一种彩色玻璃及其制备方法与流程

专利2022-06-29  99


本发明涉及镀膜技术领域,尤其涉及一种彩色玻璃及其制备方法。



背景技术:

玻璃是我们日常生活中最为常见的材料,与人们的生产活动息息相关,随着现代科学技术和玻璃技术的发展及人民生活水平的提高,建筑玻璃的功能不再仅仅是满足采光要求,而是要具有调节光线、保温隔热、防弹、防盗、防火、防辐射、防电磁波干扰、艺术装饰等特性。

传统的彩色玻璃一般采用在线制备的工艺,以化学制备和喷涂印刷的方法为例,这类方法制得的产品颜色单一,且一种颜色对应一种工艺。若要改变产品颜色需要变更制备条件,过程极其繁琐,且变色成本高。例如需要对整个熔池的玻璃熔融液成分进行更换并对熔池进行充分彻底地清洗(熔池体积较大);或者改变在玻璃表面喷涂或者印刷的有机涂层原料,以上方法费时费力,成本很高,不符合现代新型产品制备的要求。并且这类方法制备的产品产生废料很多,部分有毒性,对环境不友好。此外,这种利用材料本身颜色的制备工艺,产品性能受材料均匀性影响很大,产品颜色不稳定。



技术实现要素:

本发明的目的在于提供一种彩色玻璃及其制备方法,本发明制备的彩色玻璃采用离线工艺,利用薄膜干涉的原理进行制备,产品色系丰富,换色容易且颜色稳定。

为了实现上述发明目的,本发明提供以下技术方案:

本发明提供了一种彩色玻璃,包括玻璃基体、层叠设置于玻璃基体表面的层叠结构和ti合金层,所述层叠结构包括交替层叠的a层和b层;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层;所述a层与玻璃基体接触,所述b层与ti合金层接触。

优选的,所述a层和b层的总层数至少为2层。

优选的,所述a层和b层的总层数为2~100层。

优选的,所述a层的单层厚度独立地为20~150nm。

优选的,所述b层的单层厚度独立地为30~200nm。

优选的,所述钛合金层的成分为钛铝合金或钛铬合金,所述ti合金层的厚度为30~300nm。

本发明提供了上述方案所述彩色玻璃的制备方法,包括以下步骤:

对应彩色玻璃的结构,采用磁控溅射法在玻璃基体表面交替镀a层和b层,最后在b层表面镀一层ti合金层,得到彩色玻璃;

所述a层与玻璃基体接触;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层。

优选的,当a层为sic层时,采用磁控溅射法镀a层的条件为:磁控溅射的功率为50~150w,溅射靶材为高纯sic靶,溅射气压为0.2~0.9pa,氩气流量为40~100sccm;

当a层为nio层时,采用磁控溅射法镀a层的条件为:磁控溅射的功率为10~200w,溅射靶材为高纯ni靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,所述氩气与氧气的流量比为(4~10):1。

优选的,当b层为aln层时,采用磁控溅射法镀b层的条件为:磁控溅射的功率为10~200w,溅射靶材为高纯al靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氮气的流量为8~50sccm,溅射时氩气与氮气的流量比为(2~8):1;

当b层为gan层时,采用磁控溅射法镀b层的条件为:溅射的功率为10~200w,溅射靶材为高纯ga靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氮气流量为8~50sccm,溅射时氩气与氮气的流量比为(2~8):1;

当b层为zro2层时,采用磁控溅射法镀b层的条件为:溅射的功率为10~200w,溅射靶材为高纯zro2靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,氩气与氧气的流量比为(4~10):1;

当b层为nb2o5层时,采用磁控溅射法镀b层的条件为:溅射的功率为10~200w,溅射靶材为高纯nb靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,氩气与氧气的流量比为(4~10):1。

优选的,采用磁控溅射法镀ti合金层的条件为:溅射的功率为10~150w,溅射靶材为ti/al合金靶或ti/cr合金靶,溅射气压为0.1~1pa,氩气流量为40~100sccm。

