本发明属于靶向药物技术领域,尤其涉及一种能够溶酶体逃逸的肽纳米颗粒及其制备方法和应用。
背景技术:
靶向药物的载体通常通过内吞作用进入细胞形成内体(endosome),随后经过多种机制作用最终发展为溶酶体。由于一般的靶向药物不具备溶膜肽,后主要的障碍是受到内质溶酶体包裹的限制。溶酶体中含有大量的降解酶,这会导致许多纳米药物尤其是生物相容性良好的药物,例如,核酸倾向于被酶促降解,从而导致细胞溶质减少甚至没有释放。因此,迫切需要一种稳健的策略来改善核酸递送以从内质溶酶体逃逸并进行释放以实现有效的核酸递送。
技术实现要素:
有鉴于此,本发明的目的在于提供一种能够溶酶体逃逸的多功能肽纳米颗粒及其制备方法和应用。
本发明提供了一种能够溶酶体逃逸的肽纳米颗粒,以自组装的色氨酸-苯丙氨酸二肽纳米颗粒为核心,所述核心的表面连接as1411适体、流感血凝素肽ha和抗肿瘤药物。
优选的,所述抗肿瘤药物包括氯法拉滨、sirna和dox。
优选的,所述sirna包括seqidno.1~seqidno.4中的一种或几种。
优选的,所述as1411适体的核苷酸序列如seqidno.5所示,所述流感血凝素肽ha的氨基酸序列如seqidno.6。
优选的,所述色氨酸-苯丙氨酸二肽纳米颗粒通过表面羧基与所述as1411适体、流感血凝素肽ha或氯法拉滨偶联;所述dox通过π-π堆叠相互作用与所述色氨酸-苯丙氨酸二肽纳米颗粒连接。
本发明提供了所述的肽纳米颗粒的制备方法,包括以下步骤:
1)将色氨酸-苯丙氨酸二肽dnps进行自组装形成自组装dnps;
2)将所述自组装dnps表面的羧基活化获得羧基活化的自组装dnps;
3)将羧基活化的自组装dnps与as1411适体、流感血凝素肽ha和氯法拉滨混合反应获得dnps/clolar/as1411/ha;
4)将sirna与dnps/clolar/as1411/ha混合反应获得dnps/clolar/as1411/ha/sirna;
5)将所述dnps/clolar/as1411/ha/sirna与dox混合获得dnps/clolar/as1411/ha/sirna/dox。
优选的,步骤1)中所述自组装的温度为72~78℃,所述自组装的时间为25~35min。
优选的,步骤4)中所述混合反应的温度为24~26℃,所述混合反应的时间为1.5~2.5h。
本发明提供了所述的能够溶酶体逃逸的肽纳米颗粒在制备靶向治疗肿瘤的药物和载体中的应用。
本发明提供了所述的能够溶酶体逃逸的肽纳米颗粒在制备肿瘤成像试剂中的应用。
本发明的有益效果:本发明提供的肽纳米颗粒,可以有效地靶向治疗肿瘤。本发明提供的由二肽自组装形成的无毒dnps具有良好的低毒性和生物相容性;本发明所述的肽纳米颗粒通过多种药物协同治疗来提高肿瘤的治疗效果;在本发明中,所述as1411适体可以增强药物递送能力的特异性,ha可以改善内体逃逸。
进一步的,本发明使用三种药物对肽纳米颗粒进行了修饰,包括氯法拉滨,sirna和dox。当dnps/clolar/as1411/ha/sirna/dox到达细胞质时,多药clolar/sirna/dox逐渐协同发挥作用。dox被释放,其荧光强度可以恢复;可以在体外和体内进行成像。本发明提供的肽纳米颗粒能够同时用于治疗和生物成像。
体内和体外研究表明,本发明提供的肽纳米颗粒dnps/clolar/as1411/ha/sirna/dox可以在肿瘤可视化的基础上改善药物在肿瘤部位的蓄积,并最终通过多种药物的协同作用抑制肿瘤的生长。本发明以小分子肽自组装的特征来合成药物传递载体,相对于现有的涉及多步共价反应偶联的普通药物传递载体更简单、更高效。并且本发明提供的肽纳米颗粒的代谢物是氨基酸,可以直接参与活体的生命活动;本发明提供的基于纳米技术和小分子肽相结合的多功能肽纳米颗粒具有巨大的癌症治疗潜力。
附图说明
图1为实施例1中dnps/clolar/as1411/ha/sirna/dox制备流程和结构示意图,其中a为dnps/clolar/as1411/ha/sirna/dox制备流程示意图,b为自组装dnps制备流程示意图;
