一种基于掺Nd3+陶瓷光纤的1.8微米波段脉冲激光产生方法与流程

专利2022-06-29  194


本发明属于光学领域,涉及一种激光产生装置,具体涉及一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法。



背景技术:

目前1.8μm波段脉冲激光的获取方式主要有两种,一是以三价稀土元素tm3 、ho3 为激活离子的固体或者光纤脉冲激光器,二是利用1μm波段脉冲激光泵浦nd:yag晶体等。第二种获取方式是目前常用的一种获取1.8μm的方式。作为“晶体之王”的nd:yag晶体在1.8μm对应于4f3/2到4i15/2能级的跃迁。在1.8μm附近的激光发射截面约为3ⅹ10-21cm2,约等于1μm波段的百分之一,所以其研究相对较少。但是,相比较掺杂tm3 、ho3 离子的增益来讲,nd:yag在1.8μm处的发射截面并不小,例如,tm:yag、tm:ggg和tm:luag相应的发射截面分别为2.2ⅹ10-21cm2、1.5ⅹ10-21cm2、1.87ⅹ10-21cm2。另外,nd:yag属于四能级系统,可以有效的避免重吸收损耗,降低所需激光功率密度。最后,还可以利用885nm半导体激光器将基态nd离子直接抽运到4f3/2激光上能级,即所谓的直接泵浦或者带内泵浦。带内泵浦具有热效应小,量子效率大等优势。

2016年厦门大学首次获得了瓦特级1.8μmnd:yag激光。徐斌等人在室温(8℃)获得1.31w的激光输出,激光斜效率为11.1%。随后,他们发现在增益介质在808nm处的吸收为56%,导致严重的热透镜效应。想要进一步提高激光输出功率的方法是增加增益介质的吸收或者增大泵浦功率。2019年,徐斌等人首次采用50w的885nm半导体激光器泵浦块状nd:yag实现高达1.25w的1.8μm被动调q脉冲激光器。但是,在这两个研究中均发现热饱和现象,因此,缓解热效应是进一步提高1.8μmnd3 激光器的主要措施。光纤激光,虽然相较于固体激光具有其缺点和不足,但单晶光纤激光的优点也很明显,即好的热效应就是其中之一。单晶光纤优异的热效应的原因主要有两点,一是大的表面积和体积比,有利于散热;二是由于单晶光纤很长,因此浓度可以很低,低浓度也有利于减小热效应。徐斌等人采用双端泵浦的808nm半导体激光器泵浦nd:yag单晶光纤(直径0.8mm,长度20mm),进而实现高达1.66w的1.8μm被动调q脉冲激光器。但是,目前单晶光纤难以实现高浓度掺杂,因其在高浓度下掺杂下单晶光纤生长不均匀;其次单晶光纤的制备周期较长,增益较低产生高能耗损失。



技术实现要素:

本发明的目的是提供一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生装置。

为实现上述目的,本发明采用的技术方案如下:一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法,包括泵浦源、泵浦光聚焦耦合系统及谐振腔,所述谐振腔至少包括泵浦端腔镜、谐振腔输出镜和端面泵浦激光介质,所述端面泵浦激光介质位于泵浦端腔镜和谐振腔输出镜之间,所述端面泵浦激光介质为掺杂钕离子的陶瓷光纤,其中钕离子掺杂浓度为4%~10%,掺杂钕离子的陶瓷光纤的直径为0.1~0.6mm,长度为30~40mm,所述谐振腔还包括被动q开关,所述被动q开关为掺杂铬离子的透明陶瓷,所述被动q开关位于所述端面泵浦激光介质和所述谐振腔输出镜之间;所述泵浦源产生的泵浦光经所述泵浦光聚焦耦合系统耦合进入所述掺杂钕离子的陶瓷光纤,钕离子通过受激辐射4f3/2能级跃迁到4i15/2能级,输出1.8微米波段连续激光,所述1.8微米波段连续激光在所述谐振腔内震荡;所述掺杂铬离子的透明陶瓷对所述1.8微米波段连续激光进行q调制,谐振腔内损耗因子q值发生变化,在亚稳态上的粒子数积累到较高时,突然降低损耗,急速建立激光振荡,存储在激光介质中的能量迅速释放,产生1.8微米波段脉冲激光。

