的一种照明系统的示意图。图3a是图2中的扩散组件的前视示意图。此外,图3a还示意性地示出了多个第一激发光束照射于扩散组件上时所形成的光斑。

请参照图2与图3a,本实施例的照明系统100a用于发出照明光束ib。照明系统100a包括多个第一激发光源模块110以及扩散组件120。多个第一激发光源模块110用于发出多个第一激发光束eb1。扩散组件120配置于多个第一激发光束eb1的传递路径上,其中多个第一激发光束eb1在扩散组件120上的多个位置形成多个光斑50(示出于图3a)。此外,多个第一激发光束eb1在入射至扩散组件120时,多个第一激发光束eb1的行进方向d1彼此平行,其中行进方向d1例如是图2中由右至左的方向。

具体来说,在本实施例中,各个第一激发光源模块110包括第一激发光源112、第二激发光源114以及合光单元116。第一激发光源112用于发出第一色光束cl1。第二激发光源114用于发出第二色光束cl2。第一激发光源112与第二激发光源114配置于合光单元116的相对两侧。合光单元116配置于第一色光束cl1与第二色光束cl2的传递路径上,且合光单元116将第一色光束cl1与第二色光束cl2合并为第一激发光束eb1。须说明的是,在图2中(以及后续的图6a、图7a、图8、图9和图10中),被合并的第一色光束cl1与第二色光束cl2被绘示为稍微分离,以清楚示出每一个色光束的传递路径。然而,被合并的第一色光束cl1与第二色光束cl2实际上沿相同或大体上相同的传递路径传递。

在本实施例中,第一激发光源112与第二激发光源114泛指为可发出激发光束的光源,激发光束的峰值波长(peakwavelength)例如是落在红光的波长范围、蓝光的波长范围或紫外线的波长范围内,其中峰值波长被定义为光强度最大处所对应的波长。第一激发光源112与第二激发光源114各自包括激光二极管(laserdiode,ld)、发光二极管(lightemittingdiode,led)或者是上述两者其中之一所构成的数组或群组,本发明并不局限于此。在本实施例中,第一激发光源112与第二激发光源114各自为包括激光二极管的激光发光组件。举例而言,第一激发光源112例如可为红光激光二极管数组(redlaserdiodebank),第一色光束cl1则为红光激光光束,第二激发光源114例如可为蓝光激光二极管数组(bluelaserdiodebank),第二色光束cl2则为蓝光激光光束,但本发明并不局限于此。

合光单元116可为分色单元,例如为分色镜(dichroicmirror,dm)或分色棱镜,而可对不同颜色的光束提供不同的光学作用。举例而言,合光单元116例如可让蓝色光束穿透,而对其他颜色(如红色、绿色、黄色等)的光束提供反射作用。在本实施例中,合光单元116可被设计为使第二色光束cl2穿透而反射第一色光束cl1。因此,合光单元116可将来自第一激发光源112的第一色光束cl1与来自第二激发光源114的第二色光束cl2合并,并传递至扩散组件120。

请参照图3a,本实施例的扩散组件120为可旋转的盘状元件。扩散组件120包括基板s1与中心轴a1。基板s1例如是透光基板,且配置有扩散片、扩散粒子或扩散结构,用于减少或消除第一激发光束eb1的光斑(speckle)现象。在本实施例中,扩散组件120适于绕着中心轴a1转动,可使第一激发光束eb1于扩散组件120上产生的热能较为均匀化,以避免扩散组件120破裂或烧损。然而,在其他实施例中,扩散组件120也可以是固定的扩散板,且扩散组件120的形状可为其他形状。

在本实施例中,多个第一激发光源模块110为环状排列,使多个光斑50呈环状排列,但本发明不局限于此。在其他实施例中,多个光斑50也可以是数组排列或是散布在扩散组件120上。此外,本实施例的多个第一激发光源模块110的数量是以六个为例,因此在扩散组件120上有对应的六个光斑50,然本发明并不局限于此。在其他实施例中,多个第一激发光源模块110的数量也可以是两个、三个或是其他数量。

