基于遥感数据的秋收主要农作物信息提取方法及系统与流程

专利2022-06-29  105


本发明属于卫星遥感技术领域,尤其涉及一种基于遥感数据的秋收主要农作物信息提取方法及系统。



背景技术:

及时准确地获取农作物面积和空间分布,可为农业生产产量的预报及评估、粮食价格预测和国家粮食生产布局及规划等提供科学依据。利用农作物光谱特征以及适宜于不同地物类型提取的指数因子,可以将农作物信息从遥感影像中分离出来。目前,农作物信息提取主要可以分为基于单时相和多时相信息提取方法。利用农作物长势关键期的单时相影像提取作物空间分布,由于不同作物在类似物候期上的交叉,不能从农作物生长过程中最大程度地发现与背景地物的差异,严重影响了作物识别精度;利用多时相遥感影像进行监督分类提取作物,大多针对单一种类作物,并且每个时相影像分别建立分类体系、重复绘制训练样本,多次单独监督分类,整合多时相影像分类结果,得到多个时相下单个区域农作物空间分布,各时相影像之间不同农作物差异不易区分,重复绘制训练样本、分别进行监督分类方法工作量大、精度低,且缺乏直观的空间分布信息,不能充分整合多时相影像的农作物地物光谱特征。

传统方法提取农作物信息方法的不足之处在于:

第一,由于不同作物在类似物候期上的交叉,单一时相影像无法识别农作物之间的差异,较大程度影响了作物提取精度,不利于获取农作物空间分布。

第二,多时相多次单独分类,一方面很难获取一致的分类标准,另一方面,其每一次分类的误差将会在随后的分类结果整合得到农作物空间分布时被放大,严重降低了农作物识别精度。

第三,由于监督分类学习过程依赖于样本的选择,欲取得较好的分类结果,对训练样本数量和精度要求较高,样本选择本身工作量较大,若每个时相影像分别建立分类体系、绘制训练样本,则更大程度增加监督分类的工作量。

第四,多次单独训练样本绘制只能基于单一时相进行,无法综合不同时相下农作物的光谱特征,因此无法最大限度的利用多时相下同一种地物时间序列下的光谱变化过程,不利于分类结果提取。



技术实现要素:

本发明解决的技术问题是:克服现有技术的不足,提供了一种基于遥感数据的秋收主要农作物信息提取方法及系统,解决了基于遥感数据提取多种农作物的精度低、多次单独分类工作量大以及无法最大限度的利用多时相下同一种地物时间序列下的光谱变化过程的问题。

本发明目的通过以下技术方案予以实现:一种基于遥感数据的秋收主要农作物信息提取方法,所述方法包括如下步骤:(1)调查待研究区主要秋收农作物,确定待研究区主要秋收农作物的分类体系;(2)根据步骤(1)中确定的分类体系,结合主要秋收农作物的物候期以及其光谱、纹理的特征,选取进行主要秋收农作物信息提取所需要的不同时相的研究区遥感数据,并利用遥感手段对多个时相遥感数据进行正射校正、图像配准、镶嵌、云检测的预处理工作,得到符合分类体系要求的多时相遥感数据;然后对符合分类体系要求的多时相遥感数据进行波段合并;(3)基于实地调查样方,利用目视解译的方法,挑选训练样本,综合多时相的主要秋收农作物的光谱、纹理信息,对于同一种秋收农作物绘制多套训练样本,最后对训练样本的数据集进行有效评估训练样本达到分类要求;其中,有效评估的条件为可分离性大于1.8;(4)根据目视解译与神经网络监督分类相结合的方法,对步骤(2)中波段合并处理后的多时相遥感数据进行信息提取,获取待研究区主要秋收农作物种植空间分布。