图2为dnps的形态检测,其中a为粒径分布,b为tem照片,c为afm照片;
图3为合成产物的琼脂糖凝胶电泳来分析结果,其中a中的linea,dnps/clolar;lineb,dnps/clolar/as1411;linec,as1411,b中的linea,sirnasense-t12;lineb,dnps/clolar/as1411/ha/rna-t12;linec,rnasense-t22;lined,dnps/clolar/as1411/ha/rna-t22;linee,sirnasense-t32;linef,dnps/clolar/as1411/ha/sirna-t32;
图4为dnps的细胞毒性检测结果,(a)为dnps对mcf-7细胞和l0-2细胞的毒性;(b)细胞活力,其中(a)dnps/clolar,(b)dnps/clolar/as1411,(c)dnps/clolar/as1411/ha,(d)dnps/clolar/as1411/ha/sirna,(e)dnps/clolar/as1411/ha/sirna/dox,normalizedto100%;(c)流式细胞仪荧光强度分析,其中(a)未处理mcf-7细胞,(b)dnps处理mcf-7细胞(c)dnps/as1411处理mcf-7细胞;
图5为dnps/clolar/as1411/ha/sirna/dox在活细胞中的细胞内定位;
图6为原始dnps/clolar/as1411/sirna/dox和dnps/clolar/as1411/ha/sirna/dox与内涵体/溶酶体的共定位分析。
具体实施方式
本发明提供了一种能够溶酶体逃逸的肽纳米颗粒,以自组装的色氨酸-苯丙氨酸二肽纳米颗粒为核心,在所述核心的表面连接as1411适体、流感血凝素肽ha和抗肿瘤药物。
在本发明中,所述as1411适体的核苷酸序列优选的如seqidno.5所示;本发明对所述as1411适体的来源和制备方法没有特殊限定,采用本领域常规的市售产品或自行合成均可。在本发明中,所述as1411适体能够增强药物递送能力的特异性。在本发明中,所述流感血凝素肽ha的氨基酸序列优选的如seqidno.6,所述流感血凝素肽ha可以改善内体逃逸;本发明对所述流感血凝素肽ha的来源没有特殊限定,采用本领域常规的市售产品或自行合成均可。
在本发明中,所述抗肿瘤药物优选的包括氯法拉滨、sirna和dox。在本发明中,所述sirna优选的包括seqidno.1~seqidno.4中的一种或几种;本发明对所述氯法拉滨、sirna和dox的来源没有特殊限定,采用本领域常规的市售产品或委托生物公司合成均可。在本发明中,所述色氨酸-苯丙氨酸二肽纳米颗粒通过表面羧基与所述as1411适体、流感血凝素肽ha或氯法拉滨偶联;所述dox通过π-π堆叠相互作用与所述色氨酸-苯丙氨酸二肽纳米颗粒连接。在本发明中,所述sirna可以指导互补mirna(mrna)的转录后降解或转录基因沉默,通过阻止mrna的翻译而导致tk1蛋白的下调。在本发明中,所述dox是一种固有的荧光化合物,通过π-π堆叠相互作用与芳香族dnps堆叠形成dnps/clolar/as1411/ha/sirna/dox,其荧光强度会降低。当dnps/clolar/as1411/ha/sirna/dox到达细胞质时,多药clolar/sirna/dox逐渐协同发挥作用;dox被释放,其荧光强度可以恢复;能够实现在体外和体内的成像,使本发明提供的肽纳米颗粒能够同时用于治疗和生物成像。
在本发明中,上述提到的as1411适体、流感血凝素肽ha和sirna的具体序列如表1所示。
表1as1411适体和sirna的具体序列
本发明提供了所述的肽纳米颗粒的制备方法,包括以下步骤:1)将色氨酸-苯丙氨酸二肽dnps进行自组装形成自组装dnps;2)将所述自组装dnps表面的羧基活化获得羧基活化的自组装dnps;3)将羧基活化的自组装dnps与as1411适体、流感血凝素肽ha和氯法拉滨混合反应获得dnps/clolar/as1411/ha;4)将sirna与dnps/clolar/as1411/ha混合反应获得dnps/clolar/as1411/ha/sirna;5)将所述dnps/clolar/as1411/ha/sirna与dox混合获得dnps/clolar/as1411/ha/sirna/dox。