在本实施例中,藉由将多个第一激发光源模块110分散地设置,使多个第一激发光束eb1并非集中照射于扩散组件120的同一位置,因此无须较大的透镜来将多个第一激发光束eb1收敛至同一位置,可减少光程,因此可具有较小的体积。此外,多个第一激发光束eb1分散地照射于扩散组件120的不同位置,可降低扩散组件120上的能量密度,以避免烧损扩散组件120,因此可具有较长的使用寿命。

图3b是图2中的波长转换组件的前视示意图。请同时参照图2与图3b,本实施例的照明系统100a还包括第二激发光源模块130以及波长转换组件140。第二激发光源模块130用于发出第二激发光束eb2。波长转换组件140配置于第二激发光束eb2的传递路径上,波长转换组件140用于将第二激发光束eb2转换为转换光束cb。

在本实施例中,波长转换组件140为可旋转的盘状元件,例如为荧光粉轮(phosphorwheel)。具体来说,波长转换组件140包括基板s2以及中心轴a2,基板s2例如是反射基板,且基板s2具有呈环状的波长转换区142。波长转换组件140的驱动组件带动中心轴a2以使波长转换区142以旋转的方式切入第二激发光束eb2的传递路径上。波长转换区142内配置有波长转换物质cm,波长转换物质cm例如是黄色荧光粉。波长转换组件140可使传递至波长转换区142的短波长光束转换成长波长光束。在本实施例中,当波长转换区142切入第二激发光束eb2的传递路径上时,第二激发光束eb2被波长转换区142转换为转换光束cb,且转换光束cb被基板s2反射。转换光束cb例如是黄光光束。在其他实施例中,波长转换组件140也可以包括多个波长转换区,分别将第一激发光束eb1转换成不同色光。

在本实施例中,第二激发光源模块130相似于第二激发光源114,于此不再赘述。第二激发光源模块130例如为蓝光激光二极管数组(bluelaserdiodebank),第二激发光束eb2则为蓝光激光光束,但本发明并不局限于此。此外,第二激发光源模块130所发出的第二激发光束eb2的波长可以相同于第二激发光源114的波长,也可以不同于第二激发光源114的波长。

请再次参照图2,本实施例的照明系统100a还包括多个透镜模块150、合光组件160以及匀光组件170。多个透镜模块150位于多个第一激发光源模块110与扩散组件120之间,且分别设置于多个第一激发光束eb1的传递路径上。多个透镜模块150用来调整多个第一激发光束eb1的光路径。合光组件160设置于第二激发光源模块130与波长转换组件140之间,且设置于来自扩散组件120的多个第一激发光束eb1、来自第二激发光源模块130的第二激发光束eb2以及来自波长转换组件140的转换光束cb的传递路径上。合光组件160可为分色单元,例如为分色镜(dichroicmirror,dm)或分色棱镜,而可对不同颜色的光束提供不同的光学作用。举例而言,合光组件160例如可让蓝色光束与红色光束穿透,而对其他颜色(如绿色、黄色等)的光束提供反射作用。在本实施例中,合光组件160可被设计为使第一激发光束eb1与第二激发光束eb2穿透而反射转换光束cb。因此,合光组件160可将来自第二激发光源模块130的第二激发光束eb2传递至波长转换组件140,且在波长转换组件140将转换光束cb反射回合光组件160后,合光组件160可将来自波长转换组件140的转换光束cb与来自第一激发光源模块110的多个第一激发光束eb1合并,并传递至匀光组件170,以形成照明光束ib输出。

匀光组件170指可让通过此匀光组件170的光束均匀化的光学组件。在本实施例中,匀光组件170配置于来自合光组件160的转换光束cb与多个第一激发光束eb1的传递路径上。匀光组件170例如是积分柱(integrationrod)。在其他实施例中,匀光组件170也可以是透镜数组或其他具有光均匀化效果的光学组件。