上述基于遥感数据的秋收主要农作物信息提取方法中,在步骤(4)中,所述神经网络为b-p神经网络。

上述基于遥感数据的秋收主要农作物信息提取方法中,用于分类的b-p神经网络具有一个输入层、一个隐藏层和一个输出层组成的3层;其中,输入层节点个数n与遥感影像的样本特征数相同,输出层节点个数与样本的类别数相同;每相邻的两层节点质检单方向互联,训练过程分正向和逆向传播两个传播过程;样本信息在正向传播过程中,隐藏层节点和输出层节点均经过激活函数f((x)作用之后,在两层节点处分别获得样本节点输出信息hj和网络输出信息ok;根据网络输出信息ok与其目标输出信息tk得到第一误差信号δk;然后第一误差信号δk进入逆向传播,传播到隐藏节点处获得第二误差信号σj;再用误差δk和σj向误差函数减少的方向调整隐藏节点与输出节点之间的联接权值vkj、输出节点的阈值γk、输入节点与隐藏节点之间的联接权值wji和隐藏节点的阈值θj;将需训练的遥感图像训练样本逐个输入b-p神经网络中,按照正向传播过程和逆向传播过程两个过程进行训练,待所有样本全部训练一遍之后,计算分类的均方根误差e;当满足e≤λ时,训练结束,获取训练完毕后网络节点之间的联接权值wji、vkj和阈值θj、γk;否则,更新训练次数,将样本再逐个输入网络进行往复训练,直到满足e≤λ为止,其中,λ为指定精度。

上述基于遥感数据的秋收主要农作物信息提取方法中,样本节点输出信息hj为:

其中,f(x)为激活函数,ii为输入遥感图像样本,wji为输入节点与隐藏节点之间的联接权值,θj为隐藏节点的阈值,m为正向训练过程中符合训练要求的样本数,i为正向训练过程中符合训练要求的样本序号,x为节点。

上述基于遥感数据的秋收主要农作物信息提取方法中,网络输出信息ok为:

其中,vkj为隐藏节点与输出节点之间的联接权值,γk为输出节点的阈值,h为逆向训练过程中符合训练要求的样本数,j为逆向训练过程中符合训练要求的样本序号。

上述基于遥感数据的秋收主要农作物信息提取方法中,第一误差信号δk为δk=(ok-tk)ok(1-ok)。

上述基于遥感数据的秋收主要农作物信息提取方法中,第二误差信号σi为σj=(∑δkvkj)hj(1-hj)。

上述基于遥感数据的秋收主要农作物信息提取方法中,再用误差δk和σj向误差函数减少的方向调整隐藏节点与输出节点之间的联接权值vki、输出节点的阈值γk、输入节点与隐藏节点之间的联接权值wji和隐藏节点的阈值θj为:

vkj=vkj αδkhj

γk=γk βδkhi

wji=wji αδjhii

θj=θj βσj

其中,学习参数α,β在[0.2,0.5]之间取值。

上述基于遥感数据的秋收主要农作物信息提取方法中,分类的均方根误差e为:

其中,l为训练次数,n为样本数,olk为第l次训练的网络输出信息,tlk为第l次训练的目标输出信息,k为样本的序号。

一种基于遥感数据的秋收主要农作物信息提取系统,包括:分类体系模块,用于调查待研究区主要秋收农作物,确定待研究区主要秋收农作物的分类体系;数据选取和预处理模块,用于根据分类体系模块中确定的分类体系,结合主要秋收农作物的物候期以及其光谱、纹理的特征,选取进行主要秋收农作物信息提取所需要的不同时相的研究区遥感数据,并利用遥感手段对多个时相遥感数据进行正射校正、图像配准、镶嵌、云检测的预处理工作,得到符合分类体系要求的多时相遥感数据;然后对符合分类体系要求的多时相遥感数据进行波段合并;训练样本选取模块,用于基于实地调查样方,利用目视解译的方法,挑选训练样本,综合多时相的主要秋收农作物的光谱、纹理信息,对于同一种秋收农作物绘制多套训练样本,最后对训练样本的数据集进行有效评估训练样本达到分类要求;其中,有效评估的条件为可分离性大于1.8;秋收主要农作物信息提取模块,用于根据目视解译与神经网络监督分类相结合的方法,对数据选取和预处理模块中波段合并处理后的多时相遥感数据进行信息提取,获取待研究区主要秋收农作物种植空间分布。

本发明与现有技术相比具有如下有益效果:

(1)本发明将待研究区多个时相影像分别进行波段合并,生成一副单一图像,并将合成后的单一图像分窗口、联动显示,综合考虑不同作物不同时相下农作物光谱特征,最大限度综合考虑利用同一种地物在多个时相下光谱变化过程,有利于分类结果提取和提高分类精度;

(2)本发明将合成后的多时相单一图像数据分窗口显示,多个时相只用选择一套训练样本,大大减小了训练样本选择和分类的工作量,降低人工成本;

(3)本发明合并后包含了多时相信息的单一影像选择一套训练样本,避免了多套训练样本选择、分类过程误差被夸大的问题,大大提高农作物分类精度。

附图说明

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:

图1是本发明实施例提供的神经网络示意图。

具体实施方式

下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

本实施例提供了一种基于遥感数据的秋收主要农作物信息提取方法,该方法包括如下步骤:

(1)确定分类体系:调查待研究区各县主要秋收农作物,确定研究区的分类体系,为待研究区秋收主要农作物如夏玉米、棉花、花生、大豆、中稻、谷子等的信息提取做准备。

(2)数据选取和预处理:根据步骤(1)中确定的分类体系,在各项支撑数据源的支持下,结合主要农作物的物候期以及其光谱、纹理等特征,选取进行主要农作物信息提取所需要的不同时相(主要为6月上旬、8月下旬和10月中旬)的研究区遥感数据。然后利用遥感软件对多个时相遥感数据进行正射校正、图像配准、镶嵌、云检测等预处理工作,得到符合分类要求的多时相遥感数据。最后按照县级行政区划分别对多时相数据进行波段合并。

(3)训练样本的选取:基于实地调查样方,在envi或arcgis遥感软件中利用目视解译的方法,在遵循样本选取的规范性、准确性和代表性规则的前提下,挑选足够的训练样本。并综合多个时相农作物的光谱、纹理信息,对同一种农作物类型绘制多套较为纯净的训练样本。最后对训练样本数据集进行整合评估,计算其可分离性,当可分离性大于1.8时,认为样本达到分类要求。

(4)秋收主要农作物信息提取:用目视解译与神经网络监督分类相结合的方法,对处理后的多时相遥感数据进行信息提取,获取各个县及全省秋收主要农作物种植空间分布。应用于遥感影像监督分类中的神经网络主要为b-p神经网络,其主要思想是:把遥感影像的提取特征作为神经网络的输入信号,神经网络按照一定规则训练后,在输出端即可以对输出信号进行分类。神经网络示意图如图1所示。

用于分类的b-p神经网络一般具有一个输入层、一个隐藏层和一个输出层组成的3层。输入层节点个数n与遥感影像的样本特征数相同,输出层节点个数与样本的类别数相同,隐藏层节点数目根据实际问题和经验确定。每相邻的两层节点质检单方向互联,训练过程分正向和逆向传播两个传播过程。样本信息在正向传播过程中,隐藏层节点和输出节点均经过激活函数f(x)作用之后,在两层节点处分别获得输出信息hj和ok。

上述公式中,f(x)为激活函数,ii为输入遥感图像样本,wji和vkj分别为输入节点与隐藏节点、隐藏节点与输出节点之间的联接权值,θj、γk分别为隐藏节点与输出节点的阈值,其初始权值和阈值均在(0,1)之间随机赋值,网络输出ok与其目标输出tk的误差信号为δk:

δk=(ok-tk)ok(1-ok)

然后δk进入你想传播,传播到隐藏节点处获得误差信号σj:

σj=(∑δkvkj)hj(1-hj)

再用误差δk和σj向误差函数减少的方向调整权值和阈值:

vkj=vkj αδkhj

γk=γk βδkhj

wji=wji αδjhii

θj=θj βσj

以上公式中的学习参数α,β一般在[0.2,0.5]之间趋势,将需训练的遥感图像训练样本逐个输入b-p神经网络中,按照以上正、逆两个过程进行训练,待所有样本全部训练一遍之后,计算分类的均方根误差e

当满足e≤λ(指定精度)时,训练结束,获取训练完毕后网络节点之间的联接权值wji、vkj和阈值θj、γk;否则,更新训练次数,将样本再逐个输入网络进行往复训练,直到满足e≤λ为止。

(5)分类后处理。监督分类完成之后,对邻近的类似农作物类别进行区域进行聚类合并,去除孤立农作物类别;对于局部错分、漏分的像元进行手动修改,以获得较高精度的研究区各县及全省的主要农作物空间分布结果。

