一种基于电转气和燃料电池的多能源系统稳定性优化方法与流程

专利2022-06-29  60


本发明涉及多能源系统稳定性控制技术领域,尤其涉及一种基于电转气和燃料电池的多能源系统稳定性优化方法。



背景技术:

近年来随着多能源系统的不断发展,多能源系统相较于传统的供能系统有较大优势。多通互补能源系统的能源利用率很高,同时其能源供应的稳定性有较大的改善能力,在多能互补能源系统运行过程中也能够产生更多的环境等系列效益。但同时由于多能源系统属于一种典型的非线性系统,其本身具有变量复杂、特性众多、随机性强等特点,如何合理优化各种能源协调运行,以及能源之间的相互转化关系,最大限度的存储互补,能够使多能源系统运行稳定性更加优化。而电转气技术在减少“弃风”、“弃光”问题上非常有效,相比现在多数使用的蓄电池储电在储能容量配置可能是容量配置得过大或者过小,导致系统储能容量部分闲置或者不能够满足系统稳定性运行的要求,其电转气技术更加灵活多变,而且相对高昂的蓄电池成本,电转气装置的经济性和环境效益更好,但是一般的多能源系统在储能配置时利用到电转气装置把电能进行能源转化存储时优先级较低,且没有和燃料电池进行对整个多能源系统协调处理,两者之间的协调优化更是没有考虑到,各个装置的权重对系统的影响也没有考虑,而本发明在整个多能源系统稳定性方面优先考虑用电转气与燃料电池协调参与调节系统稳定性,把电转气和燃料电池的在运行时权重进行优化,使得这两者在实时优化运行,使得整个系统运行更加稳定,考虑更加全面。这样一个利用电转气装置把多余的电能转成气存储和燃料电池把气转换为电能过程,达到相应的功率平衡,把系统中的功率波动带来的系列不稳定情况进行一定的调节,使其相较更加稳定,实现了电池的替代,使整个系统凸显灵活、稳定。



技术实现要素:

针对上述现有技术的不足,本发明提供一种基于电转气和燃料电池的多能源系统稳定性优化方法。含电转气和燃料电池协调的多能源系统如图2所示,图2中黑色实线圈出部分在原有系统中为蓄电池,本发明中由电转气和燃料电池协调实现了电池替代,当系统风光发电量多时原由蓄电池进行储电,本发明由电转气装置对多余的电量进行转气,对系统储气;当系统的电量少时,原由蓄电池将存储的电量进行放电,本发明由燃料电池通过燃烧储气发电。这样一个过程实现了电池的替代,使整个系统灵活、稳定,且在整个过程中对各部分进行优化,使系统的稳定性得到提高。

本发明所采取的技术方案是:一种基于电转气和燃料电池的多能源系统稳定性优化方法,其流程如图1所示,包括如下步骤:

步骤1:分别采集电转气装置的参数与燃料电池的参数,并初始化优化前每个电转气装置的权重比αi(0)及优化前每个燃料电池权重比λm(0);

对电转气装置的参数采集,将一天划分为n时段,t时段内,电解槽效率η、储气罐内部压强ptank、储气罐体积v、储气罐温度t、储气罐数量n、每个储气罐装置的t时段初始时刻的储气量es,i(t)、t时段每个储气罐储入气量ein,i(t)、t时段每个储罐输出气量eout,i(t)、气体摩尔体积vm、每个电转气装置额定功率pi,p2g、优化前每个电转气装置的权重比αi(0);

所述燃料电池参数包括:耗能系数ε、燃料电池数量m、燃料电池效率ηfc、燃料电池开路电压u0、塔菲尔斜率j、燃料电池电流ic、燃料电池内部电流in、交换电流ie、质量转移常数a、限制电流il、每个燃料电池容量cm,fl、一立方米氢气完全燃烧释放热值r、每个燃料电池t时段消耗氢气量ei,h(t)、膜电阻rx,气体常数k,每个燃料电池额定功率pm,fl、优化前每个燃料电池权重比λm(0)。

步骤2:利用上述参数对t时段每个电转气装置权重比αi(t)进行优化计算,其流程如图3所示;

步骤2.1:用每个时段电转气产生的气体量来表示电转气工作情况,构造每个储气罐装置在t时段最后累积的气量队列el,i(t),为之后优化计算做准备:

