本发明属于电化学材料技术领域,特别涉及一种聚酰亚胺衍生氮掺杂碳负极材料(ncm)。
背景技术:
在能源短缺和环境恶化双重重压下,开发绿色可持续的能源供给方式已成为构建人类命运共同体诸多保障条件中的重要一环。近年来,各国政府及研究人员已将开发和利用绿色能源(例如太阳能,风能,地热能,潮汐能等)上升到战略高度。然而,受这些能源间歇性特征的限制,此类能源很难直接应用。为解决这一问题,能量存储和转换设备获得蓬勃发展。从技术上说,大规模的储能设备需具备高能量密度、长循环寿命、廉价环保等特点。而在现在的储能系统中,唯有电化学储能体系具有上述优点,是最有前途的实用储能技术。最近几年来,以锂离子电池为代表,我国对于电化学储能方式进行了大量的研究。然而锂资源有限,随着锂资源的枯竭,锂离子电池的生产成本势必会逐年上升。相比之下,钾资源丰富、价格低廉,而且与钠、镁、铝等相比具有更负的标准电极电势(-2.931vvs.k /k,–2.714vvs.na /na,-1.676vvs.al /al),能够实现更高的电压,从而实现更高的能量密度。另一方面,钾的路易斯酸性较弱,能够形成更小的溶剂化离子,离子电导率和溶剂化离子传输数量均优于li 和na ,所以钾离子电池已经成为下一代大规模能源储存系统的一个重要备选方案。
先进能源储存系统的研发必须以产业发展和市场需求为导向。钾离子电池除在大规模能源储存系统具有优势外,在特殊应用装备方面也有显著优势和广阔的市场前景。火车、重型汽车以及轻型车辆中的再生制动能量存储转换系统就是一个巨大的潜在市场。例如,仅纽约市大都会运输局(mta)一家单位,每年就需要使用约2150gwh的能量进行火车机车行驶制动,每年的总成本超过2.5亿美元。但受现有二次电池和超级电容器(电化学电容器和超级电容器)技术的局限,目前再生制动能量存储转换系统仅是个雏形,该市场尚未得到充分开发。daytont.brown研究甚至得出结论,若不能解决能量密度限制、散热等问题,现有的所有电池和超级电容器解决方案都无法满足再生制动能量存储转换系统对能量存储转换模块的要求。
为了解决这一问题,科学家们研究出了金属离子电容器。作为一种新型电容-电池混合储能器件,金属离子电容器克服了离子电池和超级电容器的局限性,将二者的优点结合到一起,在实现高功率密度(来自超级电容器)的同时还能保障能量密度(源于离子电池)。目前有关于金属离子电容器的相关报导多集中在锂离子电容器,但是对于更有前途的钾离子电容器的研究还非常有限。从器件结构来看,钾离子电容器通常用具有双电层储能功能的活性炭材料为正极,用具有钾离子脱嵌功能的插层类材料作负极。从储能原理上看,电容器型正极材料和电池型负极材料及其动力学匹配决定了钾离子电容器的潜力,尤其是负极材料,它直接决定钾离子电容器的倍率能力以及循环稳定性。所以开发能用于钾离子电容器的负极材料是实现钾离子电容器大规模应用的关键一环。一种优良的钾离子电容器的负极材料必须同时具备两方面性能,首先其必须具有快速k 离子插入/脱出特性,以平衡负极发生的法拉第反应与正极发生的吸附/脱附。其二,必须有强大的储钾性能,以保证电池倍率和稳定性。到目前为止,报道的钾离子电池负极材料已有几种,比如合金材料、碳材料,mxene材料及过渡金属氧化物/硫化物等。其中碳基材料因具有优异的容量和倍率性能,是研究最深入的负极材料,也是公认的大规模储能领域最有前途的材料之一,如何改善碳材料作为钾离子电池负极的性能是目前需要解决的主要问题。
技术实现要素:
