本发明属于钢铁冶金连铸检测技术领域,涉及一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法。
背景技术:
连铸坯鼓肚是连铸生产过程中常见的一类形状缺陷,主要发生在二冷区。轻微的鼓肚会引起铸坯中心偏析和中心裂纹,严重时则导致铸坯无法顺利通过扇形段甚至浇铸中断,给铸坯质量、生产顺行和各工序的衔接带来严重干扰。
鼓肚程度通常使用铸坯中心与边缘的厚度差来衡量,称为鼓肚变形量。张兴中等人提出了一种基于高温蠕变本构方程推导的鼓肚变形量计算方法(journalofironandsteelresearchinternational.doi:10.1007/s42243-018-0169-1)。祭程等人报道了一种基于有限元模拟的鼓肚变形量计算方法(metallurgicalandmaterialstransactionsb.doi:10.1007/s11663-018-1173-3)。已开展的围绕鼓肚的研究多侧重于弹塑性分析、蠕变公式推导以及有限元模拟。然而,在实际生产过程中鼓肚的出现具有偶然性、突发性和无规律性,模拟结果与鼓肚变形量实测结果难免出现偏差。因此到目前为止,国内外尚未开发出成熟的鼓肚检测和鼓肚变形量预测方法。
基于鼓肚时结晶器液位的周期性波动特性,本发明提出,对结晶器液位信号进行经验模态分解,利用希尔伯特边际谱分析得到的鼓肚频率确定液位波动分量,根据鼓肚液位分量的波动幅度预测连铸坯鼓肚的变形量。
技术实现要素:
本发明的目的是提出一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,对鼓肚的变形量进行准确的预测,为连铸坯质量的在线控制提供现场指导。
为达到上述目的,本发明的技术方案如下:
一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,该方法采用希尔伯特-黄变换对液位信号进行经验模态分解和希尔伯特边际谱分析得到鼓肚频率,利用鼓肚频率确定鼓肚液位分量,根据其波动幅度预测鼓肚变形量,包括以下步骤:
第一步、采集结晶器液位信号
通过以太网直接读取结晶器液面控制系统检测到的液位信号,并同步采集铸机拉速浇铸等工艺参数。
第二步、获取鼓肚频率
获取结晶器液位信号的各层本征模态函数c1(t)~cn(t)以及能够对鼓肚进行定位的频率,即鼓肚频率fb;
1.希尔伯特-黄变换
(1)对采集到的结晶器液位信号进行经验模态分解,获取液位信号的各层本征模态函数,主要包括以下子步骤:
1.1)以x(t)表示待分解信号,找出其极大值点和极小值点,分别以三次样条函数对极大值点和极小值点进行拟合,得到上包络线s (t)和下包络线s-(t),并计算其包络均值:
其中,t表示液位信号的采样时间。
1.2)从信号x(t)中减去包络均值m1(t),得到h1(t):
h1(t)=x(t)-m1(t),t∈[0,t]
如果,h1(t)不满足本征模态函数判定规则,信号计算h1(t)的包络均值m1(1)(t),并从h1(t)中减去m1(1)(t)得到h1(1)(t):
h1(1)(t)=h1(t)-m1(1)(t),t∈[0,t]
直至经过k次计算可得到满足本征模态函数判定规则的h1(k)(t):
h1(k)(t)=h1(k-1)(t)-m1(k)(t),t∈[0,t]
所述本征模态函数判定规则为同时满足以下两个条件:i)信号极值点和过零点的个数相等或相差不超过一个;ii)信号局部极大值点和局部极小值点形成的上、下包络线的均值为零。
1.3)将h1(k)(t)存储为本征模函数,记为c1(t),并从x(t)中减去c1(t),得到残差信号r1(t):
r1(t)=x(t)-c1(t),t∈[0,t]
1.4)返回步骤1.1),将r1(t)更新为待分解信号,并重新执行步骤1.1)-1.3),得到第n层本征模态函数cn(t)和残差信号rn(t):
rn(t)=rn-1(t)-cn(t),t∈[0,t]
其中:rn-1(t)表示获取第n层本征模态函数时对应的待分解信号。
1.5)如果rn(t)极值点个数小于m,则分解过程结束,最终得到:
否则,重复执行1.1)-1.5),直到分解过程结束为止。最终,得到了n层本征模态函数c1(t)~cn(t)和残差信号rn(t)。
其中,n为本征模态函数的数量,ci(t)为第i层本征模态函数,rn(t)为残差信号。
(2)对各层本征模态函数进行希尔伯特谱分析,汇总所有本征模态函数的希尔伯特谱并积分,得到结晶器液位信号x(t)的边际谱,最终确定频率信息,主要包括以下子步骤:
2.1)对各层本征模态函数进行希尔伯特谱分析,并得到希尔伯特谱:
其中,ai(t)、ωi(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号。
2.2)汇总所有本征模态函数的希尔伯特谱,得到液位信号的希尔伯特谱:
2.3)对液位信号的希尔伯特谱进行时间积分,得到边际谱:
绘制液位信号x(t)的边际谱图,根据边际谱图获取能量峰值所对应的主要频率f。
2.鼓肚的检测和定位
结合拉速vc计算连铸坯在x(t)的边际谱的主要频率f对应的周期内行进的距离d:
若某个主要频率f对应的d与铸机扇形段某对导辊的间距一致,可判定出现了鼓肚,则将与d对应的频率f称之为鼓肚频率fb。
第三步、确定鼓肚液位分量的波动幅度
计算结晶器液位各层本征模态函数c1(t)~cn(t)各自的边际谱,获得其各自对应的频率fi,将与鼓肚频率fb相同的fi对应的本征模态函数称之为鼓肚液位分量,并确定其波动幅度h,具体包含以下步骤:
1)对各层本征模态函数进行希尔伯特谱分析,得到其各自对应的希尔伯特谱:
2)对各层本征模态函数的希尔伯特谱进行时间积分,得到其各自对应的边际谱:
绘制各层本征模态函数c1(t)~cn(t)的边际谱图,根据其边际谱图获取其各自能量峰值对应的频率fi。
3)对比鼓肚频率fb与频率fi,将与fb频率相同的fi对应的本征模态函数ci(t)称之为液位鼓肚分量,并确定ci(t)的波动幅度h。
第四步、连铸坯鼓肚变形量的预测
基于由鼓肚引起的结晶器液位波动体积变化等于二冷区铸坯内部的钢液体积变化(基于质量守恒,鼓肚引起的铸坯内腔钢液容积变化等于结晶器液位波动体积变化),可得到:
w·d·h=dbulging·wl·lb×2
式中,w、d分别表示铸坯的宽度、厚度,mm;h表示由鼓肚液位分量的波动幅度,mm;wl表示鼓肚处液芯内腔的液相宽度,mm;lb表示沿浇铸方向带有鼓肚的铸坯长度,dbulging表示鼓肚变形量。
进一步,可利用鼓肚液位分量的波动幅度预测鼓肚变形量:
上述预测鼓肚变形量的方法适用于板坯、方坯、圆坯、异型坯等连铸坯鼓肚的预测和定位。
本发明的有益效果是:所提出的一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,借助连铸现场已有的信号检测条件,避免了在恶劣的连铸现场额外安装传感器和测量元件,检测原理清晰,易于维护,实现了连铸坯鼓肚变形量的在线预测,为提升铸坯质量、促进生产顺行及过程异常的在线监测提供了可靠手段。
附图说明
图1为结晶器液位信号;
图2为结晶器液位信号的周期性波动;
图3为结晶器液位信号的经验模态分解结果;
图4为结晶器液位信号的边际谱结果;
图5为结晶器液位各层本征模态函数的边际谱结果。
具体实施方式
下面通过具体的实施例,结合附图对本发明作进一步的阐述。
第一步、结晶器液位信号实时采集
通过以太网直接读取铸机塞棒和液位控制系统的结晶器液位信号,并进行后续的分析。图1所示为采样时间为300s、采样频率为25hz的结晶器液位信号。铸坯出现鼓肚时,结晶器液位呈现出明显的规律性,液位的周期性波动如图2所示。
第二步、获取鼓肚频率
1.结晶器液位信号希尔伯特-黄变换
(1)对采集到的结晶器液位信号进行经验模态分解,获取液位信号的各层本征模态函数,主要包括以下子步骤:
1.1)以x(t)表示待分解的液位信号,找出其极大值点和极小值点,分别以三次样条函数对极大值点和极小值点进行拟合,得到上包络线s (t)和下包络线s-(t),并计算其包络均值:
其中,t表示液位信号的采样时间。
1.2)从信号x(t)中减去包络均值m1(t),得到h1(t):
h1(t)=x(t)-m1(t),t∈[0,300]
经验证h1(t)并不满足本征模态函数判定规则,即:h1(t)的极值点和过零点的个数相差超过一个,且其局部极大值点和局部极小值点形成的上、下包络线的均值不为零;
则计算h1(t)的包络均值m1(1)(t),并从h1(t)中减去m1(1)(t)得到h1(1)(t):
h1(1)(t)=h1(t)-m1(1)(t),t∈[0,300]
直至经过k次计算后得到了满足本征模态函数判定规则的h1(k)(t):
h1(k)(t)=h1(k-1)(t)-m1(k)(t),t∈[0,300]
1.3)将h1(k)(t)存储为本征模函数,记为c1(t),并从x(t)中减去c1(t),得到残差信号r1(t):
