一种园区配电系统运行方式智能辨识以及优化方法与流程

专利2022-06-29  79


本发明涉及的是配电系统运行方式优化调度领域,尤其涉及的是考虑光伏接入园区下配电系统运行方式的智能优化技术,属于智能配用电领域。



背景技术:

随着城市居民小区建设的不断加快以及大量光伏的接入,作为保障小区供电安全及可靠性的园区配电系统,迎来了一系列新的挑战。一方面,光伏作为清洁能源发电技术的代表,以高效率、低耗能的优势赢得了社会的关注,逐步接入居民小区的配电系统。然而,光伏的大量接入将会改变潮流的流动方向,使得园区配电系统由一个辐射状网络变成一个遍布电源与用户互联的系统,此外光照强度的不确定性将引起光伏出力的不确定性,而对于传统的园区配电系统运行方式而言,设计优化时并未计及大量光伏设备的接入情况,不能满足随着园区内光伏设备渗透率逐步提高的配电网运行方式要求。另一方面,在实际电力系统运行过程中,配电网拓扑会因为联络开关动作、新增配变、分布式能源接入等不确定因素而不定期变动。对于大量分布式可再生能源接入的配电网,拓扑的变化会更加频繁,例如在大量分布式光伏渗透的配电网中,拓扑变更的频率可达到8h变化一次,而拓扑运行方式的辨识是配网运行方式优化的基础,因此在配电系统运行方式优化前,需要精准校核当前配网拓扑的运行方式。

目前的居民小区为了保证小区供电安全以及可靠性,一般选择两台或两台以上的变压器同时运行。而由于缺乏对小区的统一运行管理系统,小区变一般长期处于多台变压器同时运行的状态,而变压器的负载均衡是园区配电系统安全可靠运行的重要指标,因此在优化拓扑的运行方式时,需要合理分配变电站的负载率,保证园区变压器供电的安全可靠性。



技术实现要素:

发明目的:针对当前大量光伏不断接入园区配电系统所带来的配网拓扑变动以及潮流流向等问题,对园区配网的运行方式进行智能优化,优选出合适的开关决策方案。

技术方案:为了实现上述目的,本发明提出了一种园区配电系统运行方式智能辨识以及优化方法,使用的技术方案如下:

技术方案包括如下步骤:

步骤a:收集园区配电系统电气相关数据,对第二日进行光伏出力预测以及负荷预测。

步骤b:简化当前已知配电系统拓扑结构,并采用贝叶斯模型描述开关状态与节点电压的关系,实现从原始电气拓扑到概率图模型的转化。

步骤c:收集当日的节点电压以及开关状态数据,根据历史数据采用置信度推理算法实现园区配电系统当前的拓扑连接方式有效辨识。

步骤d:在日前所辨识的拓扑运行方式基础上,充分考虑潮流约束、配网辐射约束、转供约束等约束条件,建立以变电站负载率均衡为目标的配电系统运行方式优化调度模型。

步骤e:采用遗传算法求解该多维度、非线性混合整数规划问题,将优化调度结果用于第二日的开关决策投切方案。

2、根据权利要求1所述的考虑光伏发电预测的园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤a的实现过程如下:

(1)根据光伏出力的大小与光照强度与温度强关联,负荷大小与温度、湿度及日类型强关联,收集历史相关数据并进行数据预处理。

(2)考虑到负荷数据是以一定采样频率获得的间断时序数据,引用时序的动态贝叶斯模型来表征时序影响下负荷与热度、冷度、湿度以及日类型的关联,并采用基于前向-后向算法推导第二日预测节点负荷的概率。

(3)以海量光伏出力的历史预处理数据为基础,通过基于时间序列的长短记忆神经网络学习光伏出力的波动规律,而为了提高神经网络训练数据的样本容量,需要将同一负荷类型的配电变压器的历史数据投入到神经网络模型中,从而达到提高日前负荷预测的精准度的目的,故采用基于密度的聚类算法dbscan进行聚类划分,尽可能减少数据的噪声干扰。最后根据所建立的长短记忆神经网络,并采用nesterovadamoptimizer作为其优化器,对第二日的光伏出力进行有效预测。

3、根据权利要求1所述的考虑光伏发电预测的园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤b的实现过程如下:

(1)简化原始物理拓扑模型

典型的配电系统网络结构包括变电站、母线、支路、馈线、变压器、开关、继电保护装置以及一些自动化设备。由于电力系统的功率流动对配网的拓扑辨识影响不大,因此可对典型的配电网结构进行简化,可保证简化后的配网模型只包含变电站母线、负荷点母线以及开关。