优选的,所述端面泵浦激光介质为nd:yag陶瓷光纤、nd:gdvo4陶瓷光纤或者nd:yvo4陶瓷光纤。

优选的,所述泵浦源为半导体激光器泵浦源,中心波长为808纳米。

优选的,所述泵浦端腔镜用于反射1微米、1.3微米、1.4微米及1.8微米波段的脉冲激光、同时透过808纳米波段的泵浦光。

优选的,所述谐振腔输出镜用于反射1微米、1.3微米、1.4微米波段,同时反射及透过1.8微米波段的脉冲激光。

与现有技术相比,本发明端面泵浦激光介质为掺杂钕离子的陶瓷光纤;先通过钕离子产生受激辐射,产生1.8微米波段连续激光,再以1.8微米波段连续激光为基频光,利用掺杂铬离子的透明陶瓷的可饱和吸收作用及调q作用,输出1.8微米波段脉冲激光。本发明将掺杂钕离子的陶瓷光纤所具有的优良的增益、高热导率及高抗损伤阈值较高能力结合,通过同样具有优良的增益、高热导率及高抗损伤阈值较高能力的掺杂铬离子的透明陶瓷产生对1.8μm波段脉冲激光的稳定调q,最终输出1.8μm波段的超短脉冲激光。本发明提供的1.8微米波段脉冲激光的产生装置避免了增益介质和可饱和吸收体增益较低及光损伤阈值较低等的局限性,从而可以获得高功率、高能量1.8μm波段超短脉冲激光。

附图说明

图1是本发明实施例提供的1.8微米波段脉冲激光的产生装置的结构示意图。

图中,1-泵浦源,2-泵浦光聚焦耦合系统,3-泵浦端腔镜,4-端面泵浦激光介质,5-被动q开关,6-谐振腔输出镜,7-谐振腔。

具体实施方式

下面结合附图和具体实施例对本发明作进一步详细说明。

如图1所示,本发明提供了一种基于掺钕离子陶瓷光纤的1.8微米波段脉冲激光的产生装置,包括:

泵浦源1,选用中心波长为808纳米的半导体激光器泵浦源,功率为200w,可激励相对应的端面泵浦激光介质4产生1.8微米波段的激光;

泵浦光聚焦耦合系统2,用于将泵浦光聚焦到端面泵浦激光介质4中;

谐振腔7,谐振腔7包括:

泵浦端腔镜3,位于泵浦光聚焦耦合系统2和端面泵浦激光介质4之间,可以为平面镜、平凸镜或平凹镜,镀对808nm波段脉冲激光高透和对1微米、1.3微米、1.4微米及1.8微米波段脉冲激光高反的介质膜;

端面泵浦激光介质4,选用掺杂钕离子的陶瓷光纤,可以为nd:yag陶瓷光纤、nd:gdvo4陶瓷光纤或者nd:yvo4陶瓷光纤,nd3 掺杂浓度为4%~10%,掺杂钕离子的陶瓷光纤的直径为0.1~0.6mm,长度为30~40mm,利用掺杂铬离子的透明陶瓷的可饱和吸收作用及调q作用,产生1.8微米波段脉冲激光。

被动q开关5,位于端面泵浦激光介质4和谐振腔输出镜6之间,选用掺杂铬离子的透明陶瓷,用于1.8微米波段脉冲激光的实现。

谐振腔输出镜6,可以为平面镜、平凸镜或平凹镜,镀对1微米、1.3微米及1.4微米波段脉冲激光高反及对1.8μm波段脉冲激光部分反射、部分透过的介质膜。

200w的808nm半导体激光器泵浦源产生的泵浦光经所述泵浦光聚焦耦合系统2耦合进入所述掺杂钕离子的陶瓷光纤,钕离子通过受激辐射4f3/2能级跃迁到4i15/2能级,输出1.8微米波段连续激光,所述1.8微米波段连续激光在所述谐振腔内震荡;所述掺杂铬离子的透明陶瓷对所述1.8微米波段连续激光进行q调制,谐振腔内损耗因子q值发生变化,在亚稳态上的粒子数积累到较高时,突然降低损耗,急速建立激光振荡,存储在激光介质中的能量迅速释放,产生20w的1.8微米波段脉冲激光,激光斜效率在10%。