此外,照明系统100a还可包括一个至多个透镜,例如是位于合光组件160与波长转换组件140之间的透镜182与透镜184,或是位于合光组件160与匀光组件170之间的透镜186,用以调整照明系统100a内部的光束路径。

在此必须说明的是,下述实施例沿用前述实施例的部分内容,省略了相同技术内容的说明,关于相同的组件名称可以参考前述实施例的部分内容,下述实施例不再重复赘述。

图4是依照本发明的第二实施例的一种照明系统的示意图。图5是图4中的扩散组件的前视示意图。此外,图5还示意性地示出了多个第一激发光束照射于扩散组件上时所形成的光斑。

请先参照图4,本实施例的照明系统100b与第一实施例的照明系统100a相似,其在架构上的主要差异在于第一激发光源模块的架构。在本实施例中,第一激发光源模块110a包括至少一个第一激发光源112以及至少一个第二激发光源116。至少一个第一激发光源112用于发出至少一个第一色光束cl1,至少一个第二激发光源116用于发出至少一个第二色光束cl2,且多个第一激发光束eb1包括至少一个第一色光束cl1以及至少一个第二色光束cl2。

在本实施例中,第一激发光源112例如可为红光激光二极管数组(redlaserdiodebank),第一色光束cl1则为红光激光光束,第二激发光源114例如可为蓝光激光二极管数组(bluelaserdiodebank),第二色光束cl2则为蓝光激光光束,但本发明并不局限于此。

请参照图5,在本实施例中,第一激发光源112与第二激发光源114分别在扩散组件120上形成光斑50a与光斑50b。在本实施例中,第一激发光源112与第二激发光源114为环状排列,使光斑50a与光斑50b呈环状排列,但本发明不限于此。在其他实施例中,光斑50a与光斑50b也可以是数组排列或是散布在扩散组件120上。此外,本实施例的第一激发光源112与第二激发光源114的数量分别是以三个为例,因此在扩散组件120上有对应的三个光斑50a与三个光斑50b,然本发明并不局限于此。在其他实施例中,第一激发光源112或第二激发光源114的数量可以是一个、两个或是其他数量。并且,第一激发光源112与第二激发光源114的数量可以为相同,也可以为不相同。此外,第一激发光源112与第二激发光源114的排列方式可以是互相交替,也可以是随机排列。

图6a是依照本发明的第三实施例的一种照明系统的示意图。图6b是图6a中的匀光组件的前视示意图。此外,图6b还示意性地示出了多个第一激发光束照射于匀光组件上时所形成的光斑。

请先参照图6a,本实施例的照明系统100c与第一实施例的照明系统100a相似,其在架构上的主要差异在于多个第一激发光源模块110相对于扩散组件120的中心轴a1的位置。在本实施例中,多个第一激发光束eb1于扩散组件120上形成的多个光斑50的至少其中两者与扩散组件120的中心轴a1的距离不同。举例来说,在图6a中位于上方的第一激发光源模块110所发出的第一激发光束eb1于扩散组件120上形成的光斑50与扩散组件120的中心轴a1之间的距离d1可以不同于位于下方的第一激发光源模块110所发出的第一激发光束eb1于扩散组件120上形成的光斑50与扩散组件120的中心轴a1之间的距离d2。在本实施例中,距离d1大于距离d2。在其他实施例中,距离d1也可以小于距离d2。

为了说明性目的,图6b除了示出当距离d1不同于距离d2时,多个第一激发光束eb1经由透镜186汇聚而照射于匀光组件170上所形成的光斑70以外,还特意示出了当多个光斑50与扩散组件120的中心轴a1的距离皆相同时(即距离d1等于距离d2),多个第一激发光束eb1经由透镜186汇聚而照射于匀光组件170上所形成的光斑60(以虚线示出)。

