本发明涉及显示装置,尤其涉及一种触控显示装置。
背景技术:
内嵌式触控显示装置(incelltouchdisplay)是将触控电极集成于显示面板中,并且通过分时驱动的方式实现显示面板的触控功能和显示功能。由于内嵌式触控技术不用在显示面板制程之后再单独制作触控功能层,从而简化了触控显示装置的制程,并且有利于实现显示装置的轻薄化设计。因此,内嵌式触控设计已成为触控显示装置的主流设计方案。
内嵌式触控技术在液晶显示装置中的应用十分广泛,如图1所示,液晶显示装置包括:相对设置的液晶触控显示面板1和背光模组2,液晶触控显示面板1内集成有触控电极11,背光模组2包括光学膜层21和支撑光学膜层21的背光铁框22;触控电极11与触控信号输入端电连接,背光铁框22接地,触控电极11和背光铁框22之间会形成电容器c0,在芯片(ic)通过触控信号输入端给触控电极11加载周期性的高频方波脉冲信号时,由于该脉冲信号为正向或负向,触控电极11与背光铁框22之间形成的电场会感生出正电荷或负电荷,使得夹在触控电极11与背光铁框22之间的偏光片、扩散片、导光板等电介质材料膜层产生电致伸缩效应。各偏光片、扩散片、导光板等膜层会发生横向、纵向的形变,最终表现为触控电极11与背光铁框22之间形成的电容器c0表面产生振动,使用者可以听到声音,从而影响产品的使用效果。
技术实现要素:
本发明实施例提供的一种触控显示装置,用以解决背景技术中的问题。
因此,本发明实施例提供了一种触控显示装置,包括液晶触控显示面板以及位于所述液晶触控显示面板入光侧的背光模组,所述液晶触控显示面板内设置有触控电极,所述背光模组包括背光铁框;
所述液晶触控显示面板还包括位于所述触控电极面向所述背光模组一侧的电阻,所述电阻和所述背光铁框均与接地信号端电连接;
所述触控电极和所述电阻构成电容,所述电容的电容值和所述电阻的电阻值之积小于向所述触控电极加载的触控信号的脉宽,且所述电容的电容值和所述电阻的电阻值之积的数量级小于所述触控信号的脉宽的数量级。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述液晶触控显示面板包括:相对设置的阵列基板和彩膜基板,以及位于所述阵列基板和所述彩膜基板之间的液晶层;所述背光模组位于所述阵列基板远离所述彩膜基板一侧;
所述触控电极集成于所述阵列基板内,或所述触控电极集成于所述彩膜基板内;
所述电阻位于所述阵列基板内。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述阵列基板具有衬底基板,所述电阻与所述衬底基板接触设置。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述电阻位于所述衬底基板靠近所述触控电极一侧,或所述电阻位于所述衬底基板远离所述触控电极一侧。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述衬底基板具有显示区域和包围所述显示区域的非显示区域,所述电阻位于所述显示区域;所述彩膜基板具有黑矩阵,所述电阻在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影范围内。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述衬底基板具有显示区域和包围所述显示区域的非显示区域,所述电阻位于所述非显示区域且包围所述显示区域。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述电阻整面设置,且所述电阻和所述背光铁框的面积相同。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述电阻的材料为金属。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述电阻的材料为透明导电材料。
