一种半导体功率器件结构的制作方法

专利2022-06-29  74


本发明涉及半导体技术领域,具体为一种半导体功率器件结构。



背景技术:

基于肖特基势垒理论的肖特基势垒二极管(schottkybarrierdiodes,sbd)广泛应用于高频整流和开关电路及保护电路在低压、大电流场合时作续流和整流作用,如dc/dc变频器、无工频变压器、开关电源的整流和续流。作为一种低压整流器件,它具有提高电路的整流效率、降低正向功耗、提高工作频率以及减小电路噪声的作用。但也有其局限性比如耐高温性差、软击穿严重以及反向漏电流大,使其在高压领域不能得以广泛的应用。其正向压降和反向漏电也是一对关联的很难调和的参数。

为了提高整流器的性能,相关公司相继推出了新的器件,比如tmbs(trenchmosbarrierschottkydiode)、sbr(surperbarrierrectifier)、sic、gan等,并且取得了不错的业绩和可观的市场回报。但都每个器件平台都有一些相应的局限性比如材料,器件结构,工艺生产性,成本控制等等。

图1示出了现有技术中的超势垒整流器sbr的器件剖视图,其具有如下缺点:1)正向工作时,沟道没有完全导通,导致正向电压vf不够低;2)寄生电容较高,导致器件的工作开关频率较低。



技术实现要素:

本发明的目的在于提供一种半导体功率器件结构,通过将栅极区设置为浮栅结构,使得器件反向工作时,正电荷以隧道效应穿过下层栅氧化层存储到浮栅结构内,达到降低等效阈值电压vth的目的,以便显著降低器件的正向电压vf;通过设置栅氧化层-电荷储存介质层-阻挡氧化层的多层结构,增加了寄生电容的介质厚度,从而显著降低了寄生电容,有效提高了器件的工作开关速度。

为实现上述目的,本发明提供了一种半导体功率器件结构,包括半导体基板,所述半导体基板的上部为第一导电类型的外延层,所述外延层的表面为第一主面,所述半导体基板的下部为第一导电类型的衬底;所述第一主面上设置有第二导电类型的第一掺杂区、以及位于所述第一掺杂区表面被所述第一掺杂区侧面包围的第一导电类型的第二掺杂区,相邻所述第一掺杂区之间的第一主面上设置有栅氧化层,所述栅氧化层上设置有栅极区,所述栅极区为浮栅结构。

优选的,所述浮栅结构包括位于所述栅氧化层上方的电荷储存介质层、以及位于所述电荷储存介质层上方的阻挡氧化层。

优选的,所述电荷储存介质层为绝缘层。

优选的,所述电荷储存介质层为hfnx。

优选的,所述阻挡氧化层为hfo2。

优选的,所述栅氧化层为hfo2。

优选的,所述电荷储存介质层为sixnx。

优选的,所述电荷储存介质层为导电层。

优选的,所述浮栅结构还包括位于所述电荷储存介质层侧面的隔离氧化层,所述栅氧化层、阻挡氧化层与隔离氧化层包覆所述电荷储存介质层。

优选的,所述电荷储存介质层为多晶硅。

优选的,所述隔离氧化层为sio2。

优选的,所述阻挡氧化层为sio2。

优选的,所述栅氧化层为sio2。

优选的,在所述第一主面上形成正面电极,其相互连接所述第一掺杂区、第二掺杂区和栅极区,所述正面电极为金属层,所述正面电极分别与第一掺杂区、第二掺杂区欧姆接触。

优选的,所述衬底的表面为第二主面,所述第二主面形成有背面电极,所述背面电极为金属层,所述背面电极与所述衬底欧姆接触。

与现有技术相比,本发明具有如下有益效果:本发明通过将栅极区设置为浮栅结构,使得器件反向工作时,正电荷以隧道效应穿过下层栅氧化层存储到浮栅结构内,达到降低等效阈值电压vth的目的,以便显著降低器件的正向电压vf;通过设置栅氧化层-电荷储存介质层-阻挡氧化层的多层结构,增加了寄生电容的介质厚度,从而显著降低了寄生电容,有效提高了器件的开关速度;本发明不需要设置额外的控制栅,正面电极直接具有控制栅的功能,简化了器件结构,并且本发明的正面电极与源极是相连的。

附图说明

图1为现有技术中的超势垒整流器的剖面示意图;

图2为本发明第一实施例的剖面示意图;

图3a至图3e为本发明第一实施例的制造方法的剖面示意图;

图4为本发明第二实施例的剖面示意图;

图5为本发明第三实施例的剖面示意图;