在本发明中,将色氨酸-苯丙氨酸二肽dnps进行自组装形成自组装dnps。
在本发明中,所述色氨酸-苯丙氨酸二肽dnps优选的通过将色氨酸-苯丙氨酸二肽和zncl2中的锌离子进行配位获得。在本发明中,所述色氨酸-苯丙氨酸二肽和zncl2的质量比优选为1:1.4~1.6,更优选为1:1.5。在本发明中,优选的将所述色氨酸-苯丙氨酸二肽溶解于异丙醇中获得色氨酸-苯丙氨酸二肽溶液,所述色氨酸-苯丙氨酸二肽溶液的浓度优选为4~6mg/ml,更优选为5mg/ml。在本发明中,所述色氨酸-苯丙氨酸二肽和锌离子的配位优选的在氢氧化钠和甲醇的混合物中进行,所述配位的ph值优选为11;所述ph值优选的通过hcl进行调节。在本发明中,所述氢氧化钠和甲醇的混合物中,氢氧化钠的浓度优选为0.01mol/l,甲醇的体积浓度优选为18~22%,更优选为20%。本发明在所述配位结束后,优选的进行离心,收集固相组分获得色氨酸-苯丙氨酸二肽dnps;在本发明中,所述离心的转速优选为10000~14000rpm,更优选为12000rpm,所述离心的时间优选为25~35min,更优选为30min。
本发明在获得所述色氨酸-苯丙氨酸二肽dnps后进行自组装,所述自组装的温度优选为72~78℃,更优选为75℃;所述自组装的时间优选为25~35min,更优选为30min。本发明在所述自组装后进行离心,收集固相组分获得自组装的dnps;在本发明中,所述离心的转速优选为10000~14000rpm,更优选为12000rpm,所述离心的时间优选为25~35min,更优选为30min。在本发明中,优选的将所述分离获得的自组装dnps分散于水中获得自组装dnps溶液。
本发明在获得所述自组装dnps后,将所述自组装dnps表面的羧基活化获得羧基活化的自组装dnps。在本发明中,所述羧基活化优选的通过edc和nhs实现;在本发明中,优选的将所述自组装dnps溶液、edc和nhs混合反应,在本发明中,所述混合反应的时间优选为30min。在本发明中,所述自组装dnps溶液、edc和nhs的体积比优选为(8~12):1:1,更优选为10:1:1。在本发明中,所述edc的浓度优选为0.08~0.12mol/l,更优选为0.1mol/l;所述nhs的浓度优选为0.18~0.22mol/l,更优选为0.2mol/l。本发明在所述羧基活化后,优选的进行离心收集羧基活化的自组装dnps。在本发明中,所述离心的转速优选为10000~14000rpm,更优选为12000rpm,所述离心的时间优选为25~35min,更优选为30min。
在本发明中,将羧基活化的自组装dnps与as1411适体、流感血凝素肽ha和氯法拉滨混合反应获得dnps/clolar/as1411/ha。在本发明中,所述混合反应的时间优选为10~14h,更优选为12h;所述混合反应的温度优选为20~30℃。在本发明中,所述as1411适体、流感血凝素肽ha和氯法拉滨的体积比优选为1:1:2;所述as1411适体的浓度优选为0.08~0.12mmol/l,更优选为0.1mmol/l;所述流感血凝素肽ha的浓度优选为0.08~0.12mmol/l,更优选为0.1mmol/l;所述氯法拉滨的浓度优选为25~35mmol/l,更优选为30mmol/l。在本发明中,所述羧基活化的自组装dnps、as1411适体、流感血凝素肽ha和氯法拉滨的质量体积比优选为1mg:10μl:10μl:20μl。本发明在所述混合反应后,进行离心收集dnps/clolar/as1411/ha;然后将收集到的所述dnps/clolar/as1411/ha分散于pbs中。在本发明中,所述离心的条件与上述记载一致,在此不再赘述。