本发明提供了一种彩色玻璃,包括玻璃基体、层叠设置于玻璃基体表面的层叠结构和ti合金层,所述层叠结构包括交替层叠的a层和b层;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层;所述a层与玻璃基体接触,所述b层与ti合金层接触。本发明利用a层和b层的材料不同,层间存在折射率差使玻璃呈现颜色,通过调整层叠结构中a层和b层的厚度来控制玻璃的颜色,ti合金层具有高反射率,可使彩色玻璃颜色鲜艳并起到一定的保护和防腐蚀作用。实施例的结果表明,本发明的彩色玻璃颜色鲜艳,色系丰富,钢化处理后表面颜色不发生变化,产品颜色稳定。

此外,本发明彩色玻璃各层材料的化学稳定性良好,因此得到的彩色玻璃耐酸碱腐蚀,且玻璃表面材料无毒,对环境友好。

本发明提供了上述方案所述彩色玻璃的制备方法,采用磁控溅射的方法在不更换靶材的情况下,通过调节工艺参数,就可以获得多种颜色的产品。相对于现有的制备工艺,本发明的工艺简单,容错率高,换色容易,无需繁琐的更改制备条件,仅需在设备内调整玻璃表面各个膜层的制备工艺参数,通过调整各个膜层的厚度即可实现颜色的改变,成本大大降低,色系丰富,产品颜色稳定且耐酸碱腐蚀。

附图说明

图1为实施例1产品的效果图;

图2为实施例2产品的效果图;

图3为实施例3产品的效果图;

图4为实施例4产品的效果图;

图5为实施例5产品的效果图;

图6为实施例3产品退火前后透过率和反射率的变化图。

具体实施方式

本发明提供了一种彩色玻璃,包括玻璃基体、层叠设置于玻璃基体表面的层叠结构和ti合金层,所述层叠结构包括交替层叠的a层和b层;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层;所述a层与玻璃基体接触,所述b层与ti合金层接触。

本发明提供的彩色玻璃包括玻璃基体。本发明对所述玻璃基体没有特殊的限定,采用本领域熟知的玻璃基体即可。在本发明的实施例中,所述玻璃基体为透明玻璃。

本发明提供的彩色玻璃包括设置于玻璃基体表面的层叠结构,所述层叠结构包括交替层叠的a层和b层;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层;所述a层与玻璃基体接触。

在本发明中,所述a层和b层的总层数至少为2层,优选为2~100层,更优选为2~50层,本领域技术人员可根据实际需要进行选择。

在本发明中,所述彩色玻璃中的a层可以均为sic层或均为nio层,也可以是某些层为sic层,其余层为nio层。同理,本发明的彩色玻璃中的b层可以均为aln层,或者均为gan层,或者均为zro2层,或者均为nb2o5层,也可以包括上述层中的多种。

在本发明中,所述a层的单层厚度独立地优选为20~150nm,在本发明的实施例中,具体为50、70、90、110或120nm;所述b层的单层厚度独立地优选为30~200nm,更优选为30~150nm,在本发明的实施例中,具体为40、55或80nm。在本发明中,各层的厚度不同,对应的彩色玻璃的颜色不同,本领域技术人员可根据实际需要对各层的颜色进行设定。

本发明提供的彩色玻璃包括ti合金层;所述ti合金层与b层相接触。在本发明中,所述ti合金层的厚度优选为30~300nm,更优选为30~150nm。在本发明的实施例中具体为30、50或80nm。在本发明中,所述ti合金层的成分优选为钛铝合金或钛铬合金,更优选为钛铝合金。所述钛铝合金中钛原子和铝原子的摩尔比优选为1:1,所述钛铬合金中钛原子和铬原子的摩尔比优选为1:1。本发明的ti合金层具有高反射率(在650nm处的反射率高于90%),可使彩色玻璃颜色鲜艳并起到一定的保护和防腐蚀作用。