图6a至图6g为本发明第三实施例的制造方法的剖面示意图。

图中:1、衬底;2、外延层;3、第一掺杂区;4、第二掺杂区;5、栅氧化层;6、电荷储存介质层;7、阻挡氧化层;8、隔离氧化层;9、二次氧化层;001、正面电极;002、背面电极。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

第一实施例

图2示出了本实施例的半导体功率器件结构的剖面图,以n型器件为例,包括半导体基板,所述半导体基板的上部为n-型的外延层2,所述n-型外延层2的表面为第一主面,所述半导体基板的下部为重掺杂的n 型衬底1;所述第一主面上设置有p-型的第一掺杂区3、以及位于所述p-型第一掺杂区3表面被所述p-型第一掺杂区3侧面包围的n 型第二掺杂区4,相邻所述p-型第一掺杂区3之间的第一主面上设置有栅氧化层5,所述栅氧化层5上设置有栅极区;在所述n-型外延层2上形成正面电极001,正面电极001为金属层,其相互连接所述第一掺杂区3、第二掺杂区4和栅极区,正面电极001分别与第一掺杂区3、第二掺杂区4欧姆接触;所述n 型衬底100的表面为第二表面,所述第二表面形成有背面电极002,所述背面电极002为金属层,所述背面电极002与衬底1欧姆接触。

具体地,所述栅极区为浮栅结构,所述浮栅结构包括位于所述栅氧化层5上方的电荷储存介质层6、以及位于所述电荷储存介质层6上方的阻挡氧化层7。

在本实施例中,所述电荷储存介质层6为绝缘层,因此其侧面不需要通过隔离氧化层8与正面电极001隔离。

在本实施例中,所述电荷储存介质层6为绝缘材料hfnx,优选的,所述阻挡氧化层7为hfo2,所述栅氧化层5为hfo2。

本发明不对栅氧化层5、电荷储存介质层6和阻挡氧化层7的厚度进行限定;较佳地,阻挡氧化层7的厚度大于栅氧化层5的厚度;较佳地,栅氧化层5的厚度为3-10nm,阻挡氧化层7的厚度为5-15nm,电容储存介质层6的厚度为6-12nm。

如上实施例中的一种半导体功率器件结构制造办法,包括如下步骤:

步骤s1,如图3a所示,提供一半导体基板,所述半导体基板包括重掺杂的n 型衬底1、及生长在n 型衬底1上的外延层2,外延层2的掺杂浓度低于衬底1为n-型;

步骤s2,如图3b所示,在n-型外延层2上依次形成栅氧化层5、电荷储存介质层6和阻挡氧化层7;在本实施例中,电荷储存介质层6为绝缘材料hfnx,栅氧化层5和阻挡氧化层7选择hf02;

步骤s3,如图3c所示,在阻挡氧化层7上形成图形化掩膜层后,依次对阻挡氧化层7、电荷储存介质层6和栅氧化层5进行刻蚀,以暴露出用于制作第一掺杂区3的所述外延层2的指定区域;

步骤s4,如图3d所示,采用离子注入工艺在所述外延层2的指定区域形成第一掺杂区3,所述第一掺杂区3为p-型体区,所述第一掺杂区3从外延层2的第一主面延伸至外延层2的内部,其侧面延伸至栅氧化层5的下方;采用离子注入工艺在所述第一掺杂区3形成第二掺杂区4,其掺杂浓度大于第一掺杂区3为n 型,所述第二掺杂区4从外延层2的第一主面延伸至外延层2的内部,其侧面延伸至栅氧化层5的下方;

步骤s5,如图3e所示,采用金属溅射工艺、电镀工艺和蒸镀工艺中的一种工艺或多种工艺的任意组合,在所述n-型外延层2上形成同时与电荷储存介质层6、阻挡氧化层7、第二掺杂区4、第一掺杂区3接触的金属层,所述金属层即为正面电极001;

步骤s6,采用金属溅射工艺、电镀工艺和蒸镀工艺中的一种工艺或多种工艺的任意组合,在所述n 型衬底1的底面形成有背面电极002,以完成半导体功率器件结构的制作。

通过将栅极区设置为浮栅结构,使得器件反向工作时,正电荷以隧道效应穿过下层栅氧化层5存储到浮栅结构内,达到降低等效阈值电压vth的目的,以便显著降低器件的正向电压vf;通过设置栅氧化层5-电荷储存介质层6-阻挡氧化层7的多层结构,增加了寄生电容的介质厚度,从而显著降低了寄生电容,有效提高了器件的开关速度;本发明不需要设置额外的控制栅,正面电极直接具有控制栅的功能,并且本发明的正面电极与源极是相连的。