在本发明中,将sirna与dnps/clolar/as1411/ha混合反应获得dnps/clolar/as1411/ha/sirna。在本发明中,所述sirna的浓度优选为0.08~0.12mmol/l,更优选为0.1mmol/l;所述sirna与dnps/clolar/as1411/ha混合的比例优选为1:10。在本发明中,所述混合反应的温度为24~26℃,更优选为25℃,所述混合反应的时间优选为1.5~2.5h,更优选为2h。在本发明中,所述混合反应后,优选的通过离心收集所述dnps/clolar/as1411/ha/sirna;所述离心的条件与上述记载一致,在此不再赘述。
在本发明中,将所述dnps/clolar/as1411/ha/sirna与dox混合获得dnps/clolar/as1411/ha/sirna/dox。在本发明中,所述dnps/clolar/as1411/ha/sirna与dox混合的比例为1mg:1ml;所述dox的浓度优选为8~12μg/ml,更优选为10μg/ml。在本发明中,所述混合的时间优选为10~14h,更优选为12h;本发明对所述混合的温度没有特殊限定,20~30℃均可。本发明在所述混合后,优选的通过离心收集dnps/clolar/as1411/ha/sirna/dox。在本发明中,优选的用高压灭菌超纯水洗涤收集到的dnps/clolar/as1411/ha/sirna/dox。
本发明提供了所述的能够溶酶体逃逸的肽纳米颗粒在制备靶向治疗肿瘤的药物和载体中的应用。在本发明中,所述能够溶酶体逃逸的肽纳米颗粒中携带抗肿瘤药物能够用于肿瘤的靶向治疗,在本发明总,当所述能够溶酶体逃逸的肽纳米颗粒制备靶向治疗肿瘤的药物载体时,所述能够溶酶体逃逸的肽纳米颗粒还可以负载其他抗肿瘤药物。
本发明还提供了所述的能够溶酶体逃逸的肽纳米颗粒在制备肿瘤成像试剂中的应用。在本发明中,所述能够溶酶体逃逸的肽纳米颗粒中包括dox,dox是一种固有的荧光化合物,通过π-π堆叠相互作用与芳香族dnps堆叠形成dnps/clolar/as1411/ha/sirna/dox,其荧光强度会降低。当dnps/clolar/as1411/ha/sirna/dox到达细胞质时,多药clolar/sirna/dox逐渐协同发挥作用;dox被释放,其荧光强度可以恢复;能够实现在体外和体内的成像。
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
二肽try-phe从北京赛百盛基因技术有限公司购买,纯度为99.51%。dna序列(如表1所示)由sangonbiotechnologyco.,ltd(中国上海)合成。rna序列(如表1所示)购自takara生物技术有限公司(中国大连)。氯法拉滨(clolar)购自芜湖华仁科技有限公司。n-(3-二甲基氨基丙基)-n′-乙基碳二亚胺盐酸盐(edc)和n-羟基琥珀酰亚胺(nhs)购自阿拉丁。流感血凝素肽(ha,glfgaiagfiengwegmidgwyg)由金斯瑞生物科技有限公司(南京)提供。所有其他试剂均为分析纯试剂,无需进一步纯化即可直接使用,实验中使用的所有水都是无菌超纯水。
dnp的制备
将色氨酸-苯丙氨酸(trp-phe)二肽冻干粉溶解在异丙醇中,浓度为5mg/ml,作为二肽的新鲜储备溶液。
为每个实验准备新鲜的储备溶液,以避免预先聚集。
trp-phe二肽纳米颗粒(dnps)的合成为200μltrp-phe二肽储备液和1.5mgzncl2,在0.01mol/l氢氧化钠溶液和20%甲醇的混合物中,通过hcl将ph调节至11,并12000rpm离心30min得到dnps。将反应物加热至75℃,30min。在12000rpm条件下离心30min获得自组装dnps,并将其分散在1ml的h2o中。
dnps/clolar/as1411/ha/sirna/dox的制备
在室温下将1mldnps溶液,100μl的edc(0.1mol/l)和100μl的nhs(0.2mol/l)混合30min,并通过以12000rpm离心30min获得活化羧基后的dnps。