请参照图6b,在本实施例中,当距离d1不同于距离d2时,第一激发光束eb1在通过透镜186时所偏折的角度也可能不同,因此光斑70相对于光斑60在匀光组件170上的位置可具有偏移。由于本实施例的多个第一激发光束eb1分散地照射于扩散组件120的不同位置,因此藉由调整多个第一激发光源模块110相对于扩散组件120的中心轴a1的位置,可适当地调整多个第一激发光束eb1在匀光组件170上所形成的光斑70的位置,进而可对照明光束ib的均匀性作进一步的调整。因此,本实施例的照明系统100c对于调整照明光束ib的均匀性具有较高的自由度。

图7a是依照本发明的第四实施例的一种照明系统的示意图。图7b是图7a中的匀光组件的前视示意图。此外,图7b还示意性地示出了多个第一激发光束照射于匀光组件上时所形成的光斑。

请先参照图7a,本实施例的照明系统100d与第一实施例的照明系统100a相似,其在架构上的主要差异在于透镜模块的屈亮度。在本实施例中,多个透镜模块的至少其中两者的屈亮度不同。举例来说,在图7a中位于上方的透镜模块150a的屈亮度可以不同于在图7a中位于下方的透镜模块150的屈亮度。

为了说明性目的,图7b除了示出当透镜模块150a的屈亮度不同于透镜模块150的屈亮度时,来自透镜模块150a的多个第一激发光束eb1经由透镜186汇聚而照射于匀光组件170上所形成的光斑80以外,还特意示出了当所有透镜模块的屈亮度皆相同时,来自透镜模块150的多个第一激发光束eb1经由透镜186汇聚而照射于匀光组件170上所形成的光斑60(以虚线示出)。

请参照图7b,在本实施例中,当透镜模块150a的屈亮度不同于透镜模块150的屈亮度时,第一激发光束eb1在通过透镜模块150a后的张角可能不同于第一激发光束eb1在通过透镜模块150后的张角,因此光斑80相对于光斑60在匀光组件170上的位置可具有偏移,且光斑80的大小可改变。

由于本实施例的多个第一激发光束eb1分散地照射于扩散组件120的不同位置,因此藉由调整透镜模块150a的屈亮度,可适当地调整多个第一激发光束eb1在匀光组件170上所形成的光斑80的位置与大小,进而可对照明光束ib的均匀性作进一步的调整。因此,本实施例的照明系统100d对于调整照明光束ib的均匀性具有较高的自由度。

图8是依照本发明的第五实施例的一种照明系统的示意图。请参照图8,本实施例的照明系统100e与第一实施例的照明系统100a相似,其在架构上的主要差异在于:第一实施例的扩散组件120的基板s1为透光基板,而本实施例的扩散组件120a的基板s1为反射基板,且本实施例的多个第一激发光源模块110与波长转换组件140配置于扩散组件120a的同一侧。

由于本实施例的扩散组件120a的基板s1为反射基板,使多个第一激发光束eb1在入射至扩散组件120a时的行进方向d2(例如是图8中由下至上的方向)可对应地转向,因此多个第一激发光源模块110与波长转换组件140可配置于扩散组件120a的同一侧,而多个第一激发光束eb1在传递至扩散组件120a后,多个第一激发光束eb1可被扩散组件120a的基板s1反射至合光组件160。

由于本实施例的多个第一激发光源模块110与波长转换组件140可配置于扩散组件120a的同一侧,因此多个第一激发光源模块110与波长转换组件140的散热模块(未示出)也可设置在同一侧来进行散热,有利于热流的设计。

图9是依照本发明的第六实施例的一种照明系统的示意图。请参照图9,本实施例的照明系统100f与第一实施例的照明系统100a相似,其在架构上的主要差异在于:相较于第一实施例的多个第一激发光源模块110与波长转换组件140,本实施例的多个第一激发光源模块110与波长转换组件140的位置互相对调,使本实施例的照明系统100f在侧向上具有较小的尺寸。