获取每个储气罐装置的t时段初始时刻的储气量队列es,i(t)可表示为:

es,i(t)=[es,1(t),es,2(t),…es,n(t)],t∈[1,2,…n]

每个储气罐装置在t时段内输入电转气的气量队列ein,i(t)可表示为:

ein,i(t)=[ein,1(t),ein,2(t),…ein,n(t)],t∈[1,2,…n]

每个储气罐装置在t时段内输出的气量队列eout,i(t)可表示为:

eout,i(t)=[eout,1(t),eout,2(t),…eout,n(t)],t∈[1,2,…n]

每个储气罐装置在t时段最后累积的气量队列el,i(t)可表示为:

el,i(t)=[el,1(t),el,2(t),…el,n(t)],t∈[1,2,…n]

构造动态更新函数可表示如下:

el,i(t)=es,i(t) ein,i(t)-eout,i(t),t∈[1,2,…n],i∈[1,2,…n]

步骤2.2:制定优化电转气装置权重比的触发机制:

含电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态修正累积的气量队列el,i(t)的当前值,没有接受到触发信号则维持原来的运行状态;

事件1:含电转气多能源系统里的风光出力的变化量超出一定的阈值:

s(t 1)-s(t)>δs(t)

其中,s(t 1)、s(t)分别表示两时段的风光出力,δ为风光出力变化量超出阈值系数;

事件2:系统内气负荷需求变化量超过一定的阈值。

lg(t 1)-lg(t)>τlg(t)

其中,lg(t 1)、lg(t)分别为两时段的气负荷需求量,τ为气负荷需求量阈值系数;

事件3:多能源系统内分时气价发生变化:

j(t 1)≠j(t)

其中,j(t 1)、j(t)分别为两时段的气价;

上述优化触发机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;

步骤2.3:通过下式的计算来实时优化每个电转气装置权重比αi(t):

其中,αi(t)为每个电转气装置t时权重比;k为气体常数;η为电解槽效率;气体摩尔体积vm;r为一立方米氢气完全燃烧释放热值;el,i(t)为t时段储气罐累积气量;ein,i(t)为t时段储气罐储入气量;n储气罐数量,i为储气罐编号;eout,i(t)为t时段储罐输出气量;ptank为储气罐内部压强;v储气罐体积;t为储气罐温度;

步骤2.4:判断电转气装置是否处于最后工作时刻,即电解槽是否处于0状态;若是,则结束,输出优化权重比结果;否则更新初始方程重复步骤2.1至步骤2.4,更新方程如下:

el,i(t 1)=el,i(t) ein,i(t 1)-eout,i(t 1),t∈[1,2…n]

步骤3:利用燃料电池对氢气消耗放能及上述参数对t时段每个燃料电池权重比λm(t)进行优化计算,其流程如图4所示;

步骤3.1:每个燃料电池装置消耗气体量队列em,h(t)表示为:

em,h(t)=[e1,h,e2,h…em,h],i=[1,2,…m],t∈[1,2,…n]

步骤3.2:制定优化燃料电池权重比的触发机制:

含电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态实时获取燃料电池消耗的气量队列em,h(t)的当前值,没有接受到触发信号则维持原来的运行状态;

事件ⅰ:多能源系统内基础电负荷量缺量超过一定的阈值:

le(t 1)-le(t)>ζle(t)

其中,le(t 1)、le(t)分别为两时段的电负荷需求量,ζ为电负荷需求量阈值系数;

事件ⅱ:多能源系统里分时电价发生变化:

x(t 1)≠x(t)

其中,x(t 1)、x(t)分别为两时段的气价;

事件ⅲ:多能源系统里风光出力的缺量超过一定阈值:

其中,s(t 1)、s(t)分别表示两时段的风光出力,为风光出力缺量超出阈值系数;

上述实时事件机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;

步骤3.3:通过下式的计算来实时优化每个燃料电池装置权重比λm(t):

其中,λm(t)为燃料电池功率;ε为耗能系数;m为燃料电池数量,m为电池编号;em,h(t)为燃料电池t时段消耗气体量;r为1立方米氢气完全燃烧的热值;vm为摩尔体积;k为气体常数;ηfc为燃料电池效率;u0为燃料电池开路电压;j为塔菲尔斜率;ic为燃料电池电流;in为内部电流;ie为交换电流;rx为膜电阻;a质量转移常数;il为限制电流;cm,fl为燃料电池的容量,δt为燃料电池开始工作时到优化结束时的时间间隔;