然后,添加20μl氯法拉滨clolar(0.03mol/l),10μlas1411适体(0.1mmol/l)和10μl流感血凝素肽ha(0.1mmol/l),室温下反应过夜。通过以12000rpm离心30min获得dnps/clolar/as1411/ha。
将制备的dnps/clolar/as1411/ha溶解在500μl的pbs中,将50μl的rna(0.1mmol/lsense/antisense)添加到溶液中,然后在25℃轻轻摇动混合物,持续2h。dnps/clolar/as1411/ha/sirna可以通过12000rpm离心30min获得。
将制备的dnps/clolar/as1411/ha/sirna添加到1ml的dox(10μg/ml)溶液中,室温下反应过夜。dnps/clolar/as1411/ha/sirna/dox通过12000rpm离心30min获得,并用高压灭菌超纯水洗涤,获得能够溶酶体逃逸的肽纳米颗粒。
dnps作为一种多药载体,是通过天然芳香族氨基酸(包括trp和phe)作为基本肽单元设计的,可以通过氢键,叠层相互作用和锌离子配位来合成(图1中的b)。核苷类似物clolar,核苷酸链和化疗剂dox分别通过化学键合、核碱基的分子识别和π-π堆积相互作用被使用并组装在一起,从而形成多功能纳米颗粒。如图1中的a,首先,将dnps的羧基与as1411适体或ha的胺基以及氯法拉滨的羟基偶联以合成dnps/clolar/as1411/ha,其中将适体as1411与dnps结合是为了提高纳米材料的靶向能力。合成小干扰rna(sirna)是一类双链rna分子,可以指导互补mirna(mrna)的转录后降解或转录基因沉默。有效的sirna传递系统,用一次处理即可实现完整和长久的基因沉默,以提高基因敲除效果并降低给药频率。然后,通过在胸苷(t)和腺苷(a)类似物之间的分子识别将sirna连接起来,形成dnps/clolar/as1411/ha/sirna,从而通过阻止mrna的翻译而导致tk1蛋白的下调。用于内质溶酶体逃逸的肽ha的组装,纳米复合颗粒随后从内体逸出,然后分布到细胞质中。最后,化学药物dox通过π-π堆叠相互作用与芳香族dnps堆叠形成dnps/clolar/as1411/ha/sirna/dox,其荧光强度会降低。当dnps/clolar/as1411/ha/sirna/dox到达细胞质时,多药clolar/sirna/dox逐渐协同发挥作用。dox被释放,其荧光强度可以恢复,能够实现在体外和体内成像。获得用于协同治疗和生物成像的内质溶酶体逃逸的肽纳米颗粒。
tem观察
将碳涂层的铜网格朝下放置在含有1mg/ml的dnps的10μl液滴的表面上,有光泽的一面朝下放置60s,然后吸干。
将洗涤后的网格放置在10μl5%磷钨酸负染色液中60s,然后吸干。使用feitecnaig2spirittem(fei)在80kv下观察样品。
动态光散射(dls)表征和透射电子显微镜(tem)来分析组装结构的形态和流体动力学直径(图2)。观察到透明的球形dnps球形纳米颗粒,其流体动力学直径约为60nm,这与原子力显微镜(afm)的结果一致。
为了追踪合成过程,用2%琼脂糖凝胶电泳来分析产物(图3)。dnps/clolar与适体as1411的共价缀合通过电泳迁移率漂移分析进行了验证。在as1411通道和dnps/clolar/as1411通道之间可观察到的偏移指示as1411和dnps之间的共轭(图3中的a)。为了研究dnps/clolar/as1411/ha纳米颗粒与rna之间的识别能力,将3种不同长度的嘧啶尾巴(t12,t22和t32)的sirna链与dnps/clolar/as1411/ha混合。琼脂糖凝胶电泳显示这三种sirna有义链可以与dnps/clolar/as1411/ha形成复合体,而相对而言,具有t32尾巴的sirna有义链显示出更清晰的泳道(图3中b图f泳道),表明核碱基识别的特异性。具有t32尾巴的sirna有义链与dnps/clolar/as1411/ha纳米粒子复合获得的dnps/clolar/as1411/ha/sirna特异性最好。
细胞培养