可选地,在具体实施时,在本发明实施例提供的上述触控显示装置中,所述背光模组还包括位于所述背光铁框面向所述液晶触控显示面板一侧的光学膜层,所述背光铁框用于支撑所述光学膜层,所述光学膜层至少包括依次层叠设置的导光板和扩散片。
本发明实施例的有益效果如下:
本发明实施例提供的上述触控显示装置,通过在液晶触控显示面板内触控电极面向背光模组一侧设置电阻,这样触控电极和电阻构成电容,该电容和电阻构成rc微分电路,由于电容的电容值和电阻的电阻值之积小于向触控电极加载的触控信号的脉宽,且电容的电容值和电阻的电阻值之积的数量级小于触控信号的脉宽的数量级,即电容的电容值和电阻的电阻值之积远小于向触控电极加载的触控信号的脉宽,这样在给触控电极输入触控信号(一般为高频方波脉冲信号)时,rc微分电路可以将同向的方波脉冲信号转化为正负向的尖脉冲波,即电阻(输出端)输出尖脉冲波,电阻和背光铁框之间感生出等量的正电荷和负电荷,正电荷和负电荷中和,由于本发明增加的电阻是设置于液晶触控显示面板内且位于触控电极面向背光模组一侧,因此液晶触控显示面板和背光铁框之间的导光板、扩散片和偏光片等介电材料层也位于电阻和背光铁框之间,因此导光板、扩散片和偏光片等介电材料层没有感生电荷的作用,从而不会产生电致收缩,因此触控电极和背光铁框构成的电容器不会发生振动,提高产品的使用效果。
附图说明
图1为相关技术中液晶触控显示装置的结构示意图之一;
图2为相关技术中液晶触控显示装置的结构示意图之二;
图3为本发明实施例提供的触控显示装置的结构示意图之一;
图4为rc微分电路示意图;
图5为图4对应的波形转换示意图;
图6为本发明实施例提供的触控显示装置的结构示意图之二;
图7为本发明实施例提供的触控显示装置的结构示意图之三;
图8为本发明实施例提供的触控显示装置的结构示意图之四;
图9为本发明实施例提供的触控显示装置的结构示意图之五;
图10为本发明实施例提供的触控显示装置的结构示意图之六;
图11为本发明实施例提供的触控显示装置的仿真电路图;
图12为本发明采用图11仿真得到的波形转换示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明提供的触控显示装置作进一步地详细描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是示意说明本发明内容。
touch是基于充电传输触摸感应技术,利用了一种电荷保持的物理原理,使用一个开关在一个短时间内施加一个电压到感应电极上对其充电,之后将这个开关断开,用第二个开关再将感应电极上的电荷释放到更大的一个采样电容中。通过测量多个充电-传输周期后的电荷,可以确定感应电极的电容。因此,实现fullincell产品的touch功能,ic需要输出modulation(高频方波)到触控电极上。首先,对相关技术中液晶触控显示装置的背光铁框和触控电极之间产生感应电荷使得夹在触控电极与背光铁框之间的偏光片、扩散片、导光板等电介质材料膜层产生电致伸缩效应进行详细说明,如图2所示,该液晶触控显示装置包括液晶触控显示面板1和位于液晶触控显示面板1入光侧的背光模组2,液晶触控显示面板1包括衬底基板01、集成在液晶触控显示面板1内的触控电极11、与各触控电极11电连接的引线02,各引线02电连接至ic,ic电连接至柔性电路板(fpc),触控电极11与触控信号输入端电连接,通过ic向各触控电极加载高频方波脉冲信号;背光模组2包括背光铁框22,背光铁框22接地。即当产品到模组阶段,组装背光铁框22后,背光铁框22与panel内部的触控电极11形成电容。