详细来说,在本实施例中,合光组件160a可被设计为使转换光束cb穿透而反射第一激发光束eb1与第二激发光束eb2。因此,合光组件160a可将来自第二激发光源模块130的第二激发光束eb2传递(反射)至波长转换组件140,且在波长转换组件140将转换光束cb反射回合光组件160a后,合光组件160a可将来自波长转换组件140的转换光束cb与来自第一激发光源模块110的第一激发光束eb1合并,并传递至匀光组件170,以形成照明光束ib输出。

由于多个第一激发光源模块110与波长转换组件140的位置互相对调,本实施例的合光组件160a是设置于多个第一激发光源模块110与第二激发光源模块130之间,且设置于波长转换组件140与匀光组件170之间。

图10是依照本发明的第七实施例的一种照明系统的示意图。请参照图10,本实施例的照明系统100g与第一实施例的照明系统100a相似,其在架构上的主要差异在于:本实施的照明系统100g包括第三激发光源模块190,且不具有照明系统100a的第二激发光源模块130与波长转换组件140。在本实施例中,第三激发光源模块190用于发出第三激发光束eb3。第三激发光源模块190例如可为绿光激光二极管数组(greenlaserdiodebank),第三激发光束eb3则为绿光激光光束。也就是说,本实施例的照明系统100g是直接采用三种不同颜色的激光光束来作为照明光束ib所需的色光束,而非透过波长转换组件来转换不同的色光束。

此外,在本实施例中,合光组件160b设置于扩散组件120与多个第一激发光源模块110之间,且合光组件160b可被设计为使第一激发光束eb1穿透而反射第三激发光束eb3。因此,合光组件160b可将来自多个第一激发光源模块110的多个第一激发光束eb1传递至扩散组件120,也可将来自第三激发光源模块190的第三激发光束eb3传递至扩散组件120,使多个第一激发光束eb1与第三激发光束eb3分别在扩散组件120上的不同位置形成多个光斑,再经由透镜186汇聚至匀光组件170,以形成照明光束ib输出。

本实施例的第三激发光源模块190的数量是以一个为例,然而,在其他实施例中,第三激发光源模块190的数量也可以是多个,且多个第三激发光源模块190所发出的多个第三激发光束eb3分别在扩散组件120上的不同位置形成多个光斑。

须说明的是,本发明的第三实施例至第七实施例的照明系统的多个第一激发光源模块110的样态是以第一实施例的照明系统100a的多个第一激发光源模块110为例,然而,第三实施例至第七实施例的照明系统的多个第一激发光源模块110也可以是以是采用第二实施例的照明系统100b的多个第一激发光源模块110a,本发明对此并不加以限制。此外,当本发明的第七实施例的照明系统100g的多个第一激发光源模块110是采用第二实施例的照明系统100b的多个第一激发光源模块110a时,照明系统100g的第三激发光源模块190也可以是设置于第一激发光源112和第二激发光源114旁,使第三激发光束eb3直接照射于扩散组件120上,因此无须设置合光组件160来合并不同路径的多个光束。

综上所述,在本发明的实施例的照明系统中,照明系统包括多个第一激发光源模块,且多个第一激发光源模块发出的多个第一激发光束在扩散组件上的多个位置形成多个光斑。也就是说,藉由将多个第一激发光源模块分散地设置,使多个第一激发光束并非集中照射于扩散组件的同一位置,因此无须较大的透镜来将多个第一激发光束收敛至同一位置,可减少光程,因此可具有较小的体积。此外,多个第一激发光束分散地照射于扩散组件的不同位置,可降低扩散组件上的能量密度,以避免烧损扩散组件,因此可具有较长的使用寿命。

此外,由于多个第一激发光束分散地照射于扩散组件的不同位置,因此藉由调整多个第一激发光源模块相对于扩散组件的中心轴的位置,或是藉由调整透镜模块的屈亮度,可适当地调整多个第一激发光束在匀光组件上所形成的光斑的大小或位置,进而可对照明光束的均匀性作进一步的调整。因此,本实施例的照明系统对于调整照明光束的均匀性具有较高的自由度。本发明的实施例的投影装置包括上述的照明系统,因而具有较小的体积、较长的使用寿命以及较高的自由度来调整照明光束的均匀性。