mcf-7细胞和l0-2细胞均在37℃,含有5%co2的潮湿气氛中培养用dmem培养基(含有10%fbs和1%抗生素)孵育。l0-2细胞购买于silveramethystbiotech有限公司,mcf-7人乳腺癌细胞购买于上海泽叶生物科技有限公司
mtt测定
通过mtt分析评估纳米颗粒对细胞的细胞毒性。首先向96孔板中接种细胞,每孔约10,000个细胞,100μl培养基(包含10%fbs和1%抗生素),并在co2浓度为5%的37℃恒温恒湿培养箱中于孵育24h,以使细胞能够依附于孔板底面。用纳米颗粒处理细胞,然后向每个孔中加10μl的5mg/ml的mtt的pbs(ph7.4)溶液,然后在37℃下再孵育4h,从而使活细胞将黄色的mtt转化为深蓝色的formazan晶体。然后轻轻除去培养基,并用100μl的dmso代替。将孔板放在振荡器上,将formazan晶体彻底混入溶剂中。最后,在570nm处测量吸光度。通过mtt测定法比较能够溶酶体逃逸的肽纳米颗粒处理过的和未处理过的细胞的细胞生存力。
为了研究dnps的细胞毒性特性,将l0-2非癌细胞和mcf-7癌细胞分别与dnps孵育0h,3h,6h,9h,12h和24h,然后使用mtt分析方法检查细胞活力。如图4中的a所示,dnps对mcf-7细胞和l0-2细胞均显示出微不足道的细胞毒性,本发明所检测的dnps适合用作生物纳米系统中的纳米药物载体。
为了研究自组装dnps纳米颗粒的细胞毒性,将mcf-7细胞与(a)dnps/clolar,(b)dnps/clolar/as1411,(c)dnps/clolar/as1411/ha,(d)dnps/clolar/as1411/ha/sirna和(e)dnps/clolar/as1411/ha/sirna/dox一起孵育。结果如图4中的b显示,与不具有针对mcf-7细胞的适体的dnps/clolar纳米颗粒相比,dnps/clolar/as1411纳米颗粒表现出更高的细胞毒性。此外,流式荧光(图4中的c)表明,dnps孵育后的细胞荧光与mcf-7细胞自身荧光几乎没有区别,而dnps/as1411纳米颗粒孵育后的mcf-7细胞荧光信号明显增强。as1411适体能够有效辅助纳米颗粒识别mcf-7细胞。
细胞成像共定位示踪药物输送
为了进一步研究纳米复合制剂对细胞内定位的影响,通过共聚焦激光扫描显微镜(clsm)观察了肽纳米颗粒在活细胞中的细胞内定位(结果如图5所示)。clsm可以方便地监测其在细胞内的分布。用dnps/clolar/as1411/ha/sirna/dox分别处理l0-2细胞和mcf-7细胞,孵育45分钟时,我们可以在细胞膜位置观察到纳米颗粒的信号(橙色),而此时并未观察到抗癌药物dox的荧光信号(红色)。当孵育2小时时,可以看到微弱的dox的荧光信号。而当纳米颗粒孵育细胞8小时后,我们发现明显的dox荧光出现在细胞核及周围的位置,这说明随着纳米颗粒中dox已经被成功释放。而相同条件下的l0-2细胞,均为检测到纳米颗粒的荧光信号。结果表明,纳米颗粒dnps/clolar/as1411/ha/sirna/dox能够准确靶向mcf-7细胞,并且可以在细胞内成功释放药物。
为了研究dnps/clolar/as1411/ha/sirna/dox的内体逃逸能力,对原始dnps/clolar/as1411/sirna/dox和dnps/clolar/as1411/ha/sirna/dox与mcf-7细胞中内体/溶酶体进行了共定位分析。dnps在图6中可以看到为橙色斑点,而内质溶酶体则用lysotrackerred染色。与细胞孵育3h后,大多数dnps/clolar/as1411/sirna/dox纳米颗粒仍保留在合并clsm图像的内体/溶酶体(橙色和红色点重叠)内。相比之下,分析dnps/clolar/as1411/ha/sirna/dox时,共定位显着降低,这表明ha涂层能够成功地使纳米颗粒从内体/溶酶体逃逸出。