该电容极板之间加高频的脉冲信号后,触控电极11到背光铁框22之间的下偏光片及背光的各个膜层会发生电致伸缩,也就是逆压电效应。这样在给触控电极11加载触控信号时,在交流电场的作用下,触控电极11和背光铁框22之间形成的电场(虚线箭头所示)会产生感应电荷,使得夹在触控电极11与背光铁框22之间的偏光片、扩散片、导光板等电介质材料膜层产生电致伸缩效应,最终表现为触控电极11与背光铁框22之间形成的电容器表面产生振动,可以听到声音,出现啸叫问题,影响用户正常使用或者降低用户使用的体验,成为行业内手机产品的一大难题。
有鉴于此,本发明实施例提供了一种触控显示装置,如图3所示,包括液晶触控显示面板1以及位于液晶触控显示面板1入光侧的背光模组2,液晶触控显示面板1内设置有触控电极11,背光模组2包括背光铁框22;
液晶触控显示面板1还包括位于触控电极11面向背光模组2一侧的电阻r,电阻r和背光铁框22均与接地信号端gnd电连接;
触控电极11和电阻r构成电容c,电容c的电容值和电阻r的电阻值之积小于向触控电极11加载的触控信号的脉宽t,且电容c的电容值和电阻r的电阻值之积的数量级小于触控信号的脉宽t的数量级。
本发明实施例提供的上述触控显示装置,通过在液晶触控显示面板内触控电极面向背光模组一侧设置电阻,这样触控电极和电阻构成电容,该电容和电阻构成rc微分电路,电路结构如图4所示,ui(t)表示输入电压,u0(t)表示输出电压,rc微分电路可把矩形波转换为尖脉冲波,如图5所示,图5上面的波形图表示向触控电极加载的触控信号(矩形脉冲),图5下面的波形图表示触控电极上的触控信号经过rc微分电路后输出的尖脉冲,输出的尖脉冲波形的宽度t与r*c有关(即电路的时间常数),r*c越小,尖脉冲波形越尖,反之则宽,此电路的r*c必须远远小于输入波形的宽度,否则就失去了波形变换的作用,变为一般的rc耦合电路了,一般r*c少于或等于输入波形宽度的1/10就可以了,即工作当中电容c充、放电速度极快,输出信号由此会出现双向尖峰(接近输入信号幅度),即电阻r(输出端)输出尖脉冲波,电阻r和背光铁框22之间感生出等量的正电荷和负电荷,正电荷和负电荷中和,使电场感生电荷为0,由于本发明增加的电阻6是设置于液晶触控显示面板内且位于触控电极11面向背光模组2一侧,因此液晶触控显示面板和背光铁框22之间的导光板、扩散片和偏光片等介电材料层也位于电阻r和背光铁框22之间,因此导光板、扩散片和偏光片等介电材料层没有感生电荷的作用,从而不会产生电致收缩,因此触控电极11和背光铁框22构成的电容器不会发生振动,改善液晶触控显示面板啸叫的问题,从而提高产品的使用效果。
在具体实施时,上述背光铁框与接地信号端电连接可以消除背光铁框表面形成的静电。
在具体实施时,可以根据目前各液晶产品型号的触控电极对应加载的不同充电脉冲信号的脉宽t,搭配串联不同阻值的电阻r形成rc微分电路,保证串联的电阻r与触控电极之间构成的c满足rc微分电路的关系,即rc<<t,以实现rc微分电路波形变换的作用。
在具体实施时,在本发明实施例提供的上述触控显示装置中,如图6和图7所示,液晶触控显示面板1包括:相对设置的阵列基板10和彩膜基板20,以及位于阵列基板10和彩膜基板20之间的液晶层30;背光模组2位于阵列基板10远离彩膜基板20一侧;具体地,阵列基板10包括阵列排布的多个像素单元、多个薄膜晶体管和金属走线;彩膜基板20至少包括阵列排布的红、绿、蓝三色色阻单元和设置于相邻色阻单元之间的黑矩阵;彩膜基板20用于使显示面板实现彩色显示;
如图6所示,触控电极11集成于阵列基板10内;或如图7所示,触控电极11集成于彩膜基板20内;
电阻r位于阵列基板10内(图6和图7未示出电阻r)。