本发明公开了一种聚酰亚胺衍生氮掺杂碳负极材料及其制备方法和应用,聚酰亚胺衍生氮掺杂碳负极材料是尺寸为600-800nm的由厚度25nm的纳米片所组成的三维花球,组成为氮掺杂碳;c、n和o的摩尔百分含量分别为94.08%、3.62%和2.3%;所述的氮和碳为聚酰亚胺衍生物。
聚酰亚胺衍生氮掺杂碳负极材料制备方法。具体步骤如下:
步骤(1)、聚酰亚胺制备:将联苯胺溶解在n,n-二甲基甲酰胺中,而后添加3,3’,4,4’-二苯酮四羧酸二酐,在惰性气氛下搅拌12h,将所得液体进行180℃下溶剂热反应10h,经洗涤真空干燥后收集黄色样品,即聚酰亚胺。
步骤(2)、聚酰亚胺衍生氮掺杂碳负极材料:将聚酰亚胺在惰性气氛下,以3℃/min的升温速率升温至900℃,并在900℃下保持1~1.5h,将收集到的样品用去离子水和乙醇洗涤,干燥过滤,收集的样品为聚酰亚胺衍生氮掺杂碳。
将聚酰亚胺衍生氮掺杂碳负极材料、乙炔黑和羧甲基纤维素钠,按8:1:1混合,涂在铜箔片上,真空干燥12h后得到负极电极片。以此方法制备碳材料作为负极,商业活性炭制备的正极可组成的钾离子电容器,并有很好的电化学性能。
所述的电解液为溶液a、溶液b或溶液c;
溶液a:0.8moll-1kpf6在碳酸亚乙酯和碳酸二甲酯体积比为1:1的混合物;
溶液b:1moll-1kpf6在碳酸亚乙酯、碳酸二乙酯和碳酸二甲酯体积比为1:1:1,并添加了总体积2%的氟代碳酸乙烯酯的混合物;
溶液c:1moll-1kpf6在二乙二醇二甲醚中的混合物。
正极电极片的制备步骤如下:
将活性炭与乙炔黑、粘结剂按质量比为8:1:1混合,并将其溶解在n-甲基吡咯烷酮中,涂在铝箔片上真空干燥12h得到正极电极片;所述的粘结剂为羧甲基纤维素钠、聚偏氟氯乙烯、海藻酸钠。
本发明的有益效果:
1.本发明报道的制备氮掺杂纳米碳球的制备方法简单,工艺简单易操作,成本低。
2.使用溶剂热法制备的氮掺杂碳纳米片微球,粒径的大小、形貌能够得到控制,而且产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、粘度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大,相应的,反应物(通常是固体)的溶解、分散及化学反应活性大大的提高或增强。这就使得反应能够在较低的温度下发生。
3.氮原子掺杂可以大幅提高碳材料的电化学性能,因此通过调控氮掺杂量可以有效控制掺杂材料的形貌和导电性,得到适合不同应用的掺杂产物,有望为基于碳材料的电子设备及催化过程效能的提高开辟新的道路,并指出氮原子掺杂碳材料将成为纳米材料领域的新热点。
4.钾离子电容器有效缩短了钾离子电池和超级电容器之间的距离,显示出高能量密度高功率输出,使用寿命长以及良好的化学稳定性。
附图说明
图1为以聚酰亚胺为前驱体,制得的ncm的扫描电子显微镜照片
图2为ncm的透射电子显微镜照片
图3为ncm的x射线衍射谱图
图4为ncm的能谱图
图5为ncm在a,b,c三种电解液下的倍率图
图6为两种不同活性炭的循环图
图7为实例4-1中ncm//ac-1在cmc粘结剂下钾离子电容器的充放电曲线图
图8为实例4-3中ncm//ac-1在pvdf粘结剂下钾离子电容器的充放电曲线图
图9为实例4-3中钾离子电容器与其他储能器件的能量密度与功率密度分布图
具体实施方式
以下结合实施例与附图对本发明技术方案进行进一步解释和说明。
实施例1
1)聚酰亚胺的制备