dnps/clolar/as1411/sirna/dox和dnps/clolar/as1411/ha/sirna/dox对细胞活力的影响结果图6中的b显示,与dnps/clolar/as1411/ha/sirna/dox相比,dnps/clolar/as1411/sirna/dox对mcf-7癌细胞表现出较低的细胞毒性,这可以归因于药物释放的内体逃逸过程纳米粒子。
由以上实施例可知,本发明提供的肽纳米颗粒,可以有效地靶向治疗肿瘤,具有良好的低毒性和生物相容性;可以在肿瘤可视化的基础上改善药物在肿瘤部位的蓄积,并最终通过多种药物的协同作用抑制肿瘤的生长。本发明提供的肽纳米颗粒能够同时用于治疗和生物成像。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110>临沂大学
<120>一种能够溶酶体逃逸的肽纳米颗粒及其制备方法和应用
<160>5
<170>siposequencelisting1.0
<210>1
<211>33
<212>dna/rna
<213>artificialsequence
<400>1
aagcggucggcgcgggaaccatttttttttttt33
<210>2
<211>43
<212>dna/rna
<213>artificialsequence
<400>2
aagcggucggcgcgggaaccatttttttttttttttttttttt43
<210>3
<211>53
<212>dna/rna
<213>artificialsequence
<400>3
aagcggucggcgcgggaaccatttttttttttttttttttttttttttttttt53
<210>4
<211>21
<212>dna/rna
<213>artificialsequence
<400>4
ugguucccgcgccgaccgcuu21
<210>5
<211>26
<212>dna
<213>artificialsequence
<400>5
ggtggtggtggttgtggtggtggtgg26
1.一种能够溶酶体逃逸的肽纳米颗粒,其特征在于,以自组装的色氨酸-苯丙氨酸二肽纳米颗粒为核心,所述核心的表面连接as1411适体、流感血凝素肽ha和抗肿瘤药物。
2.根据权利要求1所述的肽纳米颗粒,其特征在于,所述抗肿瘤药物包括氯法拉滨、sirna和dox。
3.根据权利要求1所述的肽纳米颗粒,其特征在于,所述sirna包括seqidno.1~seqidno.4中的一种或几种。
4.根据权利要求1所述的肽纳米颗粒,其特征在于,所述as1411适体的核苷酸序列如seqidno.5所示,所述流感血凝素肽ha的氨基酸序列如seqidno.6。
5.根据权利要求2或3所述的肽纳米颗粒,其特征在于,所述色氨酸-苯丙氨酸二肽纳米颗粒通过表面羧基与所述as1411适体、流感血凝素肽ha或氯法拉滨偶联;所述dox通过π-π堆叠相互作用与所述色氨酸-苯丙氨酸二肽纳米颗粒连接。
6.权利要求1~5任意一项所述的肽纳米颗粒的制备方法,包括以下步骤:
1)将色氨酸-苯丙氨酸二肽dnps进行自组装形成自组装dnps;
2)将所述自组装dnps表面的羧基活化获得羧基活化的自组装dnps;
3)将羧基活化的自组装dnps与as1411适体、流感血凝素肽ha和氯法拉滨混合反应获得dnps/clolar/as1411/ha;
4)将sirna与dnps/clolar/as1411/ha混合反应获得dnps/clolar/as1411/ha/sirna;
5)将所述dnps/clolar/as1411/ha/sirna与dox混合获得dnps/clolar/as1411/ha/sirna/dox。
7.根据权利要求6所述的制备方法,其特征在于,步骤1)中所述自组装的温度为72~78℃,所述自组装的时间为25~35min。
8.根据权利要求6所述的制备方法,其特征在于,步骤4)中所述混合反应的温度为24~26℃,所述混合反应的时间为1.5~2.5h。
9.权利要求1~5任意一项所述的能够溶酶体逃逸的肽纳米颗粒在制备靶向治疗肿瘤的药物和载体中的应用。
10.权利要求1~5任意一项所述的能够溶酶体逃逸的肽纳米颗粒在制备肿瘤成像试剂中的应用。
技术总结