(2)物理-概率图模型的建立

一般情况下认为开关的状态与相应的节点电压相关系数具有直接的联系,即节点间电气距离越近,其电压序列的相关系数也就越高。变电站母线与负荷点的电压相关系数可以通过皮尔逊相关系数来衡量,具体计算公式如下:

式中,vp和vl分别表示变电站母线和负荷点的电压,cov(vp,vl)为vp和vl之间的协方差,σ(vp)和σ(vl)表示vp和vl数据的标准差。

概率图模型中有一类网络称为贝叶斯网路,由代表变量节点及连接这些节点有向边构成,节点代表随机变量,节点间的有向边代表了节点间的互相关系。因此,根据配电系统网络开关状态与节点电压间的相互关系,建立以贝叶斯网络为基础的物理-概率模型,实现由原始物理拓扑至概率图模型的有效映射。

4、根据权利要求1所述的考虑光伏发电预测的园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤c中拓扑运行方式的辨识过程如下:

(1)配电系统历史运行数据预处理

在建立物理-概率图模型的基础上,需要海量的配网运行历史数据进行建模分析,这些历史数据主要涉及配电网运行时各节点的状态变量如节点电压幅值,以及开关的运行状态等参数。数据的预处理主要利用pandas对异常数据、缺失数据及重复数据的处理,并采用莱特准则进行数据的质量检查,保证数据的质量精度达到预计值。

(2)利用历史运行数据获取先验概率和条件概率分布

采用置信度推理算法推断物理-概率图模型中开关的状态时需要获取随机变量的先验概率分布以及条件概率分布,而先验概率和条件概率分布需要通过配网历史运行数据来得到。变量的先验概率分布可以通过古典概型描述,而变量间的条件概率分布可用最大似然估计方法获得,作为下一步训练学习的基础。

(3)采用置信度推理算法推理开关的运行状态

置信度传播算法利用结点与结点之间相互传递信息而更新当前整个物理-概率图模型的标记状态,是基于物理-概率图模型的一种近似计算。分析概率图模型中各节点的影响传播,确定必要的观测变量,运用有效迹技术根据训练学习结果推断剩余节点的状态,在保证必要观测变量可观的情况下,通过置信度传播算法推断配电系统拓扑的运行方式。

5、根据权利要求1所述的考虑光伏发电预测的园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤d中的配电系统拓扑运行方式优化调度数学模型如下:

拓扑运行方式优化的目标函数如下:

其中,f表示当前拓扑运行方式下的变电站负载均衡系数,ei代表园区内变电站n的负载率,为园区内所有变电站的平均负载率,m为变电站的个数。

拓扑运行方式优化的约束条件如下:

约束1:线路容量约束:

式中,lj表示第j条线路上所有负载量,zk为开关k的通断状态,用0或1表示,其中0表示开关断开而1表示开关闭合。k∈j表示开关k为线路j上所有开关集合,rj为线路j的额定容量。

约束2:主变容量约束:

式中,la为供电负载量,n为由变电站n所供电的所有负载集合,sn为变电站n的额定容量。

约束3:节点电压约束:

vi,min≤vi≤vi,max

其中,vi为节点i处的电压,vi,min与vi,max分别为节点i处电压的下限及上限。

约束4:潮流约束:

式中,pi与qi分别表示节点i处的有功出力及无功出力,pdgi与qdgi为光伏发电在节点i处的有功及无功功率,pdi与qdi为节点i处负荷的有功功率及无功功率;ui及uj为节点i与节点j的电压幅值,gij与δij分别为节点i,j的电导及相角差,bij与θij为节点i,j的电纳及相角差;nb表示所有与节点i相邻的节点集合。

约束5:转供约束:

即当前的配网拓扑运行方式需要满足在系统内某处发生故障时能及时通过预留的备用主变进行负荷转供,保证配电系统安全可靠的运行。

约束6:配电系统辐射状约束:

配电网通常为“闭环设计,开环运行”,要求优化后的拓扑运行方式应满足辐射状运行:

式中,表示负荷点i到变电站n所有路径的通断状态,n为园区内所有变电站的集合。

有益效果:使用本发明能够通过考虑实际的光伏接入以及优化前的拓扑运行方式辨识来精准优化配电系统的运行方式。一方面,该方案考虑光伏出力的不确定性以及对园区运行方式的影响;另一方面,运用图计算技术对当前配电拓扑进行智能辨识,作为下一步配电系统运行优化的前提。最后,在此基础上,以变电站负载率均衡为目标,充分计及容量约束、潮流约束、转供约束等约束条件,优选配电园区的拓扑运行方式。本发明对接入大量光伏下的园区配电系统运行方式优选的处理具有重要的意义。

附图说明

图1是考虑光伏发电预测的园区配电系统运行方式智能辨识及优化流程图。

图2是简化配电网物理拓扑示意图。

图3是简化拓扑对应的物理-概率模型图。

图4是配电系统最优运行方式示意图。

具体实施方式

以下结合附图对本发明的实施方式和具体的操作过程做出说明,但本发明的保护范围不限于下述的具体说明。

步骤a:收集园区配电系统电气相关数据,对第二日进行光伏出力预测以及负荷预测。其中该园区在配变点n2,n10以及n14接入光伏设备,具体光伏出力预测及负荷预测过程如下:

(1)根据光伏出力的大小与光照强度与温度强关联,负荷大小与温度、湿度及日类型强关联,收集历史相关数据并进行数据预处理。

(2)考虑到负荷数据是以一定采样频率获得的间断时序数据,引用时序的动态贝叶斯模型来表征时序影响下负荷与热度、冷度、湿度以及日类型的关联,并采用基于前向-后向算法推导第二日预测节点负荷的概率。

(3)以海量光伏出力的历史预处理数据为基础,通过基于时间序列的长短记忆神经网络学习光伏出力的波动规律,而为了提高神经网络训练数据的样本容量,需要将同一负荷类型的配电变压器的历史数据投入到神经网络模型中,从而达到提高日前负荷预测的精准度的目的,故采用基于密度的聚类算法dbscan进行聚类划分,尽可能减少数据的噪声干扰。最后根据所建立的长短记忆神经网络,并采用nesterovadamoptimizer作为其优化器,对第二日的光伏出力进行有效预测。

步骤b:简化当前已知配电系统拓扑结构,并采用贝叶斯模型描述开关状态与节点电压的关系,实现从原始电气拓扑到概率图模型的转化。

(1)简化原始物理拓扑模型

典型的配电系统网络结构包括变电站、母线、支路、馈线、变压器、开关、继电保护装置以及一些自动化设备。由于电力系统的功率流动对配网的拓扑辨识影响不大,因此可对典型的配电网结构进行简化,可保证简化后的配网模型包含变电站母线、负荷点母线以及开关。附图1为简化后的园区配电系统图。

(2)物理-概率图模型的建立

一般情况下认为开关的状态与相应的节点电压相关系数具有直接的联系,即节点间电气距离越近,其电压序列的相关系数也就越高。变电站母线与负荷点的电压相关系数可以通过皮尔逊相关系数来衡量,具体计算公式如下:

式中,vp和vl分别表示变电站母线和负荷点的电压,cov(vp,vl)为vp和vl之间的协方差,σ(vp)和σ(vl)表示vp和vl数据的标准差。

概率图模型中有一类网络称为贝叶斯网路,由代表变量节点及连接这些节点有向边构成,节点代表随机变量,节点间的有向边代表了节点间的互相关系。因此,根据配电系统网络开关状态与节点电压间的相互关系,建立以贝叶斯网络为基础的物理-概率模型,实现由原始物理拓扑至概率图模型的有效映射。根据附图2的简化拓扑,可由上述关系建立以贝叶斯模型为基础的概率图模型,如附图3所示。

步骤c:收集当日的节点电压以及开关状态数据,根据历史数据采用置信度推理算法实现园区配电系统当前的拓扑连接方式有效辨识。

(1)配电系统历史运行数据预处理

数据的预处理主要利用pandas对异常数据、缺失数据及重复数据的处理,并采用莱特准则进行数据的质量检查,保证数据的质量精度达到预计值。

(2)利用历史运行数据获取先验概率和条件概率分布

采用置信度推理算法推断物理-概率图模型中开关的状态时需要获取随机变量的先验概率分布以及条件概率分布,而先验概率和条件概率分布需要通过配网历史运行数据来得到。变量的先验概率分布可以通过古典概型描述,而变量间的条件概率分布可用最大似然估计方法获得,作为下一步训练学习的基础。

(3)采用置信度推理算法推理开关的运行状态

分析概率图模型中各节点的影响传播,确定必要的观测变量,运用有效迹技术根据训练学习结果推断剩余节点的状态,在保证必要观测变量可观的情况下,通过置信度传播算法推断配电系统拓扑的运行方式。