称取1.78g联苯胺溶解于60ml二甲基甲酰胺中。待搅拌均匀后加入3.11g3,3,4,4-二苯甲酮四羧酸在氮气气氛下搅拌12h。将得到的黄色混合物转移到高压釜中,在180℃下加热10h。待冷却至室温后,将样品进行抽滤,并用dmf和无水乙醇清洗4-5次,放入培养皿真空干燥过夜,后收集亮黄色聚酰亚胺粉末。
2)氮掺杂碳纳米片微球的制备
将聚亚胺粉末先在惰性气氛下,以3℃/min的升温速度升温至900℃,保持90min。得到氮掺杂的碳纳米片微球,以下简称ncm。
用上述方法所得的氮掺杂碳纳米微颗粒,颗粒粒径在600-800nm。
图1为ncm电子扫描图像,正如图像显示,该ncm材料表现出三维微球状结构。单分散微球直径约为600-800nm。三维微球结构由2d纳米片组成,厚度为25nm左右。
图2是ncm的x射线衍射(xrd)图,在2θ值为23.9°和43.4°处出现两个宽峰,对应002和100在无序中的结晶面不同的碳结构。根据布拉格定律,计算出层间平均间距为0.372nm。层间距越大,钾离子在负极材料中脱嵌更加容易。图3为ncm的能谱图,观察到只有c、n、o三种元素没有其他杂质。c、n、o的含量分别为94.08%、3.62%、2.3%。氮元素的引入可显著改善碳的结构、导电性等特点。氮原子的掺入改变了碳材料的表面电子性能,增加了碳材料的缺陷位点,提高电化学性能。
实施例2
为了制备ncm负极,将其与乙炔黑,cmc按8:1:1混合,涂在铜箔片上。制备半电池时,以金属钾为对参比电极。分别以溶液a,b,c作为电解液将负极组装成2055型纽扣电池,以溶剂a作为电解液将正极电极片同样组装成2055型纽扣电池。半电池的组装过程均在手套箱内进行。
溶液a:0.8moll-1kpf6在碳酸亚乙酯(ec)和碳酸二甲酯(dmc)体积比为1:1的混合物。
溶液b:1moll-1kpf6在碳酸亚乙酯(ec),碳酸二乙酯(dec)和碳酸二甲酯(dmc)体积比为1:1:1并添加了2%的氟代碳酸乙烯酯(fec)的混合物。
溶液c:1moll-1kpf6在二乙二醇二甲醚(diglyme)中的混合物。
然后将组装的半电池进行循环伏安、恒流充放电、恒电流间歇滴定等电化学测试。
图5分别为ncm在a,b,c三种电解液中电流密度从0.05ag-1到5ag-1的倍率图。图像结果显示,ncm在a电解液,即在0.8moll-1kpf6在碳酸亚乙酯(ec)和碳酸二甲酯(dmc)体积比为1:1的混合物中电化学性能是最好的,其他两种电解液中比容量和倍率性能都差很多,特别是在c电解液中在大电流密度下几乎没有容量。
实施例3
本实施例中采用了两种不同的商业活性炭作为正极材料,ac正极和ncm方法相同,将两种不同厂家的商业活性炭与乙炔黑,粘结剂按质量比为8:1:1混合,并将其溶解在n-甲基吡咯烷酮中,涂在铝箔片上。
图6显示了两种不同的商业活性炭ac-1和ac-2在0.1ag-1的电流密度下循环了100圈的寿命图,结果显示,ac-1的放电比容量明显高于ac-2。所以以ncm为负极材料,ac-1为正极材料,溶剂a为电解液组装了钾离子混合电容器。
实施例4钾离子电容器的组装及电化学性能测试
在组装钾离子电容器前,先对负极进行预钾化处理,以消除不可逆容量损失。预钾化处理步骤如下,首先将实例2中的负极材料组装成半电池,然后在蓝点测试仪上循环几圈后将电池拆开,取出负极片,此负极片便为预钾化的电极片。在此基础上,将正极和预钾化的负极在同一有机电解质中组装成纽扣电池。