步骤3.4:判断燃料电池装置是否处于最后工作时刻,即燃料电池启动状态是否处于0状态;若是,则结束并输出优化权重比结果;否则t=t 1,重复步骤3.1至步骤3.4。

步骤4:利用步骤2及步骤3优化后的每个电转气装置工作时的权重比和每个燃料电池工作时权重比,与优化前多能源系统的稳定性进行比较,计算整个多能源系统稳定性提高率。

步骤4.1:计算优化前含电转气与燃料电池协调运行的多能源系统运行稳定性指标为:

其中,θ0为优化前含电转气装置与燃料电池优化后系统稳定性指标,αi(0)为每个电转气装置优化前权重比,i=1,2,…n,λm(0)为每个燃料电池优化前的权重比,m=1,2,…m;ws为整个系统容量;

步骤4.2:利用优化后的每个电转气装置权重比以及优化后的每个燃料电池权重比,计算优化后含电转气与燃料电池的多能源系统运行的稳定性为:

其中,θ为含电转气装置与燃料电池优化后多能源系统稳定性指标,αi(t)为每个电转气装置优化后权重比,i=1,2,…n;λm(t)为每个燃料电池优化后的权重比,m=1,2,…m;ws为整个系统容量。

步骤4.3:计算整个含电转气和燃料电池的多能源系统稳定性提高率δθ:

δθ=(θ-θ0)×100%

其中,δθ为含电转气装置与燃料电池优化后系统稳定性提高率。

采用上述技术方案所产生的有益效果在于:

1、本发明提供的一种基于电转气和燃料电池的多能源系统稳定性优化方法,采用了对电转气装置和燃料电池装置协调建立的多能源系统优化,两者的协调实现了传统的蓄电池的功能,达到了电池替代的效果,使得整个这样的一个系统具有更好的灵活处理能力。

2、本发明在对含电转气和燃料电池的这样一个多能源系统稳定性优化时分别考虑电转气和燃料电池两者所占系统的权重比,针对优化对象明显,这样的优化过程更加简单,效果更加精确。

3、在电转气和燃料电池两者所占权重比的优化过程中考虑了大量的数据,且在优化时对变量进行实时优化,对数据进行实时的更新使得优化具有实时性,最终达到一个最优的优化效果。

4、优化过程中不仅考虑了电转气与燃料电池两者参数影响,还对系统的一些状态事件进行了考虑约束,实时优化过程中每次优化结束对本发明系统里的制定事件状态进行监测,这样的考虑使得优化更具合理性。

附图说明

图1为本发明一种基于电转气和燃料电池的多能源系统稳定性优化方法的流程图;

图2为本发明多能源系统结构框图;

图3为本发明每个电转气装置权重比的优化流程图;

图4为本发明每个燃料电池权重比的优化流程图。

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。

本实施例将一天划分为n=72个时段,即每个时间段的间隔为20min,本实施例设电转气装置和燃料电池装置最初开始工作时t=1,t∈[1,72],且本实施例循环达到优化结束条件时的时间为t=32,本实施例对所给变量进行优化过程中,为方便计算,设其他参数都以常数给出。

如图1所示,本实施例的方法如下所述。

步骤1:分别采集电转气装置的参数与燃料电池的参数,并初始化优化前每个电转气装置的权重比αi(0)及优化前每个燃料电池权重比λm(0);

所述电转气装置的参数包括电解槽效率η=0.52、储气罐内部压强ptank=3.2mpa、储气罐体积v=62.5m3、储气罐温度t=25摄氏度、本实施例假设一个电转气对应一个储气罐,储气罐数量n=8个、每个电转气装置优化前权重比[0.09,0.11,0.10,0.16,0.11,0.14,0.13,0.16]、气体摩尔体积vm=24.5l/mol、设每个电转气装置额定功率都为pi,p2g=3.8kw;