r1(t)=x(t)-c1(t),t∈[0,300]
1.4)返回步骤1.1),将r1(t)更新为待分解信号,并重新执行步骤1.1)-1.3),即重复执行得到c1(t)的过程,持续得到了c2(t)~c12(t)及残差信号r12(t):
r12(t)=r11(t)-c12(t),t∈[0,300]
1.5)由于r12(t)极值点个数小于2,所以分解过程结束,最终得到12层本征模态函数和残差信号:
图3为经验模态分解结果,可以看出,图1中的结晶器液位信号经经验模态分解得到了分量c1~c12以及残差信号r12。
(2)对各层本征模态函数进行希尔伯特谱分析,汇总所有本征模态函数的希尔伯特谱并积分,得到结晶器液位信号的边际谱,以确定频率信息,主要包括以下子步骤:
2.1)对各层本征模态函数进行希尔伯特谱分析,并得到希尔伯特谱:
其中,ai(t)、ωi(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号。
2.2)汇总本征模态函数c1~c12的希尔伯特谱,得到液位信号的希尔伯特谱:
2.3)对液位信号的希尔伯特谱进行时间积分,得到边际谱:
汇总所有分量的希尔伯特谱并对时间进行积分,得到图1中结晶器液位信号的边际谱,如图4所示。可以看出,在频率为0.049hz和0.270hz处具有明显的能量峰值,需对这两个频率作进一步分析。
2.连铸坯鼓肚的检测和定位
图4中,能量最高处对应的频率为0.270hz,计算该频率对应的周期,即取频率的倒数,为3.7s,此时铸机的拉速vc为0.75m/min,则连铸坯在一个周期内行进的距离为:
对照表1中列出的铸机扇形段辊间距可知,该距离与所有辊间距均无法匹配,因此上述频率对于鼓肚的定位并无用处。
第二个能量峰值对应的频率为0.049hz,计算该频率对应的周期,即取频率的倒数,为20.4s,此时铸机的拉速vc为0.75m/min,则连铸坯在一个周期内行进的距离为:
对照表1中列出的铸机扇形段辊间距,该距离与0号段的总辊18号~段内辊17号的辊间距几乎完全相同,因此,可以判定连铸坯鼓肚出现在0号扇形段内,位置在18号辊附近,该结果与现场人员对连铸坯鼓肚的实时追踪结果一致。
表1连铸机扇形段辊列数据
由上述可知,频率0.049hz实现了鼓肚发生位置的准确预测。因此,鼓肚频率fb=0.049hz。
第三步、确定鼓肚液位分量的波动幅度
计算结晶器液位各层本征模态函数c1(t)~c12(t)各自的边际谱,获得其各自对应的频率,将频率为0.049hz的本征模态函数称之为鼓肚液位分量,并确定其波动幅度,具体包含以下步骤:
(1)对各层本征模态函数进行希尔伯特谱分析,得到各自的希尔伯特谱:
(2)对各层本征模态函数的希尔伯特谱进行时间积分,得到其各自对应的边际谱:
绘制各层本征模态函数的边际谱图,根据其边际谱图获取各层本征模态函数对应的频率,如图5所示。
(3)从图5中可以看出,鼓肚频率0.049hz对应第8层本征模态函数,即c8,因此第8层本征模态函数c8为鼓肚液位分量。结合图3,c8中波谷的最低值为-1.68mm,波峰的最高值为1.85mm,因此,可确定鼓肚液位分量c8的波动幅度为h=3.53mm。
第四步、连铸坯鼓肚变形量的预测
基于质量守恒,鼓肚引起的铸坯内腔钢液容积变化等于结晶器液位波动体积变化,可得到:
w·d·h=dbulging·wl·lb×2
进一步,可利用鼓肚液位分量的波动幅度预测鼓肚变形量:
式中各参数的数值如表2所示
表2结晶器及铸坯相关参数
将表2中各参数的数值带入上式:
最终,计算得到鼓肚变形量为0.148mm。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
1.一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,其特征在于,该方法采首先用希尔伯特-黄变换对液位信号进行经验模态分解和希尔伯特边际谱分析得到鼓肚频率,利用鼓肚频率确定鼓肚液位分量,根据其波动幅度预测鼓肚变形量,包括以下步骤:
第一步、采集结晶器液位信号
通过以太网直接读取结晶器液面控制系统检测到的液位信号,并同步采集铸机拉速浇铸工艺参数;
第二步、获取鼓肚频率
获取结晶器液位信号的各层本征模态函数c1(t)~cn(t)以及能够对鼓肚进行定位的频率,即鼓肚频率fb;
第三步、确定鼓肚液位分量的波动幅度
计算结晶器液位各层本征模态函数c1(t)~cn(t)各自的边际谱,获得其各自对应的频率fi,将与鼓肚频率fb相同的fi对应的本征模态函数称之为鼓肚液位分量,并确定其波动幅度h,具体包含以下步骤:
1)对各层本征模态函数进行希尔伯特谱分析,得到其各自对应的希尔伯特谱:
其中,ai(t)、ωi(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号,n表示本征模态函数的层数,t为时间;
2)对各层本征模态函数的希尔伯特谱进行时间积分,得到其各自对应的边际谱:
绘制各层本征模态函数c1(t)~cn(t)的边际谱图,根据其边际谱图获取其各自能量峰值对应的频率fi;
3)对比鼓肚频率fb与频率fi,将与fb频率相同的fi对应的本征模态函数ci(t)称之为液位鼓肚分量,并确定ci(t)的波动幅度h;
第四步、连铸坯鼓肚变形量的预测
基于由鼓肚引起的结晶器液位波动体积变化等于二冷区铸坯内部的钢液体积变化,可得到:
w·d·h=dbulging·wl·lb×2
式中,w、d分别表示铸坯的宽度、厚度,mm;h表示由鼓肚液位分量的波动幅度,mm;wl表示鼓肚处液芯内腔的液相宽度,mm;lb表示沿浇铸方向带有鼓肚的铸坯长度,dbulging表示鼓肚变形量;
利用鼓肚液位分量的波动幅度预测鼓肚变形量:
2.根据权利要求1所述的一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,其特征在于,所述的第二步包括以下子步骤:
1.希尔伯特-黄变换
(1)对采集到的结晶器液位信号进行经验模态分解,获取液位信号的各层本征模态函数,主要包括以下子步骤:
1.1)以x(t)表示待分解信号,找出其极大值点和极小值点,分别以三次样条函数对极大值点和极小值点进行拟合,得到上包络线s (t)和下包络线s-(t),并计算其包络均值:
其中,t表示液位信号的采样时间;
1.2)从信号x(t)中减去包络均值m1(t),得到h1(t):
h1(t)=x(t)-m1(t),t∈[0,t]
如果,h1(t)不满足本征模态函数判定规则,信号计算h1(t)的包络均值m1(1)(t),并从h1(t)中减去m1(1)(t)得到h1(1)(t):
h1(1)(t)=h1(t)-m1(1)(t),t∈[0,t]
直至经过k次计算可得到满足本征模态函数判定规则的h1(k)(t):
h1(k)(t)=h1(k-1)(t)-m1(k)(t),t∈[0,t]
所述本征模态函数判定规则为同时满足以下两个条件:i)信号极值点和过零点的个数相等或相差不超过一个;ii)信号局部极大值点和局部极小值点形成的上、下包络线的均值为零;
1.3)将h1(k)(t)存储为本征模函数,记为c1(t),并从x(t)中减去c1(t),得到残差信号r1(t):
r1(t)=x(t)-c1(t),t∈[0,t]
1.4)返回步骤1.1),将r1(t)更新为待分解信号,并重新执行步骤1.1)-1.3),得到第n层本征模态函数cn(t)和残差信号rn(t):
rn(t)=rn-1(t)-cn(t),t∈[0,t]
其中:rn-1(t)表示获取第n层本征模态函数时对应的待分解信号;
1.5)如果rn(t)极值点个数小于m,则分解过程结束,最终得到:
否则,重复执行1.1)-1.5),直到分解过程结束为止;最终,得到了n层本征模态函数c1(t)~cn(t)和残差信号rn(t);
其中,n为本征模态函数的数量,ci(t)为第i层本征模态函数,rn(t)为残差信号;
(2)对各层本征模态函数进行希尔伯特谱分析,汇总所有本征模态函数的希尔伯特谱并积分,得到结晶器液位信号x(t)的边际谱,最终确定频率信息,主要包括以下子步骤:
2.1)对各层本征模态函数进行希尔伯特谱分析,并得到希尔伯特谱:
其中,ai(t)、ωi(t)分别表示第i层本征模态函数的瞬时幅值和瞬时频率,j表示虚数符号;
2.2)汇总所有本征模态函数的希尔伯特谱,得到液位信号的希尔伯特谱:
2.3)对液位信号的希尔伯特谱进行时间积分,得到边际谱:
绘制液位信号x(t)的边际谱图,根据边际谱图获取能量峰值所对应的主要频率f;
2.鼓肚的检测和定位
结合拉速vc计算连铸坯在x(t)的边际谱的主要频率f对应的周期内行进的距离d:
若某个主要频率f对应的d与铸机扇形段某对导辊的间距一致,可判定出现了鼓肚,则将与d对应的频率f称之为鼓肚频率fb。
3.根据权利要求1所述的一种采用希尔伯特-黄变换预测连铸坯鼓肚变形量的方法,其特征在于,所述鼓肚预测方法适用于板坯、方坯、圆坯、异型坯或其他连铸坯鼓肚的检测和定位。
技术总结