惟以上所述者,仅为本发明之较佳实施例而已,当不能以此限定本发明实施之范围,即所有依本发明权利要求及发明内容所作之简单的等效变化与修改,皆仍属本发明专利涵盖之范围内。另外本发明的任一实施例或权利要求不须达成本发明所揭露之全部目的或优点或特点。此外,摘要和发明名称仅是用来辅助专利文件检索之用,并非用来限制本发明之权利范围。此外,权利要求书中提及的“第一”、“第二”等用语仅用以命名组件(element)的名称或区别不同实施例或范围,而并非用来限制组件数量上的上限或下限。

附图标记说明:

100、100a、100b、100c、100d、100e、100f、100g:照明系统

110:第一激发光源模块

112:第一激发光源

114:第二激发光源

116:合光单元

120、120a:扩散组件

130:第二激发光源模块

140:波长转换组件

142:波长转换区

150、150a:透镜模块

160、160a、160b:合光组件

170:匀光组件

182、184、186:透镜

190:第三激发光源模块

200:投影装置

210:光机引擎

212:光阀模块

220:投影镜头

50、50a、50b、60、70、80:光斑

a1、a2:中心轴

cb:转换光束

cl1:第一色光束

cl2:第二色光束

cm:波长转换物质

d1、d2:行进方向

eb1:第一激发光束

eb2:第二激发光束

eb3:第三激发光束

ib:照明光束

imb:影像光束

s1、s2:基板

d1、d2:距离。


技术特征:

1.一种照明系统,其特征在于,所述照明系统包括多个第一激发光源模块以及扩散组件,其中:

所述多个第一激发光源模块用于发出多个第一激发光束;以及

所述扩散组件配置于所述多个第一激发光束的传递路径上,其中所述多个第一激发光束在所述扩散组件上的多个位置形成多个光斑。

2.如权利要求1所述的照明系统,其特征在于,所述多个第一激发光束在入射至所述扩散组件时,所述多个第二激发光束的行进方向彼此平行。

3.如权利要求1所述的照明系统,其特征在于,各个所述第一激发光源模块包括:

第一激发光源,用于发出第一色光束;

第二激发光源,用于发出第二色光束;以及

合光单元,配置于所述第一色光束与所述第二色光束的传递路径上,且所述合光单元将所述第一色光束与所述第二色光束合并为所述第一激发光束。

4.如权利要求3所述的照明系统,其特征在于,所述第一激发光源与所述第二激发光源配置于所述合光单元的相对两侧。

5.如权利要求1所述的照明系统,其特征在于,所述多个第一激发光源模块包括:

至少一个第一激发光源,用于发出至少一个第一色光束;以及

至少一个第二激发光源,用于发出至少一个第二色光束,其中所述多个第一激发光束包括所述至少一个第一色光束以及所述至少一个第二色光束。

6.如权利要求1所述的照明系统,其特征在于,所述多个第一激发光源模块为环状排列,使所述多个光斑呈环状排列。

7.如权利要求1所述的照明系统,其特征在于,所述多个光斑的至少其中两者与所述扩散组件的中心轴的距离不同。

8.如权利要求1所述的照明系统,其特征在于,还包括多个透镜模块,所述多个透镜模块分别设置于所述多个第一激发光束的传递路径上,其中所述多个透镜模块的至少其中两者的屈亮度不同。

9.如权利要求1所述的照明系统,其特征在于,所述扩散组件具有中心轴,且所述扩散组件适于绕着所述中心轴转动。

10.如权利要求1所述的照明系统,其特征在于,所述照明系统还包括:

第二激发光源模块,用于发出第二激发光束;以及

波长转换组件,配置于所述第二激发光束的传递路径上,所述波长转换组件用于将所述第二激发光束转换为转换光束。

11.如权利要求10所述的照明系统,其特征在于,所述多个第一激发光源模块与所述波长转换组件配置于所述扩散组件的同一侧。

12.如权利要求10所述的照明系统,其特征在于,所述照明系统还包括合光组件,所述合光组件配置于来自所述第二激发光源模块的所述第二激发光束、来自所述波长转换组件的所述转换光束以及来自所述扩散组件的所述多个第一激发光束的传递路径上,其中所述合光组件将所述第二激发光束传递至所述波长转换组件,且所述合光组件将来自所述波长转换组件的所述转换光束与来自所述扩散组件的所述多个第一激发光束合并。

13.如权利要求12所述的照明系统,其特征在于,所述照明系统还包括匀光组件,所述匀光组件配置于来自所述合光组件的所述转换光束与所述多个第一激发光束的传递路径上。

14.一种投影装置,其特征在于,所述投影装置包括照明系统、光阀模块以及投影镜头,其中:

所述照明系统用于发出照明光束,所述照明系统包括多个第一激发光源模块以及扩散组件,其中:

所述多个第一激发光源模块用于发出多个第一激发光束;以及

所述扩散组件配置于所述多个第一激发光束的传递路径上,其中所述多个第一激发光束在所述扩散组件上的多个位置形成多个光斑;

所述光阀模块配置于所述照明光束的传递路径上,以将所述照明光束调变成影像光束;以及

所述投影镜头配置于所述影像光束的传递路径上。

15.如权利要求14所述的投影装置,其特征在于,所述多个第一激发光束在入射至所述扩散组件时,所述多个第一激发光束的行进方向彼此平行。

16.如权利要求14所述的投影装置,其特征在于,各个所述第一激发光源模块包括:

第一激发光源,用于发出第一色光束;

第二激发光源,用于发出第二色光束;以及

合光单元,配置于所述第一色光束与所述第二色光束的传递路径上,且所述合光单元将所述第一色光束与所述第二色光束合并为所述第一激发光束。

17.如权利要求14所述的投影装置,其特征在于,所述多个第一激发光源模块包括:

至少一个第一激发光源,用于发出至少一个第一色光束;以及

至少一个第二激发光源,用于发出至少一个第二色光束,其中所述多个第一激发光束包括所述至少一个第一色光束以及所述至少一个第二色光束。

18.如权利要求14所述的投影装置,其特征在于,所述多个第一激发光源模块为环状排列,使所述多个光斑呈环状排列。

19.如权利要求14所述的投影装置,其特征在于,所述多个光斑的至少其中两者与所述扩散组件的中心轴的距离不同。

20.如权利要求14所述的投影装置,其特征在于,所述照明系统还包括多个透镜模块,所述多个透镜模块分别设置于所述多个第一激发光束的传递路径上,其中所述多个透镜模块的至少其中两者的屈亮度不同。

21.如权利要求14所述的投影装置,其特征在于,所述扩散组件具有中心轴,且所述扩散组件适于绕着所述中心轴转动。

22.如权利要求14所述的投影装置,其特征在于,所述照明系统还包括:

第二激发光源模块,用于发出第二激发光束;以及

波长转换组件,配置于所述第二激发光束的传递路径上,所述波长转换组件用于将所述第二激发光束转换为转换光束。

23.如权利要求22所述的投影装置,其特征在于,所述多个第一激发光源模块与所述波长转换组件配置于所述扩散组件的同一侧。

技术总结
一种照明系统,包括多个第一激发光源模块以及扩散组件。多个第一激发光源模块用于发出多个第一激发光束。扩散组件配置于多个第一激发光束的传递路径上,其中多个第一激发光束在扩散组件上的多个位置形成多个光斑。一种投影装置也被提出。本发明提供的照明系统及投影装置具有较小的体积以及较长的使用寿命。

技术研发人员:刘宏威;廖建中
受保护的技术使用者:中强光电股份有限公司
技术研发日:2018.11.30
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-33536.html

最新回复(0)