所述燃料电池参数包括:燃料电池效率ηfc=0.74、燃料电池开路电压u0=0.98v、塔菲尔斜率j=0.05、燃料电池电流ic=2.1a、燃料电池内部电流in=0.5a、交换电流ie=0.36a、质量转移常数a=0.205、限制电流il=100a100a、燃料电池数量m=7、每个燃料电池优化前权重比[0.06,0.17,0.20,0.19,0.09,0.15,0.14]、膜电阻rx=0.24ω、耗能系数ε=0.42、气体常数k=8.314,本发明假设每个燃料电池容量都一样为cm,fl=4kw·h,一立方米氢气完全燃烧释放热值r=9.7m3/kw·h,每个燃料电池额定功率pm,fl=4kw,设多能源系统装机容量ws=60mw。

步骤2:利用上述参数对t时段每个电转气装置权重比αi(t)进行优化计算;

步骤2.1:用每个时段电转气产生的气体量来表示电转气工作情况,构造每个储气罐装置在t时段最后累积的气量队列el,i(t),为之后优化计算做准备:

获取每个储气罐装置的t时段初始时刻的储气量队列es,i(t)可表示为:

es,i(t)=[es,1(t),es,2(t),…es,n(t)],t∈[1,2,…n]

则设t=1时初始数据

es,i(1)=[es,1(1),es,2(1),…es,8(1)],t=1;

=[10.3m3,12m3,8m3,20.5m3,16.4m3,21.4m3,13.7m3,30.2m3];

每个储气罐装置在t时段内输入电转气的气量队列ein,i(t)可表示为:

ein,i(t)=[ein,1(t),ein,2(t),…ein,n(t)],t∈[1,2,…n]

则设t=1时初始输入气量数据为:

ein,i(1)=[ein,1(1),ein,2(1),…ein,8(1)],t=1;

=[30.5m3,31.6m3,28.4m3,40.8m3,36.6m3,28.5m3,42.5m3,26.5m3];

每个储气罐装置在t时段内输出的气量队列eout,i(t)可表示为:

eout,i(t)=[eout,1(t),eout,2(t),…eout,n(t)],t∈[1,2,…n]

则设t=1时初始输出气量数据为:

eout,i(1)=[eout,1(1),eout,2(1),…eout,8(1)],t=1;

=[28.6m3,38.3m3,24.9m3,29.7m3,32.6m3,19.7m3,40.1m3,25.1m3];

每个储气罐装置在t时段最后累积的气量队列el,i(t)可表示为:

el,i(t)=[el,1(t),el,2(t),…el,n(t)],t∈[1,2,…n]

则设t=1时计算得初始累积气量数据为:

el,i(1)=[el,1(1),el,2(1),…el,8(1)],t=1;

=[12.2m3,5.3m3,11.5m3,31.6m3,20.4m3,30.2m3,16.1m3,31.6m3];

构造动态更新函数可表示如下:

el,i(t)=es,i(t) ein,i(t)-eout,i(t),t∈[1,2,…n],i∈[1,2,…n]

时时对系统需要的上述数据进行收集和计算,最终求得:

el,i(32)=[el,1(32),el,2(32),…el,8(32)],t=32;

=[18.2m3,15.3m3,21.4m3,30.1m3,19.3m3,23.9m3,25.8m3,27.8m3]

步骤2.2:制定优化电转气装置权重比的触发机制:

电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态修正累积的气量队列el,i(t)的当前值,没有接受到触发信号则维持原来的运行状态;

事件1:多能源系统内风光出力的变化量超出一定的阈值:

s(t 1)-s(t)>δs(t)

其中,s(t 1)、s(t)分别表示两时段的风光出力,δ为风光出力变化量超出阈值系数;

事件2:多能源系统内气负荷需求变化量超过一定的阈值。

lg(t 1)-lg(t)>τlg(t)

其中,lg(t 1)、lg(t)分别为两时段的气负荷需求量,τ为气负荷需求量阈值系数;

事件3:多能源系统内分时气价发生变化:

j(t 1)≠j(t)

其中,j(t 1)、j(t)分别为两时段的气价;

此次发明系统有上述事件有发生,触动触发机制,开始优化过程,上述优化触发机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;

步骤2.3:通过下式的计算来实时优化每个电转气装置权重比αi(t):

其中,αi(t)为每个电转气装置t时权重比;k为气体常数;η为电解槽效率;气体摩尔体积vm;r为一立方米氢气完全燃烧释放热值;el,i(t)为t时段储气罐累积气量;ein,i(t)为t时段储气罐储入气量;n储气罐数量,i为储气罐编号;eout,i(t)为t时段储罐输出气量;ptank为储气罐内部压强;v储气罐体积;t为储气罐温度;