本实施例还提供了一种基于遥感数据的秋收主要农作物信息提取系统,包括:分类体系模块,用于调查待研究区主要秋收农作物,确定待研究区主要秋收农作物的分类体系;数据选取和预处理模块,用于根据分类体系模块中确定的分类体系,结合主要秋收农作物的物候期以及其光谱、纹理的特征,选取进行主要秋收农作物信息提取所需要的不同时相的研究区遥感数据,并利用遥感手段对多个时相遥感数据进行正射校正、图像配准、镶嵌、云检测的预处理工作,得到符合分类体系要求的多时相遥感数据;然后对符合分类体系要求的多时相遥感数据进行波段合并;训练样本选取模块,用于基于实地调查样方,利用目视解译的方法,挑选训练样本,综合多时相的主要秋收农作物的光谱、纹理信息,对于同一种秋收农作物绘制多套训练样本,最后对训练样本的数据集进行有效评估训练样本达到分类要求;其中,有效评估的条件为可分离性大于1.8;秋收主要农作物信息提取模块,用于根据目视解译与神经网络监督分类相结合的方法,对数据选取和预处理模块中波段合并处理后的多时相遥感数据进行信息提取,获取待研究区主要秋收农作物种植空间分布。

本实施例首先确定主要农作物分类体系,在各项支撑数据源的支持下,结合主要农作物物候期和光谱、纹理等特征,确定提取农作物信息提取的多个时相,利用遥感技术对多个时相遥感数据进行预处理;然后,将待研究区预处理后多时相遥感数据,分别进行波段合并,将多时相遥感数据合成一副单一图像;并结合实地样方调查数据,对包含了多时相信息的图像进行区域多种作物信息提取,以减少误差夸大变化的程度,获取较为可靠的农作物空间分布结果。

将本发明应用于农作物提取时,只需要结合主要农作物物候期和光谱、纹理等特征,确定提取农作物信息提取的多个时相,并对遥感图进行正射校正、图像配准、镶嵌、云检测等预处理;然后将每个县多个时相影像进行波段合并,生成一副单一图像,并将合成后的单一图像分窗口、联动显示,结合各种作物物候特征,对比同一块农作物多个时相下光谱、纹理特征选择较为纯净的训练样本。综合多个时相下农作物光谱特征,最大限度利用多个时相下同一种地物时间序列下光谱变化过程,可以解决基于遥感数据提取多种农作物精度低、多次单独分类工作量大等问题。与传统农作物提取方法相比,本发明将多个时相影像进行波段合并的主要优点和改进主要包括以下三个方面:

第一,将每个县多个时相影像分别进行波段合并,生成一副单一图像,并将合成后的单一图像分窗口、联动显示,综合考虑不同作物不同时相下农作物光谱特征,最大限度综合考虑利用同一种地物在多个时相下光谱变化过程,有利于分类结果提取和提高分类精度。

第二,将合成后的多时相单一图像数据分窗口显示,多个时相只用选择一套训练样本,大大减小了训练样本选择和分类的工作量,降低人工成本。

第三,合并后包含了多时相信息的单一影像选择一套训练样本,避免了多套训练样本选择、分类过程误差被夸大的问题,大大提高农作物分类精度。

本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。


技术特征:

1.一种基于遥感数据的秋收主要农作物信息提取方法,其特征在于,所述方法包括如下步骤:

(1)调查待研究区主要秋收农作物,确定待研究区主要秋收农作物的分类体系;

(2)根据步骤(1)中确定的分类体系,结合主要秋收农作物的物候期以及其光谱、纹理的特征,选取进行主要秋收农作物信息提取所需要的不同时相的研究区遥感数据,并利用遥感手段对多个时相遥感数据进行正射校正、图像配准、镶嵌、云检测的预处理工作,得到符合分类体系要求的多时相遥感数据;然后对符合分类体系要求的多时相遥感数据进行波段合并;

(3)基于实地调查样方,利用目视解译的方法,挑选训练样本,综合多时相的主要秋收农作物的光谱、纹理信息,对于同一种秋收农作物绘制多套训练样本,最后对训练样本的数据集进行有效评估训练样本达到分类要求;其中,有效评估的条件为可分离性大于1.8;

(4)根据目视解译与神经网络监督分类相结合的方法,对步骤(2)中波段合并处理后的多时相遥感数据进行信息提取,获取待研究区主要秋收农作物种植空间分布。

2.根据权利要求1所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:在步骤(4)中,所述神经网络为b-p神经网络。

3.根据权利要求2所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:用于分类的b-p神经网络具有一个输入层、一个隐藏层和一个输出层组成的3层;其中,输入层节点个数n与遥感影像的样本特征数相同,输出层节点个数与样本的类别数相同;每相邻的两层节点质检单方向互联,训练过程分正向和逆向传播两个传播过程;样本信息在正向传播过程中,隐藏层节点和输出层节点均经过激活函数f(x)作用之后,在两层节点处分别获得样本节点输出信息hj和网络输出信息ok;