步骤d:在日前所辨识的拓扑运行方式基础上,充分考虑潮流约束、配网辐射约束、转供约束等约束条件,建立以变电站负载率均衡为目标的配电系统运行方式优化调度模型,并采用遗传算法求解该模型,优选园区内开关的最优决策方案。附图4为当前最优配电系统运行方式示意图。

配电系统运行方式优化模型如下:

拓扑运行方式优化的目标函数如下:

其中,f表示当前拓扑运行方式下的变电站负载均衡系数,ei代表园区内变电站n的负载率,为园区内所有变电站的平均负载率,m为变电站的个数。

拓扑运行方式优化的约束条件如下:

约束1:线路容量约束:

式中,lj表示第j条线路上所有负载量,zk为开关k的通断状态,用0或1表示,其中0表示开关断开而1表示开关闭合。k∈j表示开关k为线路j上所有开关集合,rj为线路j的额定容量。

约束2:主变容量约束:

式中,la为供电负载量,n为由变电站n所供电的所有负载集合,sn为变电站n的额定容量。

约束3:节点电压约束:

vi,min≤vi≤vi,max

其中,vi为节点i处的电压,vi,min与vi,max分别为节点i处电压的下限及上限。

约束4:潮流约束:

式中,pi与qi分别表示节点i处的有功出力及无功出力,pdgi与qdgi为光伏发电在节点i处的有功及无功功率,pdi与qdi为节点i处负荷的有功功率及无功功率;ui及uj为节点i与节点j的电压幅值,gij与δij分别为节点i,j的电导及相角差,bij与θij为节点i,j的电纳及相角差;nb表示所有与节点i相邻的节点集合。

约束5:转供约束:

即当前的配网拓扑运行方式需要满足在系统内某处发生故障时能及时通过预留的备用主变进行负荷转供,保证配电系统安全可靠的运行。

约束6:配电系统辐射状约束:

配电网通常为“闭环设计,开环运行”,要求优化后的拓扑运行方式应满足辐射状运行:

式中,表示负荷点i到变电站n所有路径的通断状态,n为园区内所有变电站的集合。

本发明针对含光伏发电的小区变配网运行优化问题,提出一种考虑光伏发电预测的园区配电系统运行方式智能辨识以及优化问题。一方面,该方案考虑光伏出力的不确定性以及对园区运行方式的影响;另一方面,运用图计算技术对当前配电拓扑进行智能辨识,作为下一步配电系统运行优化的前提。最后,在此基础上,以变电站负载率均衡为目标,充分计及容量约束、潮流约束、转供约束等约束条件,优选配电园区的拓扑运行方式。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。


技术特征:

1.一种园区配电系统运行方式智能辨识以及优化方法,其特征在于,包括以下步骤:

步骤a:收集园区配电系统电气相关数据,对第二日进行光伏出力预测;

步骤b:简化当前已知配电系统拓扑结构,并采用贝叶斯模型描述开关状态与节点电压的关系,实现从原始电气拓扑到概率图模型的转化;

步骤c:收集当日的节点电压以及开关状态数据,根据历史数据采用置信度推理算法实现园区配电系统当前的拓扑连接方式有效辨识;

步骤d:在日前所辨识的拓扑运行方式基础上,以潮流约束、配网辐射约束和转供约束,建立以变电站负载率均衡为目标的配电系统运行方式优化调度模型;

步骤e:采用遗传算法求解该多维度、非线性混合整数规划问题,将优化调度结果用于第二日的开关决策投切方案。

2.根据权利要求1所述的一种园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤a的实现过程如下:

(1)根据光伏出力大小与光照强度与温度强关联,负荷大小与温度、湿度及日类型强关联,收集相关历史运行数据并进行数据预处理;

(2)负荷数据是以一定采样频率获得的间断时序数据,引用时序的动态贝叶斯模型来表征时序影响下负荷与热度、冷度、湿度以及日类型的关联,并采用基于前向-后向算法推导第二日预测节点负荷的概率;

(3)以海量光伏出力的历史预处理数据为基础,通过基于时间序列的长短记忆神经网络学习光伏出力的波动规律,将同一负荷类型的配电变压器的历史数据投入到神经网络模型中;

采用基于密度的聚类算法dbscan进行聚类划分,减少数据的噪声干扰;