本发明的彩色玻璃中,a层和b层材料不同,层间存在折射率差使玻璃呈现颜色,通过调整层叠结构中各层的厚度来进一步控制玻璃的颜色,得到的彩色玻璃颜色鲜艳,色系丰富,颜色稳定。

本发明提供了上述方案所述彩色玻璃的制备方法,包括以下步骤:

对应彩色玻璃的结构,采用磁控溅射法在玻璃基体表面交替镀a层和b层,最后在b层表面镀一层ti合金层,得到彩色玻璃;

所述a层与玻璃基体接触;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层。

本发明首先采用磁控溅射法在玻璃基体表面镀a层,形成第一a层。

本发明对磁控溅射采用的设备没有特殊要求,采用本领域熟知的磁控溅射设备即可。在本发明的实施例中,采用的磁控溅射镀膜设备的型号为tsu-650,在本发明中,磁控溅射镀膜设备所使用的电源优选为射频电源。

在本发明中,当a层为sic层时,采用磁控溅射法镀a层的条件优选为:磁控溅射的功率为50~150w,溅射靶材为高纯sic靶,溅射气压为0.2~0.9pa,氩气流量为40~100sccm;所述磁控溅射的功率进一步优选为50~100w,更优选为60~100w;所述溅射气压进一步优选为0.3~0.8pa;所述氩气流量进一步优选为40~80sccm。

在本发明中,当a层为nio层时,采用磁控溅射法镀a层的条件优选为:磁控溅射的功率为10~200w,溅射靶材为高纯ni靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,所述氩气与氧气的流量比为(4~10):1;所述磁控溅射的功率进一步优选为50~120w,更优选为60~100w;所述溅射气压进一步优选为0.2~0.9pa,更优选为0.3~0.8pa;所述氧气流量进一步优选为5~25sccm,更优选为7~25sccm;所述氩气与氧气的流量比进一步优选为(4~8):1,更优选为(4~6):1。

在本发明中,所述第一a层沉积的厚度对应彩色玻璃中第一a层的厚度。

形成第一a层后,本发明采用磁控溅射在所述第一a层表面镀b层,形成第一b层。

在本发明中,当b层为aln层时,本发明采用磁控溅射法镀b层的条件优选为:磁控溅射的功率为10~200w,溅射靶材为高纯al靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氮气的流量为8~50sccm,溅射时氩气与氮气的流量比为(2~8):1;所述磁控溅射的功率进一步优选为50~150w,更优选为60~120w;所述溅射气压进一步优选为0.2~0.9pa,更优选为0.3~0.8pa;所述氮气的流量进一步优选为8~40sccm,更优选为8~30sccm;所述溅射时氩气与氮气的流量比进一步优选为(3~7):1,更优选为(4~6):1。

在本发明中,当b层为gan层时,本发明采用磁控溅射法镀b层的条件优选为:溅射的功率为10~200w,溅射靶材为高纯ga靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氮气流量为8~50sccm,溅射时氩气与氮气的流量比为(2~8):1;所述溅射的功率进一步优选为50~150w,更优选为60~100w;所述溅射气压进一步优选为0.2~0.9pa,更优选为0.3~0.8pa;所述氮气流量进一步优选为8~40sccm,更优选为8~25sccm;所述溅射时氩气与氮气的流量比进一步优选为(3~8):1,更优选为(5~8):1。

在本发明中,当b层为zro2层时,本发明采用磁控溅射法镀b层的条件优选为:溅射的功率为10~200w,溅射靶材为高纯zro2靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,氩气与氧气的流量比为(4~10):1;所述溅射的功率进一步优选为50~150w,更优选为60~120w;所述溅射气压进一步优选为0.2~0.9pa,更优选为0.3~0.8pa;所述氧气流量进一步优选为4~20sccm,更优选为4~15sccm;所述氩气与氧气的流量比进一步优选为(5~9):1,更优选为(5~7):1。