根据网络输出信息ok与其目标输出信息tk得到第一误差信号δk;

然后第一误差信号δk进入逆向传播,传播到隐藏节点处获得第二误差信号σj;

再用误差δk和σj向误差函数减少的方向调整隐藏节点与输出节点之间的联接权值vkj、输出节点的阈值γk、输入节点与隐藏节点之间的联接权值wji和隐藏节点的阈值θj;

将需训练的遥感图像训练样本逐个输入b-p神经网络中,按照正向传播过程和逆向传播过程两个过程进行训练,待所有样本全部训练一遍之后,计算分类的均方根误差e;

当满足e≤λ时,训练结束,获取训练完毕后网络节点之间的联接权值wji、vkj和阈值θj、γk;否则,更新训练次数,将样本再逐个输入网络进行往复训练,直到满足e≤λ为止,其中,λ为指定精度。

4.根据权利要求3所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:样本节点输出信息hj为:

其中,f(x)为激活函数,ii为输入遥感图像样本,wji为输入节点与隐藏节点之间的联接权值,θj为隐藏节点的阈值,m为正向训练过程中符合训练要求的样本数,i为正向训练过程中符合训练要求的样本序号,x为节点。

5.根据权利要求4所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:网络输出信息ok为:

其中,vkj为隐藏节点与输出节点之间的联接权值,γk为输出节点的阈值,h为逆向训练过程中符合训练要求的样本数,j为逆向训练过程中符合训练要求的样本序号。

6.根据权利要求5所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:第一误差信号δk为δk=(ok-tk)ok(1-ok)。

7.根据权利要求6所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:第二误差信号σj为σj=(∑δkvkj)hj(1-hj)。

8.根据权利要求7所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:再用误差δk和σj向误差函数减少的方向调整隐藏节点与输出节点之间的联接权值vkj、输出节点的阈值γk、输入节点与隐藏节点之间的联接权值wji和隐藏节点的阈值θj为:

vkj=vkj αδkhj

γk=γk βδkhj

wji=wji αδjhii

θj=θj βσj

其中,学习参数α,β在[0.2,0.5]之间取值。

9.根据权利要求8所述的基于遥感数据的秋收主要农作物信息提取方法,其特征在于:分类的均方根误差e为:

其中,l为训练次数,n为样本数,olk为第l次训练的网络输出信息,tlk为第l次训练的目标输出信息,k为样本的序号。

10.一种基于遥感数据的秋收主要农作物信息提取系统,其特征在于包括:

分类体系模块,用于调查待研究区主要秋收农作物,确定待研究区主要秋收农作物的分类体系;

数据选取和预处理模块,用于根据分类体系模块中确定的分类体系,结合主要秋收农作物的物候期以及其光谱、纹理的特征,选取进行主要秋收农作物信息提取所需要的不同时相的研究区遥感数据,并利用遥感手段对多个时相遥感数据进行正射校正、图像配准、镶嵌、云检测的预处理工作,得到符合分类体系要求的多时相遥感数据;然后对符合分类体系要求的多时相遥感数据进行波段合并;

训练样本选取模块,用于基于实地调查样方,利用目视解译的方法,挑选训练样本,综合多时相的主要秋收农作物的光谱、纹理信息,对于同一种秋收农作物绘制多套训练样本,最后对训练样本的数据集进行有效评估训练样本达到分类要求;其中,有效评估的条件为可分离性大于1.8;

秋收主要农作物信息提取模块,用于根据目视解译与神经网络监督分类相结合的方法,对数据选取和预处理模块中波段合并处理后的多时相遥感数据进行信息提取,获取待研究区主要秋收农作物种植空间分布。

技术总结
本发明公开了一种基于遥感数据的秋收主要农作物信息提取方法及系统,本发明基于对多时相遥感影像进行波段合并,并结合各作物的物候特征、光谱特征和纹理特征等选取训练样本,采用B‑P神经网络方法对遥感数据进行监督分类,并对分类结果进行分类后处理,实现对研究区各县及全省夏玉米、棉花、花生、大豆、中稻等主要农作物的信息提取。本发明通过多时相遥感影像波段合并,在减小训练样本数量的条件下,提高了农作物的分类精度,降低了分类过程中的人工成本,提高了工作效率。

技术研发人员:高青山;李翠翠;彭义峰;李俊杰;周经理;李晓进
受保护的技术使用者:中国资源卫星应用中心
技术研发日:2019.12.12
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-18969.html

最新回复(0)