在具体实施时,在本发明实施例提供的上述触控显示装置中,如图8和图9所示,以触控电极11集成于彩膜基板20内为例进行说明,阵列基板10具有衬底基板12,电阻r与衬底基板12接触设置。具体地,液晶触控显示面板1的上下表面还设置偏光片,即在阵列基板10的衬底基板12靠近背光模组2一侧设置偏光片,以及在彩膜基板20的衬底基板远离阵列基板10一侧设置偏光片,本发明是为了解决触控电极11与背光模组2的背光铁框22之间的偏光片、扩散片和导光板等介电材料层不会发生电致伸缩,从而将电阻r与阵列基板10的衬底基板12接触设置,这样偏光片、扩散片和导光板等介电材料层就位于电阻r与背光铁框22之间,通过rc微分电路的作用,不仅能够解决偏光片、扩散片和导光板等介电材料层不会发生电致伸缩,而且电阻r不会影响液晶触控显示面板的触控显示功能。
在具体实施时,在本发明实施例提供的上述触控显示装置中,如图8所示,电阻r可以位于衬底基板12靠近触控电极11一侧;或如图9所示,电阻r也可以位于衬底基板12远离触控电极11一侧。将电阻r设置在衬底基板12的表面,不会影响阵列基板和彩膜基板内其它功能性膜层的制作,从而不会导致液晶触控显示面板的不良。
在具体实施时,在本发明实施例提供的上述触控显示装置中,衬底基板具有显示区域和包围显示区域的非显示区域,电阻位于显示区域;彩膜基板具有黑矩阵,电阻在衬底基板上的正投影位于黑矩阵在衬底基板上的正投影范围内。通过将电阻设置成位于黑矩阵的正投影范围内,这样电阻的设置不仅不会影响面板内像素的开口率,而且能够实现触控电极与背光铁框之间的偏光片、扩散片和导光板等介电材料层不会发生电致伸缩。具体地,电阻可以通过贯穿面板内绝缘层的过孔与柔性电路板(fpc)上的接地端gnd电连接。电阻的材料可以为金属(al、mg等)或透明导电材料(ito等)。
在具体实施时,为了进一步防止电阻的设置会带来液晶触控显示面板出现其它不良问题,在本发明实施例提供的上述触控显示装置中,如图10所示,衬底基板具有显示区域和包围显示区域的非显示区域,电阻r位于非显示区域且包围显示区域。具体地,电阻r可以通过贯穿面板内绝缘层的过孔与柔性电路板(fpc)上的接地端gnd电连接。电阻的材料可以为金属(al、mg等)或透明导电材料(ito等)。
在具体实施时,在本发明实施例提供的上述触控显示装置中,电阻也可以整面设置,且电阻和背光铁框的面积相同。具体地,电阻的材料为透明导电材料(ito等)。
在具体实施时,在本发明实施例提供的上述触控显示装置中,如图8和图9所示,背光模组2还包括位于背光铁框22面向液晶触控显示面板1一侧的光学膜层21,背光铁框22用于支撑光学膜层21,光学膜层21至少包括依次层叠设置的导光板和扩散片(图中未示出)。具体地,导光板用于传导光线,扩散片用于扩散光学,以保证背光模组2向液晶触控显示面板1提供均匀稳定的光线。
当然,在具体实施时,上述光学膜层还包括本领域技术人员熟知的其它功能性膜层,在此不做详述。
下面对本发明实施例提供的触控显示装置增加的电阻与背光铁框接地之后的波形进行仿真,具体地,如图11所示,xsc1和xsc2为示波器,xsc1为信号输出端,xsc2为触控信号输入端,其中电容c的电容值和电阻r的电阻值之积远小于向触控电极加载的触控信号的脉宽,这样通过xsc2给触控电极加载如图12(上)所示的触控信号(矩形防波信号),经过rc电路之后,xsc1输出的信号如图12(下)所示,可以看出输出的波形为正负向尖脉冲波形,由此可以看出,本发明的触控显示装置设置电阻r之后,可以将触控电极上的矩形防波信号变成正负向尖脉冲波形,即电阻r(输出端)输出尖脉冲波,电阻r和背光铁框22之间由于电场的作用感生出等量的正电荷和负电荷,正电荷和负电荷中和,即电场感生电荷为0,由此电阻r和背光铁框之间的导光板、扩散片和偏光片等介电材料层没有感生电荷的作用,从而不会产生电致收缩,因此触控电极和背光铁框构成的电容器不会发生振动,提高产品的使用效果。