在本发明中,当b层为nb2o5层时,本发明采用磁控溅射法镀b层的条件优选为:溅射的功率为10~200w,溅射靶材为高纯nb靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,氩气与氧气的流量比为(4~10):1;所述溅射的功率进一步优选为50~150w,更优选为60~120w;所述溅射气压进一步优选为0.2~0.9pa,更优选为0.3~0.8pa;所述氧气流量进一步优选为4~20sccm,更优选为4~15sccm;所述氩气与氧气的流量比进一步优选为(5~9):1,更优选为(6~9):1。

在本发明中,所述第一b层沉积的厚度对应彩色玻璃中第一b层的厚度。

形成第一b层后,本发明继续采用磁控溅射在第一b层表面镀a层,形成第二a层;之后继续在第二a层表面镀b层,形成第二b层,如此交替进行,使层叠结构的最后一层为b层,直至得到所需的层叠结构。

在本发明中,每次镀a层时的条件同制备第一a层的条件,每次镀b层时的条件同制备第一b层的条件,这里不再赘述。由于不同的磁控溅射镀膜设备的腔体体积大小和靶材面积不同,本领域技术人员可根据不同的磁控溅射镀膜设备,在上述范围内选择合适的镀膜条件。

得到层叠结构后,本发明采用磁控溅射法在层叠结构的表面镀ti合金层。

本发明采用磁控溅射法镀ti合金层的条件优选为:溅射的功率为10~150w,溅射靶材为ti/al合金靶或ti/cr合金靶,溅射气压为0.1~1pa,氩气流量为40~100sccm。所述溅射的功率进一步优选为50~120w,更优选为60~100w;所述溅射气压进一步优选为0.2~0.9pa,更优选为0.3~0.8pa;所述氩气流量进一步优选为40~80sccm,更优选为40~65sccm;所述ti/al合金靶中ti/al的原子摩尔比优选为1:1,所述ti/cr合金靶中ti/cr的原子摩尔比优选为1:1。

采用本发明的方法制备彩色玻璃,在不更换靶材的情况下,通过调节工艺参数,就可以获得不同的厚度,进而得到多种颜色的产品。其工艺简单,容错率高,换色容易,色系丰富,产品颜色稳定且耐酸碱腐蚀。

下面结合实施例对本发明提供的彩色玻璃及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。

以下实施例采用的磁控溅射镀膜设备的型号为tsu-650。

实施例1

彩色玻璃的层叠结构为双层结构,第一层制备时,采用的溅射靶材为高纯sic靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为sic,膜层厚度为50nm。

第二层制备时,采用的溅射靶材为高纯al靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为aln,溅射时氩气与氮气的流量比为4:1,膜层厚度为40nm。

ti合金层制备时,采用的溅射靶材为ti/al合金靶(原子比1:1),磁控溅射的功率为60w,溅射气压为0.7pa,氩气流量为50sccm,膜层厚度为30nm。

所制备的彩色玻璃为蓝色,具体的产品见图1。

实施例2

彩色玻璃的层叠结构为四层结构,第一层制备时,采用的溅射靶材为高纯sic靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为sic,膜层厚度为90nm。

第二层制备时,采用的溅射靶材为高纯ga靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为gan,溅射时氩气氮气的流量比为8:1,膜层厚度为40nm。

第三层制备时,采用的溅射靶材为高纯sic靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为sic,膜层厚度为90nm。

第四层制备时,采用的溅射靶材为高纯ga靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为gan,溅射时氩气氮气的流量比为8:1,膜层厚度为40nm。

ti合金层制备时,采用的溅射靶材为ti/al合金靶(原子比1:1),磁控溅射的功率为90w,溅射气压为0.5pa,氩气流量为55sccm,膜层厚度为50nm。

所制备的彩色玻璃为绿色,具体的产品见图2。

实施例3

彩色玻璃的层叠结构为双层结构,第一层制备时,溅射靶材为高纯ni靶,磁控溅射的功率为90w,溅射气压为0.4pa,氩气流量为40sccm,主要成分为nio,溅射时氩气氧气的流量为5:1,膜层厚度为70nm。