第二实施例

图3示出了本实施例的半导体功率器件结构的剖面图,本实施例与第一实施例的区别在于,所述电荷储存介质层6为绝缘材料sixnx。在本实施例中,优选的,所述栅氧化层5和阻挡氧化层7为sio2。

第三实施例。

图4示出了本实施例的半导体功率器件结构的剖面图,本实施例与第一实施例的区别在于,所述电荷储存介质层6为导电层,因此需要电荷储存介质层6侧面的需要通过隔离氧化层8与正面电极001隔离。

在本实施例中,所述浮栅结构还包括位于所述电荷储存介质层6侧面的隔离氧化层8,所述栅氧化层5、阻挡氧化层7与隔离氧化层8包覆所述电荷储存介质层6。

在本实施例中,所述电荷储存介质层6为多晶硅,较佳地,所述隔离氧化层8为sio2,所述阻挡氧化层7为sio2,所述栅氧化层5为sio2。

图6a至图6g示出了本实施例的制造过程,本实施例与第一实施例的制造办法的区别在于,在采用离子注入工艺形成n 型第二掺杂区4后,如图6e所示,在第一主面上形成隔离氧化层8以覆盖第一掺杂区3、第二掺杂区4以及栅极区;之后如图6f所示,对上述隔离氧化层8反刻蚀,以形成位于电荷储存介质层6侧壁的隔离氧化层8;之后如图6g所示,通过快速热退火工艺进行离子活化,并进行后续步骤以制造完成半导体功率器件结构。

对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。


技术特征:

1.一种半导体功率器件结构,包括半导体基板,所述半导体基板的上部为第一导电类型的外延层,所述外延层的表面为第一主面,所述半导体基板的下部为第一导电类型的衬底;所述第一主面上设置有第二导电类型的第一掺杂区、以及位于所述第一掺杂区表面被所述第一掺杂区侧面包围的第一导电类型的第二掺杂区,相邻所述第一掺杂区之间的第一主面上设置有栅氧化层,所述栅氧化层上设置有栅极区;其特征在于:所述栅极区为浮栅结构。

2.根据权利要求1所述的半导体功率器件结构,其特征在于,所述浮栅结构包括位于所述栅氧化层上方的电荷储存介质层、以及位于所述电荷储存介质层上方的阻挡氧化层。

3.根据权利要求2所述的半导体功率器件结构,其特征在于,所述电荷储存介质层为绝缘层。

4.根据权利要求3所述的半导体功率器件结构,其特征在于,所述电荷储存介质层为hfnx。

5.根据权利要求4所述的半导体功率器件结构,其特征在于,所述阻挡氧化层为hfo2。

6.根据权利要求4所述的半导体功率器件结构,其特征在于,所述栅氧化层为hfo2。

7.根据权利要求3所述的半导体功率器件结构,其特征在于,所述电荷储存介质层为sixnx。

8.根据权利要求2所述的半导体功率器件结构,其特征在于,所述电荷储存介质层为导电层。

9.根据权利要求8所述的半导体功率器件结构,其特征在于,所述浮栅结构还包括位于所述电荷储存介质层侧面的隔离氧化层,所述栅氧化层、阻挡氧化层与隔离氧化层包覆所述电荷储存介质层。

10.根据权利要求8所述的半导体功率器件结构,其特征在于,所述电荷储存介质层为多晶硅。

技术总结
本发明公开了一种半导体功率器件结构,包括半导体基板,半导体基板的上部为第一导电类型的外延层,外延层的表面为第一主面,半导体基板的下部为第一导电类型的衬底;第一主面上设置有第二导电类型的第一掺杂区、以及位于第一掺杂区表面被第一掺杂区侧面包围的第一导电类型的第二掺杂区,相邻第一掺杂区之间的第一主面上设置有栅氧化层,栅氧化层上设置有栅极区,栅极区为浮栅结构。本发明能够降低等效阈值电压Vth,以便显著降低器件的正向电压Vf;通过设置栅氧化层‑电荷储存介质层‑阻挡氧化层的多层结构,增加了寄生电容的介质厚度,从而显著降低了寄生电容,有效提高了器件的开关速度。

技术研发人员:陈则瑞;黄健;孙闫涛;顾昀浦;宋跃桦;吴平丽;樊君;张丽娜
受保护的技术使用者:捷捷微电(上海)科技有限公司
技术研发日:2020.02.11
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-30678.html

最新回复(0)