根据所建立的长短记忆神经网络,并采用nesterovadamoptimizer作为其优化器,对第二日的光伏出力进行有效预测。

3.根据权利要求1所述的一种园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤b的实现过程如下:

(1)简化原始物理拓扑模型;

(2)建立物理-概率图模型,变电站母线与负荷点的电压相关系数可以通过皮尔逊相关系数来衡量,具体计算公式如下:

式中,vp和vl分别表示变电站母线和负荷点的电压,cov(vp,vl)为vp和vl之间的协方差,σ(vp)和σ(vl)表示vp和vl数据的标准差;

根据配电系统网络开关状态与节点电压间的相互关系,建立以贝叶斯网络为基础的物理-概率模型,实现由原始物理拓扑至概率图模型的有效映射。

4.根据权利要求1所述的考虑光伏发电预测的园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤c中拓扑运行方式的辨识过程如下:

(1)配电系统历史运行数据预处理;

(2)利用历史运行数据获取先验概率和条件概率分布,采用置信度推理算法推断物理-概率图模型中开关的状态时需要获取随机变量的先验概率分布以及条件概率分布;

先验概率和条件概率分布通过配网历史运行数据得出;变量的先验概率分布通过古典概型描述,变量间的条件概率分布用最大似然估计方法得出,作为下一步训练学习的基础;

(3)采用置信度推理算法推理开关的运行状态、推断配电系统拓扑的运行方式。

5.根据权利要求1所述的考虑光伏发电预测的园区配电系统运行方式智能辨识以及优化方法,其特征在于,步骤d中的配电系统拓扑运行方式优化调度数学模型如下:

拓扑运行方式优化的目标函数为:

其中,f表示当前拓扑运行方式下的变电站负载均衡系数,ei代表园区内变电站n的负载率,为园区内所有变电站的平均负载率,m为变电站的个数;

拓扑运行方式优化的约束条件如下:

约束1:线路容量约束:

式中,lj表示第j条线路上所有负载量,zk为开关k的通断状态,用0或1表示,其中0表示开关断开而1表示开关闭合;k∈j表示开关k为线路j上所有开关集合,rj为线路j的额定容量;

约束2:主变容量约束:

式中,la为供电负载量,n为由变电站n所供电的所有负载集合,sn为变电站n的额定容量;

约束3:节点电压约束:

vi,min≤vi≤vi,max

其中,vi为节点i处的电压,vi,min与vi,max分别为节点i处电压的下限及上限;

约束4:潮流约束:

式中,pi与qi分别表示节点i处的有功出力及无功出力,pdgi与qdgi为光伏发电在节点i处的有功及无功功率,pdi与qdi为节点i处负荷的有功功率及无功功率;ui及uj为节点i与节点j的电压幅值,gij与δij分别为节点i,j的电导及相角差,bij与θij为节点i,j的电纳及相角差;nb表示所有与节点i相邻的节点集合;

约束5:转供约束:

即当前的配网拓扑运行方式需要满足在系统内某处发生故障时能及时通过预留的备用主变进行负荷转供,保证配电系统安全可靠的运行;

约束6:配电系统辐射状约束:

配电网要求优化后的拓扑运行方式满足辐射状运行:

式中,表示负荷点i到变电站n所有路径的通断状态,n为园区内所有变电站的集合。

技术总结
本发明公开了一种园区配电系统运行方式智能辨识以及优化方法,包括:收集园区历史相关数据进行光伏出力预测以及负荷预测;根据当前拓扑结构,提出基于节点电压以及开关状态相关联的贝叶斯概率图模型,并采用置信度推理算法有效辨识园区配网系统当前拓扑的运行方式;在当前拓扑运行方式的基础上,充分考虑光伏出力以及负荷预测结果,提出以变电站负载率均衡为目标配网运行优化模型。本发明在综合考虑光伏出力以及负荷预测等情况下,充分计及网络的潮流约束及转供约束,采用遗传算法求解最优变电站负载均衡的园区拓扑运行方式,保证了园区配电系统日前优化的供电可靠性。

技术研发人员:章立宗;刘理峰;沈勇;侯炜;蒋玮;钱一宏;韩连山;姚建立;范强;罗刚;徐光福;赵峰;金渊文;毛航银;段胜朋;姚一杨;张鲁
受保护的技术使用者:国网浙江省电力有限公司;国网浙江省电力有限公司绍兴供电公司;绍兴建元电力集团有限公司;南京南瑞继保工程技术有限公司;东南大学
技术研发日:2020.03.04
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-25416.html

最新回复(0)