本实施例提供的1.8微米波段脉冲激光的产生装置,将掺杂钕离子的陶瓷光纤所具有的优良的增益、高热导率及高抗损伤阈值较高能力结合,通过同样具有优良的增益、高热导率及高抗损伤阈值较高能力的掺杂铬离子的透明陶瓷产生对1.8μm波段脉冲激光的稳定调q,最终输出1.8μm波段的超短脉冲激光。


技术特征:

1.一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法,包括泵浦源(1)、泵浦光聚焦耦合系统(2)及谐振腔(7),所述谐振腔(7)至少包括泵浦端腔镜(3)、谐振腔输出镜(6)和端面泵浦激光介质(4),所述端面泵浦激光介质(4)位于泵浦端腔镜(3)和谐振腔输出镜(6)之间,其特征在于,所述端面泵浦激光介质(4)为掺杂钕离子的陶瓷光纤,其中钕离子掺杂浓度为4%~10%,掺杂钕离子的陶瓷光纤的直径为0.1~0.6mm,长度为30~40mm,所述谐振腔(7)还包括被动q开关(5),所述被动q开关(5)为掺杂铬离子的透明陶瓷,所述被动q开关(5)位于所述端面泵浦激光介质(4)和所述谐振腔输出镜(6)之间;所述泵浦源(1)产生的泵浦光经所述泵浦光聚焦耦合系统(2)耦合进入所述掺杂钕离子的陶瓷光纤,钕离子通过受激辐射4f3/2能级跃迁到4i15/2能级,输出1.8微米波段连续激光,所述1.8微米波段连续激光在所述谐振腔(7)内震荡;所述掺杂铬离子的透明陶瓷对所述1.8微米波段连续激光进行q调制,谐振腔内损耗因子q值发生变化,在亚稳态上的粒子数积累到较高时,突然降低损耗,急速建立激光振荡,存储在激光介质中的能量迅速释放,产生1.8微米波段脉冲激光。

2.根据权利要求1所述的一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法,其特征在于,所述端面泵浦激光介质(4)为nd:yag陶瓷光纤、nd:gdvo4陶瓷光纤或者nd:yvo4陶瓷光纤。

3.根据权利要求1所述的一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法,其特征在于,所述泵浦源(1)为半导体激光器泵浦源,中心波长为808纳米。

4.根据权利要求1所述的一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法,其特征在于,所述泵浦端腔镜(3)用于反射1微米、1.3微米、1.4微米及1.8微米波段的脉冲激光,同时透过808纳米波段的泵浦光。

5.根据权利要求1所述的一种基于掺nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法,其特征在于,所述谐振腔输出镜(6)用于反射1微米、1.3微米、1.4微米波段,同时反射及透过1.8微米波段的脉冲激光。

技术总结
本发明公开了一种基于掺Nd3 陶瓷光纤的1.8微米波段脉冲激光产生方法,泵浦源产生的泵浦光经泵浦光聚焦耦合系统耦合进入掺杂钕离子的陶瓷光纤,钕离子通过受激辐射4F3/2能级跃迁到4I15/2能级,输出1.8微米波段连续激光,1.8微米波段连续激光在所述谐振腔内震荡;掺杂铬离子的透明陶瓷对1.8微米波段连续激光进行Q调制,谐振腔内损耗因子Q值发生变化,在亚稳态上的粒子数积累到较高时,突然降低损耗,急速建立激光振荡,存储在激光介质中的能量迅速释放,产生1.8微米波段脉冲激光。本发明提供的1.8微米波段脉冲激光的产生方法避免了增益介质和可饱和吸收体增益较低及光损伤阈值较低等的局限性,从而可以获得高功率、高能量1.8μm波段超短脉冲激光。

技术研发人员:张乐;单迎双;康健;陈东顺;周伟;黄国灿;李明;陈浩
受保护的技术使用者:新沂市锡沂高新材料产业技术研究院有限公司
技术研发日:2020.01.22
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-26747.html

最新回复(0)