本发明实施例提供的上述触控显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明实施例提供的上述触控显示装置,通过在液晶触控显示面板内触控电极面向背光模组一侧设置电阻,这样触控电极和电阻构成电容,该电容和电阻构成rc微分电路,由于电容的电容值和电阻的电阻值之积小于向触控电极加载的触控信号的脉宽,且电容的电容值和电阻的电阻值之积的数量级小于触控信号的脉宽的数量级,即电容的电容值和电阻的电阻值之积远小于向触控电极加载的触控信号的脉宽,这样在给触控电极输入触控信号(一般为高频方波脉冲信号)时,rc微分电路可以将同向的方波脉冲信号转化为正负向的尖脉冲波,即电阻(输出端)输出尖脉冲波,电阻和背光铁框之间感生出等量的正电荷和负电荷,正电荷和负电荷中和,由于本发明增加的电阻是设置于液晶触控显示面板内且位于触控电极面向背光模组一侧,因此液晶触控显示面板和背光铁框之间的导光板、扩散片和偏光片等介电材料层也位于电阻和背光铁框之间,因此导光板、扩散片和偏光片等介电材料层没有感生电荷的作用,从而不会产生电致收缩,因此触控电极和背光铁框构成的电容器不会发生振动,提高产品的使用效果。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
1.一种触控显示装置,其特征在于,包括液晶触控显示面板以及位于所述液晶触控显示面板入光侧的背光模组,所述液晶触控显示面板内设置有触控电极,所述背光模组包括背光铁框;
所述液晶触控显示面板还包括位于所述触控电极面向所述背光模组一侧的电阻,所述电阻和所述背光铁框均与接地信号端电连接;
所述触控电极和所述电阻构成电容,所述电容的电容值和所述电阻的电阻值之积小于向所述触控电极加载的触控信号的脉宽,且所述电容的电容值和所述电阻的电阻值之积的数量级小于所述触控信号的脉宽的数量级。
2.如权利要求1所述的触控显示装置,其特征在于,所述液晶触控显示面板包括:相对设置的阵列基板和彩膜基板,以及位于所述阵列基板和所述彩膜基板之间的液晶层;所述背光模组位于所述阵列基板远离所述彩膜基板一侧;
所述触控电极集成于所述阵列基板内,或所述触控电极集成于所述彩膜基板内;
所述电阻位于所述阵列基板内。
3.如权利要求2所述的触控显示装置,其特征在于,所述阵列基板具有衬底基板,所述电阻与所述衬底基板接触设置。
4.如权利要求3所述的触控显示装置,其特征在于,所述电阻位于所述衬底基板靠近所述触控电极一侧,或所述电阻位于所述衬底基板远离所述触控电极一侧。
5.如权利要求3所述的触控显示装置,其特征在于,所述衬底基板具有显示区域和包围所述显示区域的非显示区域,所述电阻位于所述显示区域;所述彩膜基板具有黑矩阵,所述电阻在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影范围内。
6.如权利要求3所述的触控显示装置,其特征在于,所述衬底基板具有显示区域和包围所述显示区域的非显示区域,所述电阻位于所述非显示区域且包围所述显示区域。
7.如权利要求1所述的触控显示装置,其特征在于,所述电阻整面设置,且所述电阻和所述背光铁框的面积相同。
8.如权利要求5或6所述的触控显示装置,其特征在于,所述电阻的材料为金属。
9.如权利要求5-7任一项所述的触控显示装置,其特征在于,所述电阻的材料为透明导电材料。
10.如权利要求1所述的触控显示装置,其特征在于,所述背光模组还包括位于所述背光铁框面向所述液晶触控显示面板一侧的光学膜层,所述背光铁框用于支撑所述光学膜层,所述光学膜层至少包括依次层叠设置的导光板和扩散片。
技术总结