实施例4-1:以实施例2的负极材料,商业活性炭ac-1与乙炔黑在羧甲基纤维素钠(cmc)粘结剂下,以溶液a为电解液组装了钾离子电容器。
实施例4-2:以实施例2的负极材料,商业活性炭ac-1与乙炔黑在海藻酸钠(sa)粘结剂下,以溶液a为电解液组装了钾离子电容器。
实施例4-3:以实施例2的负极材料,商业活性炭ac-1与乙炔黑在聚偏氟氯乙烯(pvdf)粘结剂下,以溶剂a为电解液组装了钾离子电容器。
在chi660电化学工作站上进行了循环伏安(cv)测试,确定了最合适的电压区间(1.5-4.3v)。在此电压区间内进行了恒电流充放电实验。图7为ncm//ac-1在cmc粘结剂下钾离子混合电容器的恒流充放电曲线图。图8为ncm//ac-1在pvdf粘结剂下钾离子混合电容器的恒流充放电曲线图。图9为实施例4-3中钾离子电容器与其他储能器件(如锂离子电池、燃料电池、超级电容器等)的能量密度与功率密度分布图像,图片显示,该钾离子电容器既提高了超级电容器的能量密度又提高了离子电池的能量密度。证明了钾离子电容器在电化学储能方面有很大的应用前景,突破了离子电池与超级电容器的局限性,为寻找新一代储能体系提供了一种新的方法。
1.聚酰亚胺衍生氮掺杂碳负极材料,其特征在于聚酰亚胺衍生氮掺杂碳负极材料是尺寸为600-800nm的由厚度25nm的纳米片所组成的三维花球,组成为氮掺杂碳;c、n和o的摩尔百分含量分别为94.08%、3.62%和2.3%;所述的氮和碳为聚酰亚胺衍生物。
2.如权利要求1所述的聚酰亚胺衍生氮掺杂碳负极材料的制备方法,其特征在于,步骤如下:
将聚酰亚胺在惰性气氛下,以3℃/min的升温速率升温至900℃,并在900℃下保持1~1.5h,反应结束后将所制备的样品为聚酰亚胺衍生氮掺杂碳;所述的聚酰亚胺由3,3’,4,4’-二苯酮四羧酸二酐和联苯胺聚合得到。
3.根据权利要求2所述的聚酰亚胺衍生氮掺杂碳负极材料的制备方法,其特征在于,所述聚酰亚胺制备步骤具体如下:将1.78g联苯胺溶解在60mln,n-二甲基甲酰胺中,而后添加3.11g3,3’,4,4’-二苯酮四羧酸二酐,在惰性气氛下搅拌12h,将所得液体进行180℃下溶剂热反应10h,经洗涤真空干燥后收集黄色样品;洗涤用乙醇溶液和n,n-二甲基甲酰胺溶液(dmf);惰性气氛为氮气气氛。
4.如权利要求1所述的将聚酰亚胺衍生氮掺杂碳负极材料用于钾离子电容器的用途。
5.如权利要求4所述的将聚酰亚胺衍生氮掺杂碳负极材料用于钾离子电容器的用途,其特征在于,将所述聚酰亚胺衍生氮掺杂碳负极材料与乙炔黑,cmc按8:1:1混合,涂在铜箔片上,真空干燥12h后得到负极电极片。
6.如权利要求5所述的将聚酰亚胺衍生氮掺杂碳负极材料用于钾离子电容器的用途,其特征在于,所述的负极电极片与正极电极片、电解液组成钾离子电容器;所述的电解液为溶液a、溶液b或溶液c;
溶液a:0.8moll-1kpf6在碳酸亚乙酯和碳酸二甲酯体积比为1:1的混合物;
溶液b:1moll-1kpf6在碳酸亚乙酯、碳酸二乙酯和碳酸二甲酯体积比为1:1:1,并添加了总体积2%的氟代碳酸乙烯酯的混合物;
溶液c:1moll-1kpf6在二乙二醇二甲醚中的混合物。
7.根据权利要求6所述的将聚酰亚胺衍生氮掺杂碳负极材料用于钾离子电容器的用途,其特征在于,正极电极片的制备步骤如下:
将活性炭与乙炔黑、粘结剂按质量比为8:1:1混合,并将其溶解在n-甲基吡咯烷酮中,涂在铝箔片上真空干燥12h得到正极电极片;所述的粘结剂为羧甲基纤维素钠、聚偏氟氯乙烯、海藻酸钠。
技术总结