第二层制备时,采用的溅射靶材为高纯ga靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为gan,溅射时氩气氮气比例为8:1,膜层厚度为40nm。

ti合金层制备时,采用的溅射靶材为ti/cr合金靶(原子比1:1),磁控溅射的功率为90w,溅射气压为0.8pa,氩气流量为40sccm,膜层厚度为80nm。

所制备的彩色玻璃为紫红色,具体的产品见图3。

实施例4

彩色玻璃的层叠结构为双层结构,第一层制备时,溅射靶材为高纯ni靶,磁控溅射的功率为90w,溅射气压为0.4pa,氩气流量为40sccm,主要成分为nio,溅射时氩气氧气比例为5:1,膜层厚度为110nm。

第二层制备时,溅射靶材为高纯zro2靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为zro2,溅射时氩气氧气比例为6:1,膜层厚度为80nm。

ti合金层制备时,采用的溅射靶材为ti/cr合金靶(原子比1:1),磁控溅射的功率为90w,溅射气压为0.5pa,氩气流量为55sccm,膜层厚度为50nm。

所制备的彩色玻璃为黑色,具体的产品见图4。

实施例5

彩色玻璃的层叠结构为双层结构,第一层制备时,采用的溅射靶材为高纯sic靶,磁控溅射的功率为90w,溅射气压为0.7pa,氩气流量为40sccm,主要成分为sic,膜层厚度为120nm。

第二层制备时,采用的溅射靶材为高纯nb靶,磁控溅射的功率为90w,溅射气压为0.8pa,氩气流量为40sccm,主要成分为nb2o5,溅射时氩气氧气比例为9:1,膜层厚度为55nm。

ti合金层制备时,采用的溅射靶材为ti/al合金靶(原子比1:1),磁控溅射的功率为90w,溅射气压为0.5pa,氩气流量为50sccm,膜层厚度为50nm。

所制备的彩色玻璃为金色,具体的产品见图5。

性能测试

(1)对实施例1~5的彩色玻璃进行耐酸盐测试,测试方法参照国标gb6459-86醋酸盐雾实验进行,测试时间为48小时,测试过程中实施例1~5的薄膜表面均未出现腐蚀掉色的情况,说明本发明所制备的薄膜可满足良好的耐酸盐性质。

(2)对实施例3的彩色玻璃进行快速退火处理,测试其耐高温性以及是否允许钢化的性能,快速退火温度为500℃,时间为30分钟,退火气氛为大气气氛,退火压强为大气压强。对测试前后的样品进行了可见光波段的透过率反射率的测定,如图6所示,图6中纵坐标表示光强度百分比,横坐标表示光的波长,单位为纳米。图6显示,退火处理前后峰的位置没有发生变化,说明彩色玻璃的颜色未发生变化,且快速退火之后的玻璃透过率虽稍有提高但变化不大(约提高了2%),反射率不发生变化,说明产品的颜色稳定,耐热性能良好。

对实施例1~2及4~5的彩色玻璃进行快速退火处理,结果与实施例3相似,均显示峰的位置未发生偏移,玻璃透过率稍有提高但变化不大,反射率不发生变化,证明其耐热性能良好,颜色稳定。

由以上实施例可知,本发明提供了一种彩色玻璃及其制备方法,本发明提供的彩色玻璃利用薄膜干涉的原理,色系丰富,且颜色稳定;采用本发明的方法在不更换靶材的情况下,通过调节工艺参数,就可以获得多种颜色的产品,其工艺简单,容错率高,换色容易。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。


技术特征:

1.一种彩色玻璃,其特征在于,包括玻璃基体、层叠设置于玻璃基体表面的层叠结构和ti合金层,所述层叠结构包括交替层叠的a层和b层;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层;所述a层与玻璃基体接触,所述b层与ti合金层接触。