计算得:

αi(32)=[α1(32),α2(32),…α8(32)]

=[0.149,0.143,0.145,0.138,0.140,0.145,0.137,0.146]

步骤3:利用燃料电池对氢气消耗放能及上述参数对t时段每个燃料电池权重比λm(t)进行优化计算;

步骤3.1:每个燃料电池装置消耗气体量队列em,h(t)表示为:

em,h(t)=[e1,h,e2,h…em,h],m=[1,2,…m],t∈[1,2,…n]

时刻对系统需要的上述数据进行收集和计算,得到t=32时:

em,h(32)=[e1,h(32),e2,h(32)…e7,h(32)]

=[33.0m3,38.6m3,40.2m3,41.4m3,34.1m3,33.1m3,31.8m3,]

步骤3.2:制定优化燃料电池权重比的触发机制:

电转气与燃料电池的多能源系统里触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态实时获取燃料电池消耗的气量队列em,h(t)的当前值,没有接受到触发信号则维持原来的运行状态;

事件ⅰ:多能源系统内基础电负荷量缺量超过一定的阈值:

le(t 1)-le(t)>ζle(t)

其中,le(t 1)、le(t)分别为两时段的电负荷需求量,ζ为电负荷需求量阈值系数;

事件ⅱ:多能源系统内分时电价发生变化:

x(t 1)≠x(t)

其中,x(t 1)、x(t)分别为两时段的气价;

事件ⅲ:多能源系统内风光出力的缺量超过一定阈值:

其中,s(t 1)、s(t)分别表示两时段的风光出力,为风光出力缺量超出阈值系数;

此次发明系统有上述事件有发生,触动触发机制,开始优化过程。上述实时事件机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;

步骤3.3:通过下式的计算来实时优化每个燃料电池装置权重比λm(t):

其中,λm(t)为燃料电池功率;ε为耗能系数;m为燃料电池数量,m为电池编号;em,h(t)为燃料电池t时段消耗气体量;r为1立方米氢气完全燃烧的热值;vm为摩尔体积;k为气体常数;ηfc为燃料电池效率;u0为燃料电池开路电压;j为塔菲尔斜率;ic为燃料电池电流;in为内部电流;ie为交换电流;rx为膜电阻;a质量转移常数;il为限制电流;cm,fl为燃料电池的容量,δt为燃料电池开始工作时到优化结束时的时间间隔;

代入数据:

计算得:

λm(32)=[λ1(32),λ2(32),…λ7(32)]

=[0.145,0.141,0.140,0.139,0.144,0.145,0.146]

步骤3.4:此时燃料电池装置启动状态处于0,处于最后工作时刻,结束优化过程,输出上一部优化结果λm(32)。

步骤4:利用步骤2及步骤3优化后的每个电转气装置工作时的权重比和每个燃料电池工作时权重比,与优化前多能源系统的稳定性进行比较,计算整个多能源系统稳定性提高率。

步骤4.1:计算优化前含电转气与燃料电池协调运行的多能源系统运行稳定性指标为:

其中,θ0为优化前含电转气装置与燃料电池优化后系统稳定性指标,αi(0)为每个电转气装置优化前权重比,i=1,2,…n,λm(0)为每个燃料电池优化前的权重比,m=1,2,…m;ws为整个系统容量;

代入数据计算:

步骤4.2:利用优化后的每个电转气装置权重比以及优化后的每个燃料电池权重比,计算优化后含电转气与燃料电池的多能源系统运行的稳定性为:

其中,θ为含电转气装置与燃料电池优化后多能源系统稳定性指标,αi(t)为每个电转气装置优化后权重比,i=1,2,…n;λm(t)为每个燃料电池优化后的权重比,m=1,2,…m;ws为整个系统容量。

代入数据计算得:

步骤4.3:计算整个含电转气和燃料电池的多能源系统稳定性提高率δθ:

δθ=θ-θ0×100%

其中,δθ为含电转气装置与燃料电池优化后系统稳定性提高率。

代入数据:δθ=θ-θ0=(4.45-4.16)×100%=29%

可以看出稳定性提高了29%。


技术特征:

1.一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于:包括如下步骤:

步骤1:分别采集电转气装置的参数与燃料电池的参数,并初始化优化前每个电转气装置的权重比αi(0)及优化前每个燃料电池权重比λm(0);