2.根据权利要求1所述的彩色玻璃,其特征在于,所述a层和b层的总层数至少为2层。

3.根据权利要求2所述的彩色玻璃,其特征在于,所述a层和b层的总层数为2~100层。

4.根据权利要求1~3任一项所述的彩色玻璃,其特征在于,所述a层的单层厚度独立地为20~150nm。

5.根据权利要求1~3任一项所述的彩色玻璃,其特征在于,所述b层的单层厚度独立地为30~200nm。

6.根据权利要求1~3任一项所述的彩色玻璃,其特征在于,所述钛合金层的成分为钛铝合金或钛铬合金,所述ti合金层的厚度为30~300nm。

7.权利要求1~6任一项所述彩色玻璃的制备方法,其特征在于,包括以下步骤:

对应彩色玻璃的结构,采用磁控溅射法在玻璃基体表面交替镀a层和b层,最后在b层表面镀一层ti合金层,得到彩色玻璃;

所述a层与玻璃基体接触;所述a层为sic或nio层;所述b层为aln、gan、zro2或nb2o5层。

8.根据权利要求7所述的制备方法,其特征在于,当a层为sic层时,采用磁控溅射法镀a层的条件为:磁控溅射的功率为50~150w,溅射靶材为高纯sic靶,溅射气压为0.2~0.9pa,氩气流量为40~100sccm;

当a层为nio层时,采用磁控溅射法镀a层的条件为:磁控溅射的功率为10~200w,溅射靶材为高纯ni靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,所述氩气与氧气的流量比为(4~10):1。

9.根据权利要求7所述的制备方法,其特征在于,当b层为aln层时,采用磁控溅射法镀b层的条件为:磁控溅射的功率为10~200w,溅射靶材为高纯al靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氮气的流量为8~50sccm,溅射时氩气与氮气的流量比为(2~8):1;

当b层为gan层时,采用磁控溅射法镀b层的条件为:溅射的功率为10~200w,溅射靶材为高纯ga靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氮气流量为8~50sccm,溅射时氩气与氮气的流量比为(2~8):1;

当b层为zro2层时,采用磁控溅射法镀b层的条件为:溅射的功率为10~200w,溅射靶材为高纯zro2靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,氩气与氧气的流量比为(4~10):1;

当b层为nb2o5层时,采用磁控溅射法镀b层的条件为:溅射的功率为10~200w,溅射靶材为高纯nb靶,溅射气压为0.1~1pa,氩气流量为40~100sccm,氧气流量为4~25sccm,氩气与氧气的流量比为(4~10):1。

10.根据权利要求7所述的制备方法,其特征在于,采用磁控溅射法镀ti合金层的条件为:溅射的功率为10~150w,溅射靶材为ti/al合金靶或ti/cr合金靶,溅射气压为0.1~1pa,氩气流量为40~100sccm。

技术总结
本发明提供了一种彩色玻璃及其制备方法,属于镀膜技术领域。本发明的彩色玻璃,包括玻璃基体、层叠设置于玻璃基体表面的层叠结构和Ti合金层,所述层叠结构包括交替层叠的A层和B层;所述A层为SiC或NiO层;所述B层为AlN、GaN、ZrO2或Nb2O5层;所述A层与玻璃基体接触,所述B层与Ti合金层接触。本发明利用A层和B层的材料不同,层间存在折射率差使玻璃呈现颜色,通过调整层叠结构中A层和B层的厚度来控制玻璃的颜色,Ti合金层具有高反射率,可使彩色玻璃颜色鲜艳并起到一定的保护和防腐蚀作用。实施例的结果表明,本发明的彩色玻璃颜色鲜艳,色系丰富,钢化处理后表面颜色不发生变化,产品颜色稳定。

技术研发人员:孙珲;扎玛托福;宋淑梅;宫建红;尤瑞松
受保护的技术使用者:山东大学
技术研发日:2020.03.20
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-18861.html

最新回复(0)