步骤2:利用上述参数对t时段每个电转气装置权重比αi(t)进行优化计算;

步骤3:利用燃料电池对氢气消耗放能及上述参数对t时段每个燃料电池权重比λm(t)进行优化计算;

步骤4:利用步骤2及步骤3优化后的每个电转气装置工作时的权重比和每个燃料电池工作时权重比,与优化前多能源系统的稳定性进行比较,计算整个多能源系统稳定性提高率。

2.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于:所述电转气装置的参数包括t时段内,电解槽效率η、储气罐内部压强ptank、储气罐体积v、储气罐温度t、储气罐数量n、每个储气罐装置的t时段初始时刻的储气量es,i(t)、t时段每个储气罐储入气量ein,i(t)、t时段每个储罐输出气量eout,i(t)、气体摩尔体积vm、每个电转气装置额定功率pi,p2g;

所述燃料电池参数包括:耗能系数ε、燃料电池数量m、燃料电池效率ηfc、燃料电池开路电压u0、塔菲尔斜率j、燃料电池电流ic、燃料电池内部电流in、交换电流ie、质量转移常数a、限制电流il、每个燃料电池容量cm,fl、一立方米氢气完全燃烧释放热值r、每个燃料电池t时段消耗氢气量ei,h(t)、膜电阻rx,气体常数k,每个燃料电池额定功率pm,fl。

3.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于所述步骤2的过程如下:

步骤2.1:用每个时段电转气产生的气体量来表示电转气工作情况,构造每个储气罐装置在t时段最后累积的气量队列el,i(t),为之后优化计算做准备:

获取每个储气罐装置的t时段初始时刻的储气量队列es,i(t)可表示为:

es,i(t)=[es,1(t),es,2(t),…es,n(t)],t∈[1,2,…n]

每个储气罐装置在t时段内输入电转气的气量队列ein,i(t)可表示为:

ein,i(t)=[ein,1(t),ein,2(t),…ein,n(t)],t∈[1,2,…n]

每个储气罐装置在t时段内输出的气量队列eout,i(t)可表示为:

eout,i(t)=[eout,1(t),eout,2(t),…eout,n(t)],t∈[1,2,…n]

每个储气罐装置在t时段最后累积的气量队列el,i(t)可表示为:

el,i(t)=[el,1(t),el,2(t),…el,n(t)],t∈[1,2,…n]

构造动态更新函数可表示如下:

el,i(t)=es,i(t) ein,i(t)-eout,i(t),t∈[1,2,…n],i∈[1,2,…n]

步骤2.2:制定优化电转气装置权重比的触发机制:

触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态修正累积的气量队列el,i(t)的当前值,没有接受到触发信号则维持原来的运行状态;

事件1:风光出力的变化量超出一定的阈值:

s(t 1)-s(t)>δs(t)

其中,s(t 1)、s(t)分别表示两时段的风光出力,δ为风光出力变化量超出阈值系数;

事件2:气负荷需求变化量超过一定的阈值:

lg(t 1)-lg(t)>τlg(t)

其中,lg(t 1)、lg(t)分别为两时段的气负荷需求量,τ为气负荷需求量阈值系数;

事件3:分时气价发生变化:

j(t 1)≠j(t)

其中,j(t 1)、j(t)分别为两时段的气价;

上述优化触发机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;

步骤2.3:通过下式的计算来实时优化每个电转气装置权重比αi(t):

其中,αi(t)为每个电转气装置t时权重比;k为气体常数;η为电解槽效率;气体摩尔体积vm;r为一立方米氢气完全燃烧释放热值;el,i(t)为t时段储气罐累积气量;ein,i(t)为t时段储气罐储入气量;n储气罐数量,i为储气罐编号;eout,i(t)为t时段储罐输出气量;ptank为储气罐内部压强;v储气罐体积;t为储气罐温度;

步骤2.4:判断电转气装置是否处于最后工作时刻,即电解槽是否处于0状态;若是,则结束,输出优化权重比结果;否则更新初始方程重复步骤2.1至步骤2.4,更新方程如下:

el,i(t 1)=el,i(t) ein,i(t 1)-eout,i(t 1),t∈[1,2…n]。

4.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于所述步骤3的过程如下:

步骤3.1:每个燃料电池装置消耗气体量队列em,h(t)表示为:

em,h(t)=[e1,h,e2,h…em,h],i=[1,2,…m],t∈[1,2,…n]

步骤3.2:制定优化燃料电池权重比的触发机制:

触发机制由监测器和功率控制器来实现;监测器对系统运行稳定性状态展开监测,若发生下列事件,生成相应的触发信号,同时将信号发送给功率控制器,此时功率控制器根据系统的当前运行状态实时获取燃料电池消耗的气量队列em,h(t)的当前值,没有接受到触发信号则维持原来的运行状态;

事件ⅰ:基础电负荷量缺量超过一定的阈值:

le(t 1)-le(t)>ζle(t)

其中,le(t 1)、le(t)分别为两时段的电负荷需求量,ζ为电负荷需求量阈值系数;

事件ⅱ:分时电价发生变化:

x(t 1)≠x(t)

其中,x(t 1)、x(t)分别为两时段的气价;

事件ⅲ:风光出力的缺量超过一定阈值:

其中,s(t 1)、s(t)分别表示两时段的风光出力,为风光出力缺量超出阈值系数;

上述实时事件机制适用于不同类型的多能源系统,由于不同类型的多能源系统对应的事件相应参数不同,可根据具体情况设置相应的参数;

步骤3.3:通过下式的计算来实时优化每个燃料电池装置权重比λm(t):

其中,λm(t)为燃料电池功率;ε为耗能系数;m为燃料电池数量,m为电池编号;em,h(t)为燃料电池t时段消耗气体量;r为1立方米氢气完全燃烧的热值;vm为摩尔体积;k为气体常数;ηfc为燃料电池效率;u0为燃料电池开路电压;j为塔菲尔斜率;ic为燃料电池电流;in为内部电流;ie为交换电流;rx为膜电阻;a质量转移常数;il为限制电流;cm,fl为燃料电池的容量,δt为燃料电池开始工作时到优化结束时的时间间隔;

步骤3.4:判断燃料电池装置是否处于最后工作时刻,即燃料电池启动状态是否处于0状态;若是,则结束并输出优化权重比结果;否则t=t 1,重复步骤3.1至步骤3.4。

5.根据权利要求1所述的一种基于电转气和燃料电池的多能源系统稳定性优化方法,其特征在于所述步骤4的过程如下:

步骤4.1:计算优化前含电转气与燃料电池协调运行的多能源系统运行稳定性指标为:

其中,θ0为优化前含电转气装置与燃料电池优化后系统稳定性指标,αi(0)为每个电转气装置优化前权重比,i=1,2,…n,λm(0)为每个燃料电池优化前的权重比,m=1,2,…m;ws为整个系统容量;

步骤4.2:利用优化后的每个电转气装置权重比以及优化后的每个燃料电池权重比,计算优化后含电转气与燃料电池的多能源系统运行的稳定性为:

其中,θ为含电转气装置与燃料电池优化后多能源系统稳定性指标,αi(t)为每个电转气装置优化后权重比,i=1,2,…n;λm(t)为每个燃料电池优化后的权重比,m=1,2,…m;ws为整个系统容量;

步骤4.3:计算整个含电转气和燃料电池的多能源系统稳定性提高率δθ:

δθ=(θ-θ0)×100%

其中,δθ为含电转气装置与燃料电池优化后系统稳定性提高率。

技术总结
本发明公开一种基于电转气和燃料电池的多能源系统稳定性优化方法,属于多能源系统稳定性控制技术领域,该方法在整个多能源系统稳定性方面优先考虑用电转气与燃料电池协调参与调节系统稳定性,把电转气和燃料电池在运行时的权重进行优化,优化过程中不仅考虑了电转气与燃料电池两者参数影响,还对系统的一些状态事件进行了考虑约束,实时优化过程中每次优化结束对制定事件状态进行监测与更新,使得优化具有实时性,最终达到一个最优的优化效果。本发明实时优化电转气与燃料电池两者的权重比,使整个系统运行更加稳定、灵活。

技术研发人员:滕云;钟磊;孙鹏;左浩;王泽镝;张俊久;田龙飚;袁元缘;孙月莹;金红洋;魏来;徐震;马俊雄;袁浦;朱祥祥;吴磊
受保护的技术使用者:沈阳工业大学
技术研发日:2020.01.14
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-22